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Single-pion photoproduction is studied in two types of chiral bag models; the cloudy bag model
with pseudoscalar coupling and a recently proposed model of Kalberman and Eisenberg. As the en-
ergy region studied encompasses the 6 mass, a finite-width 5 is used in our calculations. Detailed
comparison with data is presented.

I. INTRODUCTION

Since the MIT bag model' was proposed almost ten
years ago, it has been applied primarily in two directions:
to generate the hadron spectra and to study decay pro-
cesses. Of late a great deal of effort has gone into refin-
ing the model to accommodate chiral symmetry.

Among the models that allow chiral symmetry, one of
the most successful has been the cloudy bag model
(CBM). In this model the pionic degrees of freedom are
introduced explicitly and the pions couple to the quarks
only at the surface of the bag. The free pion field howev-
er exists inside the bag. The pion-quark coupling is pseu-
doscalar (PS). This model has met with success in
describing several nucleon properties, particularly the
axial-vector coupling constant g~ and the neutron charge
form factor. This model also describes the 6 resonance
and pion-nucleon P-wave phase shifts in the I= —,

' state.
However, in order to describe the S-wave pion-nucleon

scattering lengths, which are described well in current
algebra, ' one has to introduce a transformed quark field
which introduces nonlinear pion-quark interaction. More
importantly, it also introduces a volume pion-quark in-
teraction linear in the pion field of a pseudovector (PV)
nature. It is this pseudovector pion-quark interaction
which holds the key to the current-algebra result for S-
wave pion-nucleon scattering lengths.

Recently, Kalberman and Eisenbergq (KE) have pro-
posed a chiral bag model fashioned after Weinberg's o-
model formulation of chiral Lagrangian for the n.N sys-
tem. " The KE nonlinear chiral bag has pseudovector
pion-quark coupling throughout the volume of the bag.
In addition, the cubic and higher-order nonlinear terms in
pion field in the KE bag model differ from those of Tho-
mas' bag model.

The reader is reminded that single-pion production has
been studied extensively in the past on the nucleon lev-
e.1 12—16

In this paper we have investigated pion photoproduc-
tion in the CBM with PS surface coupling of pion with
quarks and the KE modelq with PV volume coupling of
pion with quarks, well into the 6 region. In Sec. II, we
define the interactions and the propagators. Pion pho-
toproduction amplitudes and their multipole projections
are calculated from the Born diagrams in Sec. III. In Sec.
IV, we present numerical results for the low-order mul-

tipoles, single-pion production cross sections, and polari-
zations. A discussion of our results is also given in Sec.
IV.

II. LAGRANGIANS AND PROPAGATORS

~ qq
= — gq, (x)r.n. (x)y5q, b.. . (2.1)

where 6, =5(R r) R—is th. e bag radius.
It was subsequently shown that by a redefinition of the

quark field the linear PS pion-quark surface interaction
could be transformed into a volume pseudovector term.
We are interested in studying the consequences of the PS
surface interaction (2.1) to single-pion photoproduction
well into the 5 region. In the KE model the pion-quark
interaction is a pseudovector volume term of kind

W
qq

—— g q, (x)y"y5r. q, (x)d„n.(x)8y,
a

where

(2.2)

1, r&R,
Oy= 0

Notice that the derivative coupling of (2.2) induces a
contact ymqq term by gauge invariance. Such a term is
absent in the CBM description.

B. m.NN interaction

The method of derivation of the srNN interaction La-
grangian starting from the n.qq interaction of Eqs. (2.1)
and (2.2) is given in Refs. 5 and 9. We give only the
essential details.

A. ~qq interaction

In this section, we set up the basic tools of calculation.
Throughout this paper we employ only the ground-state
S-wave MIT bag wave function whose parameters are
given by Deorand, Jaffe, Johnson, and Kiskis. The
model, therefore, does not have any new parameters.

The original cloudy bag model has a pseudoscalar cou-
pling of the pion with the quarks only at the surface of
the bag, of the form
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q, (x)= N
4m

ijo —r
R

—j~ —r 0' r
R

&m+a& (2.4)

The nNN interaction (as also nNb„yNN, and yNb, in-
teractions to follow) is defined in momentum space by

2'„»=(m (q)N(p'=0)( 1 d xW ~~(x)())'(p=0)) .

(2.3)

The static MIT bag solution' with the lowest-frequency
mode for massless quarks has the form

~PNN ~gmNNN75+

KE 21' —
p

NN 'gnNNNY 'Y5+ ~I))+N .
P7Z ~

(2.12)

(2.13)

In Fig. 1 we have plotted the two strong form factors of
Eqs. (2.9) and (2.10) for two values of R: R =3.65 and 5.0
GeV . It is clear that numerically they are indistin-
guishable.

As the coupling constants are practically indistinguish-
able in the energy range we are interested in we shall, in
practice, generate the X% vertex in the CBM or in the
KE model by the use of the following PS or PV interac-
tion Lagrangians with a form factor given in Eqs. (2.9)
and (2.10):

where

2R (co —1)j() (co)
(2.5)

C. mÃh interaction

In SU(6) symmetry one can write

In (2.4), u~ is the Pauli spin wave function and g~ the iso-
spin wave function of the quark. As shown in Ref. 5, one
obtains W ~~ for the CBM as follows:

I Ci) j1 (qR ) 5»= — N( 0"qr ())(l,2 co —1 qR

2~2(N(o q~N)= ', (6(&"qT())),— (2.14)

where S and T are the transition spin and isospin opera-
tors defined in Refs. 17 and 18.

In analogy with Eqs. (2.6) and (2.7) the transition am-
plitude, in momentum space, is given by

(2.6)

where o. and ~ are the Pauli spin and isospin operators.

i
N ) is the spin-isospin wave function of the nucleon.
Similarly, the KE bag model yields

—[Ro(jo' —3A') —
3 Rz(ji')1

(2.15)

where
~

N ) and
~

b. ) are spin-isospin wave functions for
the nucleon and b, . Also through SU(6) symmetry

g.~~(q )-6'
5

(2.16)

(2.7)

where

(2.8)
R CO

RI(f)=NJ r dr j—I(qr )f r— D. yNX interaction

The photon-quark interaction Lagrangian density is
given by

The term R2(j~ ) in Eq. (2.7) makes only a small contri-
bution to the quantity in the square brackets.

A numerical test shows that the two interactions, Eqs.
(2.6) and (2.7), are identical at q =0 and even at

~ q ~

=300 MeV/c they differ by less than 0.05%. This is
perhaps not surprising in view of the work in Ref. 8. In
Eqs. (2.6) and (2.7) one can identify (with M=nucleon
mass)

0.9—

0.8—

and

j&(qR )

qR
(2.9)

0.7—

g Riv(q ')/2~= '[Rp(jp' ——,
' j)')——', R2(j)')] .

I

100 300

At q =0 both these couplings reduce to

NN(0) g NN(0) 0 8/f

(2.10)

(2.11)

FIG. 1. Strong and electromagnetic form factors plotted vs k
(in MeV). g ~~(k )/g„~~(0) (solid curve); G~(k )/GE(0)
(dashed curve) and G~(k )/G~(0) (dash-dot curve). Upper
three curves are plotted for R =3.65 GeV ' and the bottom
three for R =5.0 GeV
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~yqq g eQa 'Va yI89a~ (2 17) where

where e )0 and Q„=—, and Qd ————,
' .

Since nucleon form factors are used in our calculations
we digress and reproduce the essential details. Define

() e)=e()q i d xq(x)) eq(x)e'"'* 81) . (218)

Substituting (2.4) in (2.17), we obtain (note that these cal-
culations have been done for pNN vertex by Weber' )

R
I„(R)=N f r "+'drj p r—j& r—

With co=2.04, we get

&r &=0.53R, &r &=0.384R

and

(Mp
———,Ii(R) =0.203R, I2(R) =0.244R

(2.30)

(2.31)

(2.32)

& yo & =«p(jo'+ j,')5 (2.19)

m, m' are the spin indices for the nucleon and a,P the iso-
spin indices. Similarly,

& y &=ieRi(2jpji)u~ (o Xk)u~5ap.

Nucleon form factors F;(k ) are defined via

& y«»NV ')
I
~ NN I

NV» &

(2.20)

Fi(k )= 1+
4M

GE(k )+ ~ GM(k )
4M

Y

=E('u(p') F,(k )y„+iF2(k )
" u(p) .
2M

(2.21)

F;(k ) are related' to the electric and magnetic form fac-
tors GE(k ) and GM(k ) through

where pz is the proton magnetic moment.
In Fig. 1 we have plotted GE(k ) and GM(k ) as func-

tions of k

(2.33)

where GM(k ) is defined in Eqs. (2.22)—(2.29).
A phenomenological Lagrangian of a gauge-invariant

form which simulates (2.33) is

WyNa —— ieCpb", —T33 'y 9bNF&„+ Hc. (2.34)

E. yah interaction

Using the photon-quark interaction Lagrangian of Eq.
(2.17), one derives the yNb, interaction, in momentum
space, as

GM(k')&iI). i(SXk) EC3 iN&

and
(2.22)

—].1'
F,(k')= 1+

4M
[GM(k ) —GE(k )] . (2.23)

Reducing (2.34) nonrelativistically and keeping only the
dominant M, + term one obtains

C (M+Mb, )
~yNa ie

4 M &+
i
(SXk) e'"l

3 ~

N& . (2.35)
4 MMg

GE(k ) = 1+z3 G(k) (2.24)

Defining now the isospin dependence of the form factors
through

Comparing (2.33) with (2.35) one obtains

4V 2M' GM(k 2)

(M+Ma) e
(2.36)

and

GM(k )= —,'+ —6y3 GM(k ), (2.25) Using

GM(0) =1.9e, (2.37)

Fi 2(k )=—,[F'| 2(k )+y3FI 3(k )],
we find

GE(k ') =«o(jo'+A')

=e 1 — &r'&+
120

(2.26)

(2.27)

we get

0.28/m, for R =3.65 GeV

0 39/m, fo.r R =5.0 GeV

(2.38)

This is to be compared with c =0.37/m given by Gour-
din and Salin. ' We shall use the Lagrangian in Eq. (2.34)
with C given by (2.36).

where

and

R
(2.28)

F. Seagull term

The minimal replacement, B&~B&—ieA&, in Eq. (2.2)
leads to a seagull term

GM(k )= Rl(2joj|)p -2 2Me

ski

e
~yq8qq Ebc3 g Qa&5ybea~, i V ~

2 (2.39)

=2Me —,
' Ii(R) ——,', k I2(R)+ (2.29) In the Coulomb gauge Ep=0, one obtains the following

@~AN contact term in momentum space;
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—[[Ro{jo' —
3 Ji')+ 3Rz(ji')](e 0. ) —2Rz(J'i )(e.q)(o q)J 2 [rc 13]

( ')
=ie [o"e —0.546jz(qR)(e. q)(o"q)]T[r„r3] .

{2.40a)

(2.40b)

Equation (2.40b) is a convenient numerical approximation
to (2.40a). g~~&(q ) can be read off Eq. (2.11) in the KE
model

gmNN(q')i2M= — [Ro{jo'——,
' ji') ——', Rz(ji')]

5 1
Ro{jo ——,j, ) . (2.41)

G. Propagatars

The last line follows from the fact that Rz(j& ) makes
only a small contribution. Note that if one were to use the
PV coupling, Eq. (2.13), on the nucleon level and then
generate the seagull term by the minimal replacement one
would have obtained only the o"e part of Eq. (2.40b).
The tensor term generated by working with PV coupling
on the quark level in Eq. (2.40b) is, however, very small in
comparison.

In practice we shall work with the PV md% coupling of
Eq. (2.13) and introduce by hand the extra tensor contri-
bution contained in Eq. (2.40b) which would otherwise not
be generated.

p = center-of-mass momentum,

~(P ') =g xa(P ') ig xa(0»

r~~=(p +m )'~, E~=(p +M )'~

In SU(6) symmetry, because of the closeness of g ~z(p )

in the CBM and the KE model, the 5 width has the same
value in both these models. %'e digress briefly to investi-
gate the behavior of the P33 phase shift in mÃ scattering
as predicted by the two models.

The method of analysis is given in Refs. 5, 22, and 23.
The idea is to start with a "bare" 6 pole in the direct
channel as the driving term in the Blankenbecler-Sugar
equation. A mass shift and the width are then generated
by mN bubbles. To wit, one uses the Blankenbecler-Sugar
equation

T(p, q;s)= V(p, q;s)+ 3 V(p, k;s)d k 1

(2~) 2cokEk

(~k +Ek)
X T(k, q;s),

(cok +Ek ) —s —l e

(2.46)
DeTar has written down the nonrelativistic forms of

the nucleon and the 5 propagators. For applications well
into the b, region we use the relativistic forms of the prop-
agators:

where

+ (p)+(q)Vp, q;s =
s —Mg

(2.47)

Nucleon: i(p+M)
p —M + l E'

(2 42) with

where

Pp

p' M, '+iM, r(p') —' (2.43)
+(q)=g &a(q )S qTh(q ) . (2.48)

The solution of the Blankenbecler-Sugar equation is then
written as

1
3m 1 3M(r P—

+ (p)~(q)
D{

(2.49)

2
( M)

3M
(2 44) z 1 J ~ [g~xa ]k4 (k') '

9~' (~k+Ek )' —s —&'&

The width I ( p ) is given by

[g ~~ p '=o ]'
"p z

18aM'

where

I p I' hz(-z) (245)
Q)p +Ep

(~k+Ek)
X

~kEk
(2.50)

One then derives the result written in (2.45) from the ima-
ginary part of D(s) and the scattering phase shift from

p cot5p = Ma —s — P dk z
[g~~a( p )] 9~ (~k +Ek ) s ~kEk

(2.51)
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g KE g cBM+I Pv (3.2)

In evaluating the Born amplitude we have used the PS
and PV interactions of Eqs. (2.12) and (2.13) with the
strong form factors given by Eqs. (2.10) and (2.11). In
practice there is no noticeable difference between the
CMB and the KE +PION vertices. The latter, however,
does produce a seagull term of type o"e of Eq. (2.40b).
The additional tensor term in Eq. (2.40b) is fed in by
hand.

For the yNN vertex the electromagnetic form factors
discussed in Sec. II are used.

The Born amplitude with nucleon poles and the contact
term [without as yet the tensor term of Eq. (2.40b)] can be
written in the following form

FIG. 2. P33 phase shift vs pion laboratory kinetic energy.
Data from Ref. 26. Solid curve R =3.65 GeV '. Dashed curve
R =5.0 CxeV with

g CBM (3.3)

In Fig. 2 we have plotted 5(p) as a function of momen-
tum for bag radii, A=3.65 GeV ' and 5.0 GeV '. The
results for the CBM and KE model are indistinguishable
as anticipated. A width of 60 MeV is obtained, consistent
with one of 50 MeV obtained in a chiral bag.

III. PION PHOTOPRODUCTION AMPLITUDES

where A is a vector with components A (, . . . , A4, [g] is a
diagonal matrix with [g]=(diag(1, 1, —1, 1), and g is a pa-
rameter defined by g(+' ' '=(l, l, —1). The residue vec-
tor I (t ) is defined by

We follow the notation of Ref. 13 with metric g =1,
g"=—1. For completeness we reproduce the essential de-
tails but relegate standard definitions to the Appendix.

The transition amplitude for

y(k)+N(p))~~ (q)+N(p, )

is written as and

I (+,0) & (~2)y(vs)(k 2)

r(+, 0) g-» q( )2'=
2 1

m —t

r(+,0) r(+,0)
( 2)y(v, s)(k 2)4 = —Tg~XX q

(3.4)

(3.5)

(3.6)

4

Tf —uf(pz) g A' J(s, t)M~"e&u(p, ) . (3.1)
j=1

The gauge-invariant spin matrices' ' MJ" are written
down in the Appendix. The Mandelstam variables (s, t, u )

and the isospin projections of Aj(s, t) are also defined in
the Appendix.

e g~)v&( qI = —(1 g) F'''(k )
2 2M

(3.7)

I 2
——I 3 ——I 4 ——0. (3.8)

The strong and electromagnetic form factors are defined
in Sec. II.

The 6-pole terms are similarly obtained as follows

Aa(s, t) = + [g] . , b(t)+A„~(s, t),
s —M, '+ tM, r(s) u —M, ' (3.9)

where

4M4t+ (M~' —M'+2m ~)+ (Mt, 2 M2+m 2)—
3M'

1
b, (t) =rt

1 —(2M+4M~)+ +,(Mt, —2M +2m )
4M 2M

8 3M' 3M~2

(3.10)

1 6M+4M'+ + 2 (Mg —2M +2m )
4M 2M
3M&
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with

(+ 0 ) 0 1
e 2 C(k ) (3.11)

In order to extract the multipoles, one defines a scatter-
ing amplitude, in the center of mass, through

(3.15)
The nonpole part is

a „'+'(
s, r)= „~+~

1 2

6M'
[r m— —2M(M+Ma)]

0
0

f/; =x/+~x;

with

(3.16)

M = i o EM"1+(o"q)o"(kX e)&2

and expands' ' f/; in terms of Pauli spin matrices as

1
2 (Ma —M)

3M' +i(o"k)(e q)~. +3i( oq)( Eq)~ 4 . (3.17)

1
2 (u —s)

6MLIL

0
1

2 (Ma —M)
3ME

0

(3.12)

(3.13)

(3.14)

M, (-,' ) =M,'+'+2M, '

M/( —, ) =M/'+' —M/

(3.18)

IV. RESULTS AND DISCUSSION

The relations between ~; and AJ are written down in the
Appendix. Notice that the tensor term of Eq. (2.40b)
makes its appearance in ~ 4.

The multipoles are then projected by the usual prescrip-
tion given in Refs. 13 and 14. The multipoles in a specific
isospin in the final state are obtained from

A B

The transition strong and electromagnetic form factors
are given in Sec. II. The expressions in Eqs. (3.10)—(3.14)
correspond to the case a=P= —1 of Olsson and
Osypowski. '

We have calculated the low-order multipoles (I & 2), to-
tal cross section, angular distributions, and polarizations
in the CBM and the KE model. In the calculations,
based on nucleon and 5-pole diagrams, together with the
seagull term for the KE model, strong and electromagnet-
ic form factors as predicted by the bag models are used.

The real parts of the electric and magnetic multipoles
for I= —,

' final state are plotted in Figs. 3(A)—3(D) for the
CBM and the KE model for bag radius R =3.65 GeV

160 200 300

kL (MeV)

M1+(1/2)

I

400 p I I

500 160 200

I

0

I

300

kL (MeV)

MI (1/2

400

I I

160 200

Ep+(3/2)

kL (MeV)

I

400
I I

160 200

E1+(3/2)

l
i

300

kL (MeV)
400

I

160 200
kL (MeV)

400 500 160 200 300
kL (MeV)

I

400

FICi. 3. Real parts of electric and magnetic multipoles for
I= z in units of 10 /m . Solid curve: KE model. Dashed

curve: CBM. Dash-dot curve: PV (no-bag). Dotted curve: PS
(no-bag). Where the two bag-model predictions and the two no-

bag predictions cannot be distinguished, a solid curve is used for
bag-model predictions and dash-dot curve for no-bag predic-
tions. Experimental points from Ref. 27. Bag radius: R =3.65
CieV

160 200
I

300

kL (MeV)

/
/

/

400
-15 I

500 160 200

M1-(3/2)

I

300 400

kL (MeV)

FIG. 4. . Real parts of electric and magnetic multipoles for
I=

2 in units of 10 /m . See caption to Fig. 3 for details.
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A

0

B 300

200—

60 (3/2)

I

100 200 300

kL (MeV)
400 160 200 300

kL (MeV)
500 100—

FIG. 5. R dependence of E +( z ) and E +( 2 ). 5(A) Real

part of Ep+( 2 ) (B) Real part of Ep+( 2 ) KE model: solid

curve: R =3.65 GeV '; Dash-dot curve: R =5.0 GeV '. CBM:
Dashed curve: R =3.65 GeV '; Dotted curve: R =5.0 GeV

I

160 200 300

kL (MeV)

I

400

60

50—

Im M)+(3/2)

For comparison we have also plotted the multipoles as
calculated from the Olsson-Osypowski' formalism with
PV coupling with their parameters a=P= —1. The two
bag models give identical results for all multipoles except
the dipoles E +( —,') and M, ( —, ). It is known' that on

the nucleon level the PS and PV theories also agree on all
multipoles except the electric and magnetic dipoles men-
tioned above.

In Figs. 4(A)—4(D) we have plotted the electric and
magnetic multipoles for the I=—', final state with the bag
radius 8 =3.65 CxeV '. For comparison the Olsson-
Osypowski' predictions, with zero width 5, are also plot-
ted. The discontinuity at the b, mass is a result of the
zero-width approximation. Our calculation uses a finite
but a narrow (60 MeV) b width. With a larger b. width
the structure in the I= —, multipoles at the 6 mass would
be considerably smoothed out. Again the CBM and the
KE model make identical predictions for all multipoles
except the dipoles E0+( —,') and M& ( —,'). In Fig. 5 we

have plotted the R dependence of our results for E +( —,
'

)

and E0+ ( —,
' ).

FIG. 7. Total cross sections for p(y, m+)n. Experimental
points from Ref. 28. Results in the two bag models are indistin-
guishable. Solid curve: R =3.65 GeV '. Dashed curve: R =5.0
GeV

ImM, +( —, ) is plotted in Fig. 6 with bag radii R =3.65
GeV ' and 5.0 GeV '. The peak appears to be a better
fit by the lower radius. The theoretical peak is much nar-
rower than the data. The same feature is exhibited by the
total cross section for p(y, 2r)+n plotted in Fig. 7. An ex-
planation of our results and comparison with the work of
the CBM follows.

In our calculation the driving term in the
Blankenbecler-Sugar equation for the P33 AN amplitude is
the bare-6 direct-channel pole. We neglect the P33 projec-
tion of the cross nucleon term which would produce the
"Chew-Low" part of the driving term used in Ref. 5.
Thus in Ref. 5 the P33 2rN amplitude has the 5 pole as we
have and, in addition, a background term which provides
the extra width of the P33 amplitude at 5 resonance, a
part which is missing from our work. The b, width we
obtain (60 MeV) is consistent with the width resulting
from b. pole in Ref. 5.

The angular distributions for p(y, 2r )p at photon ener-
gies 180 and 360 MeV are plotted in Fig. 8 and that for

40—

30—

2.0 — k„= 160Mev

S&b. e) 0
40 kL = 360 MeV

si

II
~ (~ ~

20—

10—

0 I a I +~
160 200 300

kL (MeVj

I

400 500
00' 0 I I I

60' 120' 150' 180' 00 30' 40' 9'
~c.m. ~c.m.

120 150' IIIO'

FIG. 6. Imaginary part of M + for I=
z in units of

10 /m in the two bag models. The results in the two models
are indistinguishable. Experimental points from Ref. 27. Bag
radius: R =3.65 GeV

FIG. 8. Angular distribution for p(y, m )p at 180 (a), 360
MeV (b); Experimental points from Refs. 29 and 30. : KE
with R =3.65 GeV '. —..—:KE with R =5.0 GeV

CBM - with R =3.65 GeV '. ——- —:CBM with
R =5.0 GeV '. ———.: PV (no bag). ———:PS (no bag).
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20—

I

y/

p(y, 7r+) n

kL = 360 MeV

0.2

0.1

L
0)

b @10
vh, ~)n

k, =38O MeV

-0.1—

00 30' 60' 120' 150' 180'

0 00 30' 60' 120'
I

150' 180'

FICz. 10. Polarization for p(y, m- )p at 360 MeV. Experimen-
tal points from Ref. 32. See caption to Fig. 8 for details.

FIG. 9. Angular distribution for p(y, m+)n at 360 MeV. See
caption to Fig. 8 for details. Experimental points from Ref. 31.

p(y, sr+)n at 360 MeV in Fig. 9. Polarization for p(y, m )p
at 360 MeV is plotted in Fig. 10. For all these plots we
use two bag radii R =3.65 and 5.0 GeV

We wish to note here that all the results obtained in the
present analysis with the KE model would be the same as
the PV version of the CBM since both models are
equivalent up to terms quadratic in pion field. In this pa-
per by the CBM we mean the PS version of the CBM.
The general conclusion we draw is that the KE model,
based on a PV coupling, with a smaller bag radius of 3.65
GeV, fits data reasonably well. This is not surprising in
view of the fact that, on the nucleon level, the PV theory
with nucleon and pion poles and the seagull terms leads to
the low-energy theorems derived from PCAC (partial con-
servation of axial-vector current) and current algebra for
photoproduction of single pions, charged or neu-
tral. ' ' ' Both the KE model and the CBM La-
grangian satisfy PCAC in contrast to the PS theory on the
nucleon level, but this does not imply that the Born terms
in the two models would be the same. The reason that the
CBM (or the PS coupling on nucleon level) does not fare
as well at low energies in our calculations has more to do
with the difficulty of doing a complete calculation than
with an inherent problem with the theory. It is known
that the PS theory on the nucleon level with nucleon and
pion poles alone gives quite a good fit to the threshold
charged-pion photoproduction amplitude E + but rather a

poor fit to neutral-pion photoproduction. Inclusion of the
dispersion contribution, particularly the s- and u-channel
4 resonances, improves the situation. One expects that
the t-channel contribution (co exchange, for example)
would also play a role at threshold' for ~ photoproduc-
tion. In contrast, the inclusion of the 6 resonances makes
very little difference to the charged-pion photoproduc-
tion at threshold.

We end this section with a discussion of the role of the
seagull term and its equivalent in the PS theory.

In the PS theory the amplitude generated by the two
nucleon-pole terms (s- and u-channel) and the pion-pole
term satisfies gauge invariance. In the PV theory the
seagull term is required by gauge invariance. If one were
to work in the Coulomb gauge, eo ——0, and split the
nucleon-pole contribution into positive energy nucleon in-
termediate state and the Z graphs (nucleon-antinucleon
pair in intermediate state) one can show that at threshold
only the Z graphs contribute.

The seagull terms contribute only to charged-pion pho-
toproduction. Also the Z-graph contribution in the PV
theory is of order m /M at pion production threshold.
PS theory, on the other hand, yields a Z-graph contribu-
tion of order unity. Since for neutral-pion photoproduc-
tion Z graphs are the only contributors in both PS and PV
theories, the latter theory leads to a smaller amplitude in

agreement with experiments.
For charged-pion photoproduction the scag ull term

compensates for the small contribution of the Z graphs in
the PV theory. In this sense the seagull term simulates
the effect of Z graphs in the PS theory. The net effect is
that the PS and the PV theories lead to almost identical
amplitudes for charged-pion photoproduction.

Subtle differences remain between the PS and PV
theories on the Born level. The PV theory leads to correct
dipole amplitudes Eo+ and M, in both I= —, and —,

' final

states in contradiction to the PS theory. Both theories on
the Born level, however, produce identical higher mul-
tipoles.
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APPENDIX

The gauge-invariant spin matrices Mz" are' '
M~( i——y 5y"A,

M~3 =2iy, [P"(q k) (P—k)q")

M3 =y5[y"(q k) kq—"],
M4 =2y 5[y"(P.k ) gP—" i M —y"g ],

where P = —,
'

(p ~ +p3 ).
The Mandelstam variables are

s =(k+p, )', t =(q k)',—u =(k»)' .

(t —m )F——A 3+( W —M)A4 — (A3 A4)
2( W —M)

W3 —qF[( W —M)A2+(A3 A4))

W4 qF———( W+M)A2+ (A3 —A4)

(A4)

(A2) where

+(g—1)
5ef tits &2(ji')

(W—M)q

(t —m )
W2 qF———A )+(W+M)A4 — (A3 —A4)

2( W+M)

The isospin structure of the amplitude is given in terms of
the three projection operators

The relations between ~ I and AJ are as follows:

W M
( ),

8 ~ 1 2

D, =M+(M'+k')' ',
D, =M+(M'+q ')' ',
8'= total c.m. energy .
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