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A model for quark jets based on the thermodynamics of a one-dimensional quark gas in a grand
canonical ensemble is presented. The model makes predictions about such properties of jets as mul-
tiplicity and Koba-Nielsen-Olesen (KNO) scaling. A generalization to higher dimensions is out-
lined. KNO scaling in the statistical description of many-particle phenomena is also examined.

I. INTRODUCTION

Models for jet evolution fall into two categories —those
based on parton fragmentation and QCD, ' and those
based on naive confinement models. The confinement
and the QCD picture apply to different stages of the jet
evolution processes —QCD describes the evolution of fast
partons and the naive confinement models address the
question of the transformation of the on-shell partons into
hadrons. The main problem in jet-evolution physics seems
to be the following: how do the two different approaches
join smoothly~ Phenomenological models have tried to
answer this question, but the theoretical answer to this
question seems to be equivalent to solving the problem of
confinement.

In this paper we adopt a different approach to high-
energy jet phenomena, hoping that by following two
separate chains of thought we will find some point of in-
tersection which should approximate the truth. Unlike jet
parton models, the fundamental quantitities in this model
are not quarks, partons, Regge poles, etc., but averaged
thermodynamic quantities such as energy, entropy, etc.
Such an approach to multiparticle production is not new;
in fact it goes all the way back to Fermi and Landau,
since almost by definition, statistical mechanics is con-
cerned with forecasting macroscopic behavior of physical
systems given only partial information about their internal
states. What is different about our model is that we start
with an exact Hamiltonian for the quarks in 1 + 1 di-
mensions, which is derived from QCD in the Coulomb
gauge. Thus we may get information about the multiplici-
ty of hadrons in jets without any phenomenological inputs
(adjustable parameters) except quark masses and string
'.ension. The quarks are treated as classical particles, but
their interactions through SU(N) gauge fields are treated
exactly.

We also examine which statistical ensembles are reason-
able in dealing with strongly interacting systems that
show clustering. It is found, in particular, that the
pressure-fixed grand canonical ensembles give correct
Koba-Nielsen-Olesen (KNO) scaling. The details of these
ensembles and the numerical work are shown in an ac-
companying paper. 6

The basic physical situation that this model describes is
the following: The e+e (pp) annihilate and produce a

qq pair held together by a string of color fiux, the interac-
tion energy being given by Hamiltonian H [Eq. (2.1)].
The collision provides enough energy to create qq pairs.
This results in the breaking of the initial string. Each new
string represents a cluster of quarks in a singlet state. Our
a priori postulate is that this system, which behaves like a
one-dimensional gas, is not initially in equilibrium. How-
ever, the interactions are so strong that energy is quickly
distributed among the various degrees of freedom accord-
ing to statistical laws. This process takes place until en-
tropy is maximized. Detailed arguments for the deter-
mination of the volume at which adiabatic expansion en-
sues are given in Sec. III. All these postulates will be jus-
tified a posteriori

The next stage of the process is adiabatic, isentropic ex-
pansion. We assume that at each stage of the expansion,
there is local equilibrium (in effect, like hydrodynamic ex-
pansion). As the system expands, breakup into clusters
(hadrons) takes place. This behavior is contained in the
equation of state derived from H, the exact Hamiltonian
we derived earlier. " We calculate S(E) as a function of
center-of-mass energy and relate it to the multiplicity of
particles. The experimental sphericity ' distribution indi-
cates that the expansion is longer along the collision axis
than in the transverse direction and if we do not consider
vibrations of the string, the one-dimensional approach is
justified.

In the next few sections we set up the thermodynamics
of a one-dimensional quark gas, given an exact Hamiltoni-
an, and obtain physical relevant quantities. We consider
the volume-fixed ensemble and obtain a power-law
behavior for the multiplicity. The pressure-fixed ensem-
ble is considered briefly to show KNO scahng, but is dealt
with in more detail in an accompanying paper.

II. THERMODYNAMICS OF A ONE-DIMENSIONAL
GAS

We start with the Hamiltonian

(2 1)

which was derived in earlier papers. The A, s are the
SU(N) matrices appropriate to a quark and antiquark rep-
resentation; a=g /2=string tension. This Hamiltonian
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gives the exact expectation values of entangled loop opera-
tors and their products in SU(N) gauge theories. The
grand canonical partition function for this system can be
calculated. For a volume-fixed ensemble we use the
transfer-matrix method in the following way: to diagonal-
ize H, one considers a well-ordered sector
x~ &x2 & - . - &x„and combines the quarks successively
from left to right into a sequence of irreducible represen-
tations, the last one being an SU(N) singlet. Each such
system defines an eigenstate of H with eigenvalues

n —I
E=a g C; ~x;+& —x; + g (m +k; )'~

&e use this Hamiltonian to study the thermodynamics of
the quark gas in a volume-fixed ensemble. For this we
employ the transfer-matrix formalism. The transfer ma-
trix enables us to build an irreducible representation of
n + 1 particles from an n particle state, i.e.,

(2.3)

The Hilbert space for 1t is the space of all irreducible rep-
resentations of SU(N). In a volume-fixed ensemble the
transfer matrix can be defined as follows:

g„+~(x)= f zte ~ " ~~/„dy; z =2m%&(mp) .

C; =Casimir operator of the ith representation,

m =mass of the quark,

k; =momentum of the ith quark .

(2.4)

z is derived from the kinetic part of the Hamiltonian and
(2.2) is the single particle kinetic partition function. It depends

on the flavor of the particles through the mass. The ac-
tion of t on the vectors P„of the Hilbert space is defined
to be

(g'
~

t
~
P) =1, if f' can be formed from f with the addition of a fundamental

representation (quark or antiquark) of SU(N)

=0, otherwise .

By defining the fugacity g such that g„& gf„Eq. (—2—.4)
becomes

&~y1+y2+ ' yz

for addition of a quark,

+paC —gzt $„=0.
dr

(2.5)
1 1+ + ~ ~ ~

yi y2

for addition of an antiquark . (2.9)
The equation for the transfer matrix, i.e., (2.5) can be

mapped onto a differential equation by associating with
each g„an antisymmetric function g (y) such that

The action of Cong is

n y; By.
(2.10)

g= g C„g„ is associated with g (y)

I I I
n& n2 n&

Cn'y i y2 yx (2.6)

1 ', ~ N(N 1)—
(2.7)

where n label the irreducible representation of SU(N)
which corresponds to a Young tableau with X rows.
n ~ & n2 . . & n~ The Ca. simir operator C for SU(N) is
then given by the symmetric quadratic form

By these prescriptions Eq. (2.5) gets mapped to a differen-
tial equation for g (y). We carry out a Fourier decomposi-

lXition of g by associating y; =e, x; real, and we get a dif-
ferential equation reminiscent of the Schrodinger wave
equation. The Casimir operator and the branching opera-
tor play the roles of the kinetic and potential energies of
the system, respectively, in N —1 dimensions with the
volume r corresponding to imaginary time. The condition
for the positivity of the Casimir operator translates into
an antisymmetry condition on the solutions of this equa-
tion. The Green's function

C„' is the natural antisymmetric extension of Cn. Further,
we define

d
e ~'=

q +PaC —g'zt
dr

(2.8) (2.11)

The effect of t and C on g„ induces an effect on f and g
given by the following: t induces a multiplication off by

may be calculated to give the grand partition function for
the system where

~
q) is a one quark or one antiquark

state. For large r only the smallest eigenvalue contributes
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and (2.11) reduces to
t (,n =1

~ q) ~

e ' =trG. For
small r, all eigenvalues contribute. Then
B(PJ}/Br=(A,}. We calculate (q

~

6 ~q) for, SU(2) and
SU(3) in the following limits: (a) The strong-coupling
(gz/Pa»1) limit (high-temperature limit) and (b) the
semiclassical (WKB) limit (2gzr & 1).

For SU(2), the equation for P„corresponding to Eq.
(2.5}is

d Pa ~ Gp
Gp — +2gz( 1 —cos2x )Gpdr 4

=5(r)5(x —x'), (2.14)

where

6( x, x;r)'=(x exp 2'+ r Ge x') .
4

d n(n+2)
dr

f„+Pa 4 1t„gztf„—=O,

n (n +2)
4

(2.12)

Since the coefficient function is non-negative, this equa-
tion can be viewed as a diffusion problem with absorption.
For 2g'z/Pa» 1, we can approximate Eq. (2.14) by a
time-dependent harmonic oscillator with a level spacing
(frequency) co=(gzPa)', the linear dimension r corre-
sponds to imaginary time:

where n labels the irreducible representation (IR) of SU(2)
with isospin I =n/2 Si.nce t induces transitions from n
to n+1, if one associates a function e '"+""to each g„
we have

d4 g„—pa +1 1i„—Sgz cos2xg„=O . (2.13)
dr Bx

d Pa 5 Gp
Gp — +2gzx Gp 5(r)5——(x —x') . (2.15)

dr 4

Examining the case when we impose the boundary condi-
tion n & 0 in consistency with the Casimir operators
C &0.

We seek the Green's function which has the following
properties:

We obtain the Green's function by solving Eq. (2.11),
which for SU(2) is

G(x,x';r) = —6 ( x,x';r) = —6—(x, x', r) . —
This ensures n &0:

(2.16}

a 4 z6 (x,x';r) =exp 2'+ r
4 2m Pa sinh2t

1/2

exp — . [(x +x' ) cosh2t —2xx']4'
Pa sinh2t

—exp —, [(x +x' ) cosh2t +2xx']4' 2 z

a@sinh2t

which is simply the Green s function for the time-dependent oscillator with the boundary conditions (2.16). Then

{q
~
6(x,x';r)

~ q }=—I I sin2x sin2x'G(x, x', r)dx dx'

(2.17)

=C exp 2' +P— e
4 z

1/2

(sinhcor ) (2.18)

We get the following thermodynamic functions:
1/2

S =2&2Egr —ln ——', ln(1 —e "") .ar (2.24)

PJ = —2' — r +ln3' Z

2 Pa

+ T~ in[1 —exp( —2cor)], (2.19)

8J
2~

3ci7

Br 2

PE =2gzr,

36)

(e 2rur
(2.20)

(2.21)

S = —g =4gzr ln—BJ gz
aT Pa

N = —g =(2' —, to)r ——,
' ln(1 —e—z"),

——, ln(1 —e ""), (2.22)

(2.23)

z~T at high T. If S is expressed in terms of E and

The crucial step in this calculation is the determination of
the volume r at the stage of the expansion where adiabati-
city sets in. By definition, in an adiabatic process the sys-
tem is subject to external conditions which vary slowly in
time. In this model the Hamiltonian H(r) is a function of
the volume r which plays the role of (imaginary) time.
We suppose the Hamiltonian changes from a certain
eigenvalue of Hp at volume rp to an eigenvalue H~ at a
volume r1. This change is due to string splitting and
creation and annihilation of quarks. Let R =r& —rp and
s =(r rp)/R. Denote H(s) the —value taken by the Ham-
iltonian at r =rp+sR. H (s) is a continuous function of s
and describes the evolution of the system from rp to r &. It
depends only on the parameter R measuring the evolution
from Hp to H~. The adiabatic theorem tells us that in the
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limit R~oo, in the case of slow adiabatic passage, the
system initially in a stationary state of Hp will at a later
"time" r], have passed on to a stationary state of H], that
derives from it by a continuous transformation. In our
system the free energy J plays the role of H and the condi-
tion for adiabaticity set by the adiabatic theorem
translates into the statement that the continuous change in
the eigenvalue of the free energy with respect to T does
not cause an abrupt transition in the system. Since co cor-
responds to the level spacing we have

III. SEMICLASSICAL (WKB) APPROXIMATION

For intermediate temperatures we can use the semiclas-
sical approximation. Since the strong-coupling approxi-
mation is a first-order approximation for high tempera-
ture, another approximation might enable us to get a more
comprehensive picture at intermediate temperatures. The
WKB limit applies when

' 1/2

(2Pagz)'/ r » 1,1/2 2 z
a

13(A, &
%col ~ T s

l'O

which translates to

d'or & 1; since —= (A, )
0 J
BT

so the transition point is

(2.2S)

(2.26)

2gzr »1,
or for g = 1, 2zr » 1.

We start with the Hamiltonian

H = [(n + 1) —1]—2' cosx .
pa 2

4

Since (n + 1)~ i i)/—Bx, the Hamiltonian is

(3.1)

so

coro—
H = p — —2' cosx,1, Pa

2m 4

7'p
CO

1

(gzpa)'/

-hadronic size ( -independent of T) . (2.27)

This implies that within a volume of the order of hadron
size, the string splitting takes place until the system
reaches equilibrium; thereupon adiabatic expansion en-

sues. The entropy remains constant and is given by

correspondingly,

dxX=
dI"

mx a
2 +2' cosx +

The partition function

G(r)= f e "D(path)=(q ~e "~q),
I(r) =I(e)= f L dr,

(3.2)

(3.3)

Z
So —4gzro —

2 ln— -2V2E pro —ln
2 pa 2ar p

(2.28)

Sp

8gr
' (2.29)

Since adiabaticity implies isentropic expansion with Sp
fixed, we have

G e (e)I(e)

[g ~

( e )]1/2

e I(0)~f( e)

1 ei( —e)
)]1/2

(3.4)

which in the WKB limit we approximate by a classical
path from n =1 to n =1. We also impose the antisym-
metry condition on G. To do this, we evaluate
I(e)= f I dr at the turmng points po ——e, antisymmetrize
and set e= 1. The antisymmetrization corresponds to

So
4 r

(2.30) In the WKB limit with fixed final and initial velocities
we have the stationary points determined by

For large r

X-—,S,+ln1 Z

pa
when cluster formation takes place, T-~a,

N, ——,
' So-v 2(EoV'g/a)' ——,

' ln(EoV'g/a) .

(2.31)

(2.32)

x —co sinx =0, co =Pagz

With xp ——0, x ~
——0, there are three solutions:

(1) x =x=0,
(2)x =m", x=0,
(3) pendulum(oscillating) motion .

(3.S)

(3.6)

Thus a power law for multiplicities is obtained. In gen-
eral, however, the harmonic approximation is not strictly
valid. It is the high-temperature approximation. For
corrections to this approximation we examine the WKB
(semiclassical) limit.

Each of these orbits contribute to G(r). We do not, how-
ever, add up all three contributions. Solution (1) corre-
sponds to a static solution which is trivially periodic for
any period r. For 2gzr »1, the dominant 'contribution is
from this solution and we have
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e 2g'zr

G(r)=
( sinhtor )

'~ (3.7)

V(x) = —2' cosx—
4

which for 2gzr large gives the same results as Eq. (2.11) in
the strong-coup1ing case. Nonetheless it should be noted
that the derivation is qualitatively different. Although we
drop higher powers of the fluctuations in path space about
the classical path, the classical path itself is determined by

in its entirety.
In the region 2gzr »1 it is not necessary to add the

contribution of the nontrivial orbit. The nontrivial orbit
(3) contribution is given by

S(x (r))
G3(r) =e ' b.~(r) . (3.8)

x, (r) corresponds to the periodic orbit. h~(r) is the
"quantum correction" factor, given by

1
y(r) +2' cosy (r)y (r) dr . ,

y (r) =perturbation around the classical path .
(3.9)

pax=
4

r is the period of the orbit given by
1/2

(E —2' coax)'i
(3.10)

G (r) =etk'"'" Ip(2/zr)
' 1/2 3/2

cor +
2

(3.14)

4p 2dxr=
&Pa(E —2zg cosx)

1 2+2K 2 1+
&pagz 2 z

'1/2 '

J(r) = —T +lnIp(2gzr)
4

r
ln cor +2 2 (3.15)

where K= elliptic integral of the second kind Since the WKB limit is valid when

E = —2' cosPp .

We now have

x(0)

S(x (r))
e

G3(r) =
dr

1/2

(3.11)

(3.12)
or

(2Pagz) '~

2gzr »1,

1/2

r »1

For the particular case dG /dr
~ „,=0 we have

rp —— 2~2K(2)= '; E =01 3.708
V'pagz v'pagz '

this also gives

X-CE' ——,
' lnE . (3.16)

So the power law for multiplicities is reproduced by the
WKB approximation.

IV. RESULTS FOR SU(3)

The equation for g„~ is

dr 3g„~+ [(n+1) +(m+1) +(m+ 1)(n+1)—3]f„~ gztg„=0. — (4.1)

where t induces transitions from (m, n) to (m + l, n), (m, n +1), and (m+ 1,n+1). As in the case for SU(2) we associate
the function P „=ye" +"" '"+"to each IR (m, n) so that the condition (2.5) is compatible with

d pa 8 8 87l- + —3 g —2' [cosu +cosu +cos(u +u) )g =0 .
dr 3 Qu Bu BU Qg

(4.2)

Under the condition C „&0; m, n & 0, we have the boundary condition that q is antisymmetric under the symmetry
group S3 whose elements are u, u, —u —U, corresponding to Weyl reflection. By making the change of variables
u, u~x, y; x =u +U,y =u —U we have
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d Pa
dry 3

a2 3a2 X +g (x —y)—3 g —2' cos +cos +cosx g =0 .
Bx By 2 2

(4.3)

The equation for the Green's function is

dG pa
dT 3

a2 a2
+3 —3 G —2$'z cos +cos(x +y) (x —y) +cosx 6 =0 .

BX Bg 2 2
(4.4)

We calculate 6 in limiting cases.
First, we consider the strong-coupling limit gz »1.

The Green's function with the appropriate symmetry
under S3 elements [(x +y)/2, (x —y)/2, —x]

(6g'z+Pa)r
G(r) =

2(sinht) 2 3 coth t + 1

t = ( 2' Pa)'~ r .
(4.5)

The antisymmetry under the elements of the Weyl sym-

metry group ensure that forbidden transitions are can-
celed; i.e., $„~=0 for values of n and m such that
C „&0:

J=6gzrT ——', lnsinht —ln(3coth t+1) .

The general expressions for energy and entropy are

g =(6/z+pa)r ——', lnsinh(2gzpa)' r

—in[3 coth (gzpa)' r + 1],
E—6gzTr .

The condition d'or = 1 gives

(4.6)

(4.7)

S={6gz+pa)r,
5
12' '

N-u 2(EOV'g/a)'~ —, ln(Eov'g/a) —.

(4.&)

(4.9)

(4.10)

G(r)=
(6gzr) d'or +

71'2 (4.11)

The results are similar to those of SU{2). However de-
tailed analysis of the clustering process shows that both
baryons and mesons are formed. On the average the
number of mesons is much larger than the number of
baryons, hence in the gross analysis of the multiplicities
the effect does not show up.

In the WKB limit for SU(3),
(6g'zr +Par)

& = —T (par) +6gzr 1n6g—zr

pa
2

——, ln 1+
2g'zr

(4.12)

N-v 2(E,&g/a)'" ', ln—(E—,v'g/2) . (4.14)

The leading-order term is unaffected by the group struc-
ture.

The possibility of including gluons may be realized by
treating them as classical particles belonging to higher-
dimensional (adjoint) representations of SU(N). Since we
have seen that the overall multiplicity of the hadrons is
unaffected by group structure, we will explicitly examine
the effect of allowing particles assigned to higher-
dimensional representations of SU(2).

V. GENERALIZATION TO n FLAVORS
AND HIGHER REPRESENTATIONS

If we do not restrict ourselves to a single flavor, but al-
low the quarks to have one of n flavors, the expression
(2.4) changes to

ltf

f„(r)=I e ~ '" ~' g g;z;t; g„,(y),
i=1

(5.1)

t; is the branching operator for each flavor i of the quark.
Assume the quarks of various flavors have the masses
m~, m2, . . . , m„. The system behaves like a mixture of
gases, where z; represents the kinetic-energy contribution
due to each of the flavors and

The condition 2gzr » 1 gives for

S-(6('z +pa)r

as in the strong-coupling case, (4.13)

(IR(1)
~

t
~

IR(2) ) =1, if IR(2) can be formed from IR(1) by addition

of a quark, antiquark, or a gluon (I =1) or I = —,
'

=0, otherwise . (5.2)

d =2I+1 is the dimensionality of the representation. Suppose each of the flavors have the same fugacity but gd
represents the fugacity of the various representations d. For example, restricting ourselves to I= —,', I= 1, and I = —', we

have
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d pa a'
2 +1 f„—2 g z;[gl/2cos8+gl(cos(28)+ I)+$3/2(cos38+cos8)] $„=0 .

aX 1 —1

(5.3)

In the strong-coupling limit we can solve for the thermodynamic functions to get
r

g z;(gl/2+2/1+2/3/2)
1r+ —ln
2 CX

+ —,
' ln(1 —e ""),

zi(g 1/2+ 241+243/2)
ln ——,

' ln(1 —e ""),

)if

2 «'(gl/2+ 2/1+ 2/3/2)pa

ll)r ll)r Jl)r

2 g «kl/2+4 g zr 4+4 g zr k/2 2o3-
i=1 i=1 i=1
Hf llf Jlf

2 g z;gl/2+ 4 g z;$1 +4 g z;g3/2
i=1 i=1 i=1
Sf )if 5)r

2 gz;gl/2+4 g z;$1+4+ z;g'3/2 r ——
i=1 i=1 i=1

1/2

(5.4)

(5.5)

(5.6)

(5.7)

5)r )if llf

N= 2+z;gl/2+4 +z;gl+4+zg / r .
i=I i=1 i=1

(5.8)

For large T all the flavors are degenerate because zi —+T
independent of m;. Thus

pE =nf Tr (gl/2+2/1+2/3/2),

~ =2[2E.(kl/2+241+243/2)«f]' '

—ln ——ln(1 —e —2cor ) .E 3
2(X7" 2

The stage of adiabatic expansion sets in at

1

[anf(gl/2+2/1+2/3/2)]' '
so that

N, ——,'So-W2
1/2 [(kl/2+2k+2/3/2)nf]'

(5.9)

(5.10)

(5.11)

' 1/2

VI. KNO SCALING IN THERMODYNAMIC
ENSEMBLES

In the last few sections we have applied the transfer-
rnatrix method to a volume-fixed ensemble. This enabled
us to determine the thermodynamic functions of the
volume r. Alternatively, we could have applied this
method to a pressure-fixed grand canonical ensetnble.
This is considered in detail in the accompanying paper.
For our present purposes we need the volume-fixed parti-
tion function given by

(5.12)

so that in the average multiplicity allowing nf flavors and
higher-order representations simply means modifying the
fugacity g to (g'1/2+2$'1+2/3/2)nf in the strong-coupling
litnit. (This fugacity is an interesting feature of quark-gas
ensembles and will be commented upon in Ref. 6.) De-
tailed comparison of this formula with experiment will be
done in Sec. VII.

Z~-Ae+'~; a is a constant . (6.1)

Fixing the pressure-fixed partition function is equivalent
to solving (aC+p —A, 't)/=0. In the thermodynamic
limit (Zz)'"'-(zTAo)". So the grand canonical pressure
partition function is given by

~nz(n)
n=1

1

( —gza+pp) '
(6.2)

(SN)
i
„=(N' N')'"-~X, —

which is the standard statistical law of fluctuations for
Gaussian distributions. In the pressure-fixed ensemble,
however,

a —ln
1

( —a gz +pp ) gaza

ag ( —agz+pp)
(6.4)

+=lowest eigenvalue of (2.5)

in the thermodynamic limit.
The quantity of interest in multiplicity measurement in

jets is the deviation of the multiplicity from the mean
value, i.e., the mean-square fluctuations of additive quan-
tities, i.e., volume and entropy (thus, multiplicity).

If we consider the mean-square fluctuation in the num-
ber of particles in the volume- and pressure-fixed ensem-
bles, we get different results. In the volume-fixed ensem-
bles, the fluctuations in the average number of particles
form a Gaussian distribution

lne +a g'zr BJN=
ag

=agzr = —g
ag

'
vol fixed

(6.3)

(AN) i, =g =agzr-N .
ag
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(hN)
Bg

agz $2z~a 2

—agz+Pp) ( —agz+Pp)

So, for N large

(6.5)
0

~ ~ +
CD

O O

(6.6)

and

N —1
N

(6.7)

Thus the fluctuations are much larger than those of a
Gaussian distribution. This type of scaling, called KNO
scaling, has been extensively studied in hadron-hadron in-
elastic processes and e+e annihilation and has become a
useful phenomenological tool. ' '" It arises naturally in
pressure fixed en-semMes It m.ust be noted, however, that
there is no discrepancy in dealing with the volume-fixed
ensemble to calculate average multiplicity, since the
volume does not enter the final result. The dispersion in
the final multiplicity is entirely due to the uncertainty in-
herent in determining ro, the volume at which adiabatic
expansion ensues.

Although the pressure-fixed ensemble gives KNO scal-
ing, the pp and pp data shows that
(hnl(n ) ) -0.29+0.1, so that within experimental error
the pressure-fixed ensemble gives KNO scaling with a dif-
ferent constant. However, better agreement may be ob-
tained if we do not restrict ourselves to 1+ 1 dimension,
but incorporate transverse momentum effects. In our
model this can be done in the following way: in addition
to string breaking in one dimension, we allow each pair of
quarks at rnornentum PT to start its own longitudinal jet.

The system consists of k coupled grand canonical en-
sembles; each one-dimensional quark system behaves as a
grand canonical ensemble with fugacity g and each branch
contributes to the grand canonical partition function. We
assume that the branching process stops at finite k. The
exact value of D /(n ) strongly depends on the value of
k and gives (hn/(n ) ) -0.29+0.01 at k -3—4. However
there is no strict theoretical argument for finite k except
the following heuristic one": typical of any branching
process, the energy at each step gets diminished by a con-
stant factor c. The process continues until after k branch-
ings the energy is of the order of magnitude of hadronic
mass. This determines a phenomenological limit for the
branching process, '
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TABLE II. Comparison of moments of multiplicity distributions for e+e collisions with a branching model of k branches (see
Ref. 13).

JADE

Experimental data {Ref. 15)
Name of PLUTO

experiment PLUTO (Ref. 21) JADE
JADE

(Ref. 21) k=6

Theoretical predictions

vs
{CxeV)

&n)

9.4 29.9 12 30 35

7.6+0.1 11.8+0.4 7.8 +0.1 12.0 +0.5 12.4 +0.5

6ZO

2.3Z'/'

7Eo

2.48E'"

SEO

2.67E'"

y3

-0.135+0.010 0.13520.010 0.135+0.010 0. 166+0 — 0. 142+0 0.125+0
n n

'
&n)

0.054 0.040 0.030

So'

lnZ = —k ln( —
gaza +Pp),

—lnZ =
Bg ( —ag'z ~pp)

Bg ( —agz +pp) ( —agz +pp)

minate the process after a fewer number of steps. Furth-
ermore, there is an uncertainty in the energy distribution
which contributes to the dispersion in the multiplicity dis-
tributions. In other words

(n') —(n)' 1

(n)2 k

in the strict thermodynamic limit' (N )~ ao.
A detailed analysis of the multiplicity distribution can

be done in terms of the higher moments'

Thus, in general, the dispersion is more in the case of pp
and pp collisions than in e+e collisions. More quantita-
tive estimates can only be made if the details of the parton
distribution are known.

In the next section we analyze the implications of this
model.

VII. ANALYSIS OF RESULTS, AND COMMENTS

1

y4=((n —(n)) ) —3((n —(n)) ) /(n)
6=-0

k

The experimental data' is tabulated in Table I, and the
comparison with our predictions for values of k equal to 3
and 4 is shown.

In the case of e+e reactions, ' the multiplicity distri-
bution is narrower: (D/(n)) -0.136+0.001. Thus in
our "branching" model, k is equal to 6, 7, and 8; the com-
parison with data is shown in Table II.

It is interesting to note that the number of "branches"
(fireballs) in e+e collisions is higher than in hadron-
hadron collisions. '

A possible interpretation of the difference in the multi-
plicity distributions of e+e and hadron-hadron col-
lisions is the following heuristic one. Each of the collid-
ing protons (antiprotons) in a pp (pp) collision has a sub-
structure composed of three quarks (partons). The in-
cident collision energy is thus smeared over the quark
(parton) distribution and the available energy per quark is
reduced. Since the branching process stops at
k -C lnE/m, a reduction in the available energy will ter-

We have presented a model which predicts some of the
characteristics of the final-state hadrons in e+e, pp, and

pp collisions. In particular, our model predicts the energy
dependence of the multiplicity distribution to be of the
form N =eE', where c is determined exactly by the
number of flavors of quarks nf, and the string tension a.

If the system is considered in a pressure-fixed grand
canonical ensemble, it shows KNO scaling. Although
generic KNO scaling is present, better agreement with the
experimentally observed situation is possible if we depart
from the 1+ 1 dimensional approximation (where the
Hamiltonian is exact) and allow "branching" in transverse
directions. The branching process is finite and stops at
three to four branches for pp and pp collisions and at six
to eight branches for e+e collisions. Although the pos-
tulation of a finite number of branches destroys the exact
aspect of the model, we shall show that the two principal
features of hadron production, i.e., energy dependence of
the mean-charged multiplicity and KNO scaling are con-
sistent with each other.

Figure 1 shows how the mean charged multiplicity
varies with energy for e+e collisions. The phenomeno-
logical fit is N =(2.3+0.1)E' . (E in GeV.) Figure 2
shows a similar plot for pp collisions. The phenomenolog-
ical fit is N =(1.668+0.012)E'

In our model 1V =eE', where
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FIG. 1. Mean charged multiplicity S vs center-of-mass ener-

gy E =V s for e+e reactions. Solid curves represent tnultipli-
city predictions for k =6, 7, and 8 branches. Symbols represent
experimental data.
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FIG. 2. Mean charged multiplicity N vs center-of-mass ener-

gy (logarithmic scale) for pp and pp collisions. Solid curves
represent multiplicity predictions for k =3 and 4 branches.
Symbols represent experimental data.

' 1/4

C= —,
' X —,'v 2(Jeff)'i

CK

-0.94 for a-0.2 GeV, nf ——5,

ktn=k=l .

E is the total c.m. energy. The factor —,
'

& —,
' accounts for

the fact that only charged hadrons are observed. For
e+e reactions, KNO scaling is consistent with six to
eight "branches. " If the total c.m. energy is shared by
each of these branches E =(7+1)EO, so that

N =(2.48+0.94)+ED .

For pp and pp collisions, E = ( 3.5+0.5 )Eo so that

N =(1.75+0.47)QEO (Ref. 18) .

In a self-consistent way we have shown that the results
predicted by this model are in good agreement with ob-
served e+e data. '

In conclusion, we would like to remark that thermo-
dynamic models in general show KNO scaling' '; how-
ever exact details of the observed data can be deduced by
knowing the microscopic details of the system such as the

parton distributions, etc. The exact results of this model
are valid for 1+ 1 dimensions, which is a mathematical
laboratory where confinement of quarks takes place natur-
ally. Gross features of the hadron multiplicity in e+e
pp and pp collisions can be predicted. If we sacrifice the
exactness of this model in a self-consistent way, better
agreement with the data can be shown. A crucial test of
this model will come when multiplicity data at higher en-
ergy is observed; as at those energies the multiplicity with
a power-law dependence will be significantly different
from the energy dependence of the multiplicity shown by
perturbative QCD.
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