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In a model with global SU(iV) invariance with a scalar field that transforms as the (X —1)-
dimensional representation (symmetric adjoint} and interacts with cubic coupling, we study Regge
poles and Regge cuts. The interplay between Regge behavior and the group of internal symmetry is
analyzed with care.

I. INTRGDUCTION

Non-Abelian global groups of symmetries and even
more the non-Abelian local (gauge) symmetries play a
dominant role in the current revival of quantum field
theory as an essential part of our understanding of ele-
mentary particle physics. The bound-state properties and
the high-energy behavior in these models are a difficult
problem which is only partially understood.

The traditional logic used in the past of studying the
Bethe-Salpeter equation in some weak-coupling approxi-
mation for the kernel (or some gauge-invariant approxi-
mation), or the leading-log energy graphs in the Regge
limit, is debatable until a better understanding of confine-
ment will be reached.

The leading-log energy approximation in the Regge lim-
it (large energy, fixed momentum transfer) is itself very
complex in non-Abelian gauge theories and the results ob-
tained do not match the general understanding reached in
the simple scalar cubic self-interaction. This is due main-

ly to the large number of Feynman graphs relevant at high
order in perturbation theory, each of them being of diffi-
cult evaluation, and to the frequent cancellations among
leading contributions.

In this work we solve a much simpler problem: the
high-energy behavior of a scalar field with cubic self-
interaction, the field transforming as the adjoint represen-
tation of SU(N). That is, the Lagrangian studied here is

W(P)= —,
' Tr(B„QB"P mg )+g T—r($3),

i =1,2, . . . , N 1—
A, 'iV=— 5,JI+(d Jk+if Jk-)A,

known and only the group-theoretic contributions are
new. Finding the high-energy behavior of the simplest
theory with non-Abelian global internal symmetry may
(or may not) be suggestive for the far more difficult prob-
lem in a non-Abelian gauge theory. However, we find
that the picture of Regge poles, Regge cuts, and Gribov
calculus in our simple model is itself interesting.

We compute the group-theoretic contributions of the
relevant Feynman graphs at every order in perturbation
theory. This leads to the definition of a set of basis ten-
sors called projectors, described in Sec. II. It is likely that
the techniques described in this work may be useful in
many problems where one computes the group weight of
graphs in an arbitrary order. Furthermore for generality
we computed in Sec. III the group weight of a class of
graphs much larger than those needed in the present work.
This is useful for the study of simple hybrid models where
Regge poles have different symmetry than the present
ones.

The group-theoretic factors computed in this paper may
also be useful for theories with different interactions that
can be recast in form similar to (1.3). For instance, con-
sider the SU(N)-invariant Lagrangian with quartic in-
teraction:

~(P)= —,
' Tr(&„gd"P mP ) —a'Tr(($4)—,

i =1,2, . . . , N —1

16Tr(P') =, (y'y')'+4ad, ,„d„, y'Py'y+2

After the introduction of a singlet auxiliary field o. and
a set of auxiliary fields o. transforming as the adjoint rep-
resentation of SU(N) one has

Tr(A, 'AJ) =4a6J, Tr(P ) =4adjkg'PP (1.3)
W(P) = —,

'
Tr(B~QB"P) —P'Pb—

A,; are the usual generalizations to the SU(N) group of the
Cabell-Mann A, matrices for SU(3); d;ik is a totally sym-
metric tensor, fjk is a totally antisymmetric tensor; a is an
arbitrary normalization, and X is a positive integer larger
than 2.

Since the space-time part of each Feynman graph in
this model is the same as that of the well-studied P model
(without internal symmetry), it may be considered as

k k—Saa d "1,$ Po—0 0
/J 2

where the cubic interaction among fields in the adjoint
representation has the form of Eq. (1.1).

Finally we warn the reader that although the evaluation
of group-theoretic factors is a straightforward exercise of
trivial algebra, the time required increases rapidly with the
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complexity of the graph; while the ladder in Sec. II only
takes a few minutes, many results quoted in Sec. III take a
few days.

The Regge poles of the model are described in Sec. II,
while the convolution of a pair of Regge poles thus
originating in the simplest form of Regge cut is described
in Sec. III. Our conclusions, with brief comments on the
analogous high-energy structures in non-Abelian gauge
models, are summarized in Sec. IV.

d.b, =—Tr(x'x'v+ x9.'x'),
8a

(2.1)

then eliminating all internal lines associated with particles
in the adjoint representation:

Every Feynman graph 6 factorizes into 8'GMG, where
MG is the space-time factor and O'6 is the group-theoretic
factor consisting in a product of various d,i„associated
with the vertices of the graph and factors 6ab for each
internal line. The group-theoretic factor S'~ may itself be
considered a "Feynman integral" over a discrete finite
space.

The group factor of each Feynman graph that con-
tributes to the elastic scattering amplitude is a rank-four
tensor 8'ab, d. Its "evaluation" consists of expressing it as
a linear combination of a set of (linearly independent)
basis tensors B,'s,d. The choice of the basis has some arbi-
trariness. Two choices are described here: the "natural"
basis given by traces of four generators T; and the projec-
tor basis. We follow the method of Cvitanovic of evaluat-
ing 8 ~ by first reexpressing all vertices d,b, in terms of
the defining representation

(ga)i (ga)k gi gk gi gk
4a

(2.2)

The group factor 8'6 is then expressed in terms of the
"natural" basis, which are tensors where the steps 1 and 2
cannot further operate (analogous tensors of arbitrary
rank are described in Fig. 21 of Ref. 1). The "natural"
basis for rank-four tensors is made by a set of six tensors
we label A, B, C, D, E, and I', represented in Fig. 1 (see
Ref. 2):

Hag d
———

32 [Tr(i,ak,dk, ,k,b)+Tr(iI.ak,bA,,A,d)],
B,b,d

——3'2 [Tr(A Abide )+Tr(A k AdAb)]

Cai„d ——
32 [Tr(A,,idi(bk, )+Tr(gal, ,ibid)],

2

abed ae bd ~

2I'ab, d ——a 5ad6be .

(2.3)

We call this basis natural because it presents itself as a
natural instrument in the computation of a group weight.
The other relevant basis we need is the "projector" basis
which is the relevant basis to express the physics proper-
ties. Each projector is a tensor that corresponds to one ir-
reducible representation of SU(N), then it describes a state
of "pure quantum numbers" in a given channel. The "in-
coming" two-particle state transforms as the product of
two symmetric (N —1)-dimensional representations
which decompose in six irreducible representations, two of
them antisyrnmetric and four symmetric ones:3

(N2 1) (N 1) 1 (N2 1) (N2 1) (N )(N ) (N 4)(N 1)
4 4

N'(N —1 )(N +3) N'(N + 1)(N —3)
(2A)

The six projectors which represent states with pure quantum number in the "t channel" (the vertical channel) are relat-
ed to the "natural"' basis by the following:

1 1I'1 =—P(1) ———— E,
a X —1

1 1
I'p =P 2

————(B —C),2 — (X2 1)&
—

2

(iv' —&i
=

2 z ( +1 2
a' X'—4,

1
P4 =I'

[(+2 4)(+2 1 )/4+(+2 4)(Pf 2 1 )/4] a 2 (B —C)+—1 D —I'
2

(2.5)

1
[%2(X—1)(%+3)/4]g 2a

(B +C) i (D )
E

2(N +2) ' 2(N + 1)(N +2)]

6 = [Pf2(%+1)(X 3)/4] a 2(N —2) ' 2(N —1)(N —2)
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('N,
8= 32

6

i=1
(2.6)

FIT&. 3. Projection of the group weight of one step of the
ladder graph into pure quantum numbers in the t channel.

6

II;+i=
+1

A, =1
(2.7)

C= 1
32 + where we used the orthonormality of the projector tensors:

(2.&)

The coefficients co~ are simply related to a set of gen-
eralized Wigner 6j coefficients, as one sees by multiplying
both sides of Fig. 3 by a projector P„(Fig. 4), where d„ is
the dimension of the representation of the projector P„.
We find

X —4 X —4 X —121= X 1+ 2% 2+ 2X 3

(2.9)

FIG. 1. A set of tensors that form a "natural" basis for
rank-four tensors. Their analytic definition is in (2.3). Wavy
lines represent particles in the adj oint representation, solid
straight lines are in the fundamental representation.

In the evaluation of the group factor of a given graph G
it is useful to consider it as a product of the group factors
of two (or more) subgraphs Gi and Gz previously comput-
ed: 8'g ——8'G, 8'G .

As is well known ladder graphs (Fig. 2) are the set most
relevant for the bound states (in the weak-coupling ap-
proximation for the kernel of the Bethe-Salpeter equation)
and for the high-energy behavior (in the leading-log ener-

gy approximation).
To compute the group factor 8'„+1 of the ladder with

r +1 rungs it is sufficient to project 8'1 into the six chan-
nels with pure quantum numbers (Fig. 3):

The high-energy (large-s), fixed-momentum-transfer
(fixed-t) behavior of the space-time factor of a ladder
graph with r + 1 rungs is well known;

q [g K(t)lnsj"
+i S t g sr! (2.10)

where X(t) is the usual bubble graph in two dimensions:

d k 1

(2~r) (k +rn )[(6—k) +m ] (2.11)

We now consider the "twisted" ladder graph where the
variables s and u are exchanged. Its group weight is

6

W„+ i
——g c;( co; )"+ 'P;, (2.12)

where c; =+ 1 for the symmetric channels i = 1,3,5,6, and
c; = —1 for the antisymmetric channels i =2,4.

By considering together the space-time part and the
group factor we may read our perturbative result as the
weak-coupling expansion of six signatured Regge poles

Zk
1=1

(o)

FIG. 2. (a) The ladder graph. (b) One step of the ladder
graph.

FIG. 4. The relation between the coefficients co„and a set of
VA'gner 6j coefficients.
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F(s, t) = g p [ 1 +e ' ]s ' P;
i =1,3, 5,6

+gp[1 e— ' ]s' P.
j =2,4

(2.13)

2N —4 2 X —4
p,=g, a, = —1+g K(t),

1V

2 X —12 2 & —12
p,=g', a, = —1+g K(t),

2X 2N
(2.14)

2/ —2 2 2V —2
Ps=g a5= 1+g

iV
K(t),

T

2%+2 2 %+2p6= —g , a6= —1 —g
iV

K(t) .

The trajectories and residues of the two odd-signatured
amplitudes are

The trajectories and residues of the four even-signatured
amplitudes are

It is necessary to study the group factor of the Mandel-
stam graph. Since we are interested in the group factor
for arbitrary values of the number of rungs r1 and r2, the
group factor of each ladder is first decomposed into pro-
jectors (2.9). One is then led to compute the set of tensors
M& (p, v=1, . . ., 6) which are the weight factors of the
Mandelstam graph where the ladders have been replaced
by the projectors P&, P (Fig. 6).

A. The group factors

The tensors M& may themselves be written in terms of
the usual projectors (Fig. 6):

6

Mp„——g m~Q (3.2)

Although it only involves elementary algebra, the expli-
cit evaluation of M&„, or its coefficients m & requires
much work and it is the main contribution of the present
paper. When M& is know, the group weight of the gener-
ic Mandelstam graph WM(r&+1, r2+1) is also known.
By use of (2.9) we find

21V —4 2 N —4p2=g, a2 ———1+g K(t),
2% ' 2X

p4 ———g —,a~= —1 —g —K(t) .22 22 (2.15)

6 6

WM(r, +l,r2+1)= gP g (co„) '
(co )

' m„
P, v=1

(3.3)

Because of the symmetry of the cubic coupling and the
symmetry of the graph in Fig. 6 one has

III. REGGE CUTS o cr
Pv ~ vP& P~V~O —1~2~. . . ~ 6 (3.4)

In this section we study the high-energy limit of the
graphs with Regge cuts due to a pair of Regge poles being
exchanged in the t channel. In the leading-logarithmic
approximation, it is only necessary to study the Mandel-
stam graph (Fig. 5) and the three related graphs obtained
from it by twisting one or both ladders. The asymptotic
behavior of the Mandelstam graph with r1+1 rungs in
one ladder and r2+ 1 in the other is

By multiplying both sides of Eq. (3.2) by the projector
I' and by saturating the remaining indices we see that
m„„are simply related to the most nonplanar type of gen-
eralized Wigner 15j coefficients (Fig. 7).

Before quoting our results for the tensor M&, we list
some symmetry properties and special values for the coef-
ficients I& .

(1) In Fig. 7 one has

(m p„)dg ——(m~g )d„=(m ~g„)dp, (3.5)
g d q [g K(b+q)lns] ' [g K(b —q)lns] '
s (2m) (r, +1)!(r,+1)!

(3.1)

where the repeated index is not summed.
(2) Because of the symmetry of the Mandelstam graph,

(3.6)

if one or three of the indices correspond to antisymmetric
projectors.

6

0=1

FIG. S. The Mandelstam graph.
FIG. 6. Graphical representation for the definition of the

coefficients m„ in (3.2).
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= ~p, v dx

FIG. 7. The relation between the coefficients m„and a set of
Wigner 15j coefficients.

FIG. 8. The special case of the coefficient m„ for one of the
indices corresponding to the projector P~ of the singlet represen-
tation.

(3) If one index corresponds to the projector of the sing-
let representation, m~„ is computable from the generalized
Wigner 6j coefficients (2.6). As shown in Fig. 8,

(5) N~ Nsym—metry. The symmetric projectors P5
and P6 are related under the exchange N~ —N, as we
show in the Appendix. Then we obtain"

1 Pv 2
m~~ =

2 (COp) dpX —1
(3.7) [ds(~ „'~)]sU()v) =[(I„'~)d6]sv(-)v) (3.10)

(where the repeated index is not summed), next by use of
(3.5)

5 6(Ipv )SU(N) ™pv )SU( N)— (3.11)

(m„, )dg ——

p, v=1,3, 5, 6

A, not summed.

(N 4)—
d (3.9)

v pv 2m )~ =
2 (COp)X —1

(4) By summing one index on the range of its possible
values, for instance, the two antisymmetric projectors, or
the four symmetric ones, its representation is replaced by
the identity in the antisymmetric space or in the sym-
metric space. Then one-index sums of m& are expressed
by certain generalized Wigner 12j coefficients. Two index
sums are given by simple 9j coefficients proportional to
the dimension of the remaining representation (Fig. 9).
For instance,

Because of Eq. (3.6) M& has nonvanishing coefficients
only for projectors P with definite symmetry (all of them
symmetric or all of them antisymmetric). We quote the
results of the antisymmetric terms in Table I and the sym-
metric terms in Table II.

The reading of Tables I and II is illustrated by the fol-
lowing examples:

23 —
2 2 + 2 2 P4 +OP1 +OP3 +OP5 +OP6(N —8)

N 4N (N2 4)—
(3.12)

(N' —&)' (N —2)(N +1)24= 1+ 8%2 3 2%2 5P +

(N +2)(N —1)+ 2 P6-+OP2+OP4 .

TABLE I. List of the tensors M„„ that have nonvanishing components with the antisymmetric pro-
jectors (P2 and P4).

Tensor

M)2

P2 projection

(N2 4)2

4N (N —1)
0

P4 projection

4
N (N —1)

M23
4

N2
(N2 8)2

4N (N —4)

M25
(N —2) (N+3)

16(N + 1)
(N+3)

4(N+2)

M26
(N +2)2(N —3)

16(N —1)
(N —3)

4(N —2)

M34

M45

M4,

(N —8)
8N

(N —2)(N+3)
8

(N+2)(N —3)
8

(N' —8)(N'+ 16)
2N (N —4)

(2N +3N —17N —10)(N +3 )

8(N +2)(N + 1)

(2N —3N —17N + 10)(N —3)
8(N —2)(N —1}
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FIG. 9. Representation of Eq. (3.9).

when an antisymmetric projector is twisted. The sum of
all the leading logarithms contributing to the two-
Reggeon cut is conveniently written as a superposition of
contributions in symmetric channels and in antisymmetric
channels:

B. Putting together space-time and group factors

Let us consider a Mandelstam graph where one of the
ladders is twisted. The space-time factor is the opposite '

of that in Eq. (3.1), while the group factor contributes a
term +1 when a symmetric projector is twisted and —l

F(s, t) =Fs(s, t)+F~ (s, t),
F,(s, t) = g F'"'(s, tg ",

k=1,3, 5, 6

F, (s, t)= g F~'~(s, t)I',
k =2,4

(3.13)

(3.14)

(3.15)

if k =1,3,5,6 and

d2

24
' (2~)'

(3.16)

s i=&,3, s, 6 (2m)
j=2,4

(3.17)

if k =2,4.
The coefficients c;J measure the couplings of two Reg-

geons to the two external particles
k

k 4 ~~J
~tj g (3.18)

IV. CONCLUSIONS

This model may be considered the well-studied scalar
cubic interaction, dressed up with an internal symmetry
group, and its dynamics is predictably close to that of the
latter. In the six channels with definite quantum numbers
(p=1, . . . , 6) one finds Regge poles of the usual form:
their trajectories computed in perturbation expansion is

a„(t)= —1+g c~K(t)+O(g ) . (4.1)

However, because of the presence of the internal sym-
metry, two channels (p=2, 4) are antisymmetric; there
does not occur cancellation of leading logarithms related
to the signature factor of the symmetric (even-signatured)
channels. Indeed the leading logarithms in the antisym-

The residues p(t) and trajectories are still given by
(2.11) and (2.12).

Equations (3.16) and (3.17) show that the leading con-
tribution in antisymmetric channels is due to the convolu-
tion of one symmetric Reggeon with an antisymmetric
one, while in the symmetric channels it is due to the con-
volution of two antisymmetric ones. Of course one would
expect, in the symmetric channels, also the contribution
due to the convolution of two symmetric Reggeons. We
have not quoted it because, as one may easily check by ex-
panding in perturbation theory, its contribution is
suppressed by a factor (logs) with respect to the contribu-
tions (3.16), due to the signature factor.

p, =y', a& ———1+y'K(t),

P3= —,y, a3 ———1+ , y K(t), —

P~= —,
' y, aq ———1+ ,' y K(t), —

(4.2)

(4.3)

(4.4)

while the other three Regge poles have vanishing residues
and Bat trajectories in this limit. This could not be antici-

I

metric channels sum up to produce odd-signatured Regge
poles.

A similar situation occurs for the two-Reggeon cut. In
leading order only the Mandelstam graph and the three
graphs related to it by twisting a ladder may contribute.
Because of the symmetry of the nonplanar subgraph that
couples the two ladders to the two external particles, the
two-Reggeon cut originated by the exchange of two Regge
poles with the same symmetry properties (both even signa-
tured or both odd) only contributes to the symmetric
channels while the exchange of two Regge poles with dif-
ferent signatures only contributes to the antisymmetric
channels.

The major effort in this work was the computation of
the couplings between the two Regge poles and the two
external particles, given by the coefficients m„, in (3.2) or
c,z in (3.18). Of course they are model dependent but the
technique used in computing them will certainly be useful
for any other model. Their numerical values may also be
suggestive, particularly if it will be possible to interpret
them merely in terms of the dimensions of the representa-
tion involved. In this sense Fig. 7 is rather promising, be-
cause the nonplanar coupling that appears there is actually
the simplest possible way to couple three representations.

It may be interesting to consider the large-&, fixed
g X=y limit of this model. Only the first three Regge
poles survive:
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pated by the usual don1inance of planar graphs since all
the six Regge poles come from the ladder graphs. Analo-
gous simpler formulas are obtained for the couplings of
two Regge poles into a Regge cut. The only nonvanishing
couplings mz„with p, v=1,2, 3 are

m22 =m 33 =
4

(4.5)

2 2 S 6 5 6 1
m12 ™13m22 m22 m33 m33 m23 4

(4.6)

(4.7)

Then in the large-N limit the only nonvanishing two-
Reggeon-cut contributions are in the singlet channel and
they are due to the exchange of two Regge poles aq(t) or
two Regge poles a3(t). These contributions are just of the
same order in % of the singlet Regge pole:

2
)p p p ( )

a (i p 1 f d g p (
ill' (4+ ) ap(L+q) i7Ta2 5 q a

4s (2~)

1 f d q
(

—ivra3(h+q) a3(a+q) —ima3(h —q) a3(h —q)
2+— 1+8 s 3 1+8 ' s

s (2~)
(4.8)

It might be surprising that the Mandelstam graph, which
contains two nonplanar insertions, is of the same order of
the Regge pole for large X. This indeed may occur only
for its projection in the singlet channel, which is given by
a planar graph [see Figs. 10(a) and 10(b)].

Presumably the present analysis may have some value
in setting up hybrid models where Regge poles replace
ladder graphs. Let us consider, for instance, a hybrid
model with just one Regge pole, that one belonging to the
channel of the adjoint representation (here indicated by
the projector p2). Notice that such a hybrid model would
not be far from the present one in the sense that from a
strictly leading-logarithm analysis only Regge poles in the
two antisymmetric channels would emerge, because of the
above-mentioned cancellations occurring in symmetric
channels. Furthermore, in the large-X limit, with g N

az(t)=1+g c2K(t)+O(g ) . (4.9)

The main qualitative features that would emerge are the
following:

There is no contribution of the two-Reggeon cut in the
channel of the adjoint representation, because of the van-
ishing of m&2.

For the same reason there would be neither a Regge
pole nor a two-Reggeon cut in the second antisymmetric
channel (the P& channel).

There would be no Regge pole, but only two-Reggeon-
cut contributions in the four symmetric channels.

These features bear some similarity with the present
understanding' of SU(N) gauge theories.

t

fixed, the Regge pole in the P4 channel would be
depressed while the I'2 Regge pole would not. To have a
closer comparison with the analysis of SU(K) gauge
theory one may assume that only one Regge pole has a
trajectory originating at J= 1:

APPENDIX

The simplest way to exhibit the relation between I'& and
P6 is to exhibit them in graphical form as states with two
quarks and two antiquarks.

For this appendix only, "multiplication" of tensors is
defined in a horizontal way.

We find

P,

(b)
FIG. 10. (a) The projection of the group weight of the ladder

graph into the singlet channel. {b) The projection of the group
weight of the Mandelstam diagram into the singlet channel. For
an easier drawing here, as well as in (a), the thin smooth lines
represent particles in the adjoint representation while in Figs. I
to 9 these are represented by wavy lines.

P5=

P6=

2 4
(N+1)(N+2) N+2

R
2 4

(N-1)(N-2) N-2
R

(A1)
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where the open (solid) boxes mean symmetrization (an-
tisymmetrization).

Let us now consider the generalized %'igner 15j coeffi-
cient (m&„)d5 (see Fig. 7). It can be computed as the sum
of three contributions as shown in (Al). In the first two
contributions one may replace symmetrization boxes with
antisymmetrization ones and one obtains contributions

equal to the previous, after the replacement (N~ —X).
The third contribution of Eq. (Al) has different parity

of boundaries and, when the exchange of open boxes into
solid boxes is performed, produces the opposite result than
the replacelnent X—+ —X. However this different
behavior just compensates the explicit coefficients in (Al)
and (A2), thus proving Eq. (3.10)."'
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