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The deconfining and chiral phase transitions of an SU(N) gauge theory are discussed at large N.

Though it remains insoluble, an SU(N) gauge theory
simplifies greatly in the limit of large N.!~> In this paper,
I consider the large-N theory at finite temperature. I
presume that the essential physics is unchanged as N — o}
for instance, that the large-N theory confines. From a few
plausible assumptions such as this, the possible phase
transitions at large N can be understood. As I shall make
clear, in some crucial aspects, the phase transitions at
small N are not like those at large N. Even so, from large
N qualitative insight into the finite-temperature behavior
of an SU(3) gauge theory can be gained.

I start with the large-N theory without quarks, showing
that if the deconfining transition is of second order at in-
finite N, then universality requires the glueballs to have a
mass spectrum of the Hagedorn form.* I then observe
that at large N the presence of quarks does not significant-
ly affect the deconfining transition. If there are massless
quarks, I extend results of Coleman and Witten® at zero
temperature to show that, as the temperature is raised,
chiral symmetry cannot be restored before deconfinement.
I conclude by considering how the results at large NV might
be reflected in hadronic matter.

I. LARGE N WITHOUT QUARKS

I begin by reviewing why one expects a phase transition
at finite temperature in an SU(N) gauge theory without
quarks.6 The operator Q(X), the Wilson line, is defined as

B
Q(F) ~trP exp [ifo ng(sz,z)dt] , (1)

where P denotes path ordering, and 4,(X,?) lies in the fun-
damental representation of SU(N). In Euclidean space-
time at a temperature T, I choose a gauge where the fields
A4,(%, t) are strictly periodic in the time ¢ with period
B T
The Wilson line is invariant under any local gauge
transformation. Consider, however, the global gauge
transformatlon generated by the function A(X,?), where
,B)-—AA(x 0), with A a constant element of Z (N).
Smce A commutes with all SU(N) matrices, A(%,?) is an
allowed gauge transformation in that the gauge-
transformed A4,(X,t) remains strictly periodic in time. In
contrast, under this gauge transformation, QUR)—>AQ()
for all X. Hence Q(x) probes the response of the gluonic

vacuum to global Z (N) flux.
By the usual arguments, (Q) is related to the free ener-

gy of an infinitely massive quark, so confinement at zero
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temperature obliges (Q) to vanish. The deconfining tran-
sition occurs at T, where T, is the greatest temperature
for which {Q)=0. Above T}, the gluonic vacuum spon-
taneously breaks the global Z (N) symmetry, and sources
of Z (N) flux have finite free energy.

For finite temperatures in four space-time dimensions,
the deconfining transition can be described by a Landau-
type theory in three space dimensions:

La=7(3;Q*)(8;Q)+ 3¢,Q*Q

c c
+N—“2<Q*m2+ N—i(n*aﬁ. @)
For stability at large Q, ¢ >0. In Lg, as Q is a complex-
valued field, the global symmetry is actually U(1)=0(2).
To break it to Z (N), the term

Lzny=czm[QV+(Q*)"] (3)

must be added.

At zero temperature, ¢, must be large and positive to
ensure {(Q)=0. As the temperature increases, ¢, de-
creases, eventually becoming negative. This is opposite to
what happens in ordinary spin systems, and occurs be-
cause the Z (N) symmetry is broken, not restored, with in-
creasing temperature.

N =3 is unique, in that because of Lz, alone, the
deconfining transition is of first order.® For N =2 or
N >4, if ¢4 >0, there will be a second-order transition as
¢,—0; if ¢4 <0, there will be a first-order transition for
some value of ¢, >0. I henceforth assume that ¢, >0 for
all N; equivalently, that the deconfining transition is of
second order whenever N=43. Numerical simulations in-
dicate this is true for N =2,7 while N >4 remains an open
question. For N >4, as L) is a marginal or irrelevant
operator, the critical behavior about T; will be that of an
O(2) theory in three dimensions.

I take it for granted that, as has been proven for the lat-
tice theory,® in the continuum, T, remains finite as
N—>.? That is, on a scale in which the glueball masses
are ~O(1), T;~O(1). By the usual rules of the N ! ex-
pansion,® at large N any connected 2m-point function of
the W’sis ~N~ somEq (2) the ¢’s are all of O(1).
Above T;, (Q)~N, and receives contributions from an
infinite number of planar diagrams.

On the other hand, it is not at all apparent how there
could be a second-order phase transition at infinite N.'°
For large N, any glueball decay amplitude is ~N =1 while
any scattering amplitude is ~N ~2.> At infinite N, the
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mass spectrum consists entirely of massive glueballs
which are both stable and noninteracting. But how can an
ideal gas of glueballs develop the thermodynamic singu-
larities of a second-order phase transition?

For a single glueball of mass m, its contribution to the
free energy is

3
Fim)=T [ Eoin(1—expl ~B(p?+m 1))

~ —m32T7%2%exp(—m /T) . 4

m>>T
The total free energy is
Fo(T)= [ "pg(m)F(m)dm , 5)

where pg(m) is the density of glueball states. Since the
glueballs behave as an ideal gas at infinite N, Eq. (5) is ex-
act.

The contribution of any finite number of glueballs gives
a free energy which is analytic for all 7, so only the
behavior of pg(m) as m-—>c  matters. If
pc(m)~exp(m®) as m— o, then for a < 1, Fy(T) remains
analytic for all T, while if a > 1, Fy(T) is infinite for any
nonzero temperature. Thus, asymptotically pg(m) must
be of the Hagedorn form

pe(m) ~ m > exp(m /Ty) , (6)

m— oo

where Ty is the Hagedorn temperature for glueballs.

From Egs. (4)—(6), it is easy to show that®!!:12
FoT) ~ —(Tg—T) %4 ..., -
T—>Tg

where the terms neglected, such as those from light glue-
balls, are more regular as T—> Ty . Clearly, at infinite N
the deconfining transition occurs entirely because of the
Hagedorn spectrum, with Ty =1T,. Further, from the
form of Eq. (7), ag =ap(s), where ap(,) is the critical in-
dex for the specific heat of the O(2) transition. The best
theoretical estimate for this O(2) index is!?
ap)= -—0007i0.006.

Statements about the theory above T; can also be made.
At large N, the total free energy can be written as

F(T)=N*F,(T)+NF{(T)+Fo(T)+ -+ - . (8)

For a theory without quarks, at large N the expansion pa-
rameter is N —2,! so all terms odd in N (F,F_j,...) van-
ish.

It is now necessary to observe that while the total num-
ber of glueballs is infinite, the degeneracy of a given glue-
ball will be finite as N— . Then pg(m)~0O(1), and as
indicated by Eq. (5), below T; there are only contributions
to F, 0:12

F2(T)=O, TS.Td . 9)

In essence, this condition is what is meant by
confinement—the ~N?2 gluons are not asymptotic states,
and contribute to the free energy only through their bound
states. A more formal argument for Eq. (9) can be con-
structed by considering the series of gauge-invariant, local
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operators which can be used to excite glueballs, such as
tr(G ug)%, trDs(G up)*, trDD, (G op)%, etc. There is an in-
finite string of these operators, but they correspond to
glueballs with increasingly greater spin. For a glueball
with a given spin, the number of independent operators
which can excite it is inevitably finite, and essentially in-
dependent of N, as N — .

At very high temperatures, by asymptotic freedom the
free energy will approach that for an ideal gas of (N>—1)
gluons, and so F,(T)40 for T > T,;. Since F, is the dom-
inant contribution to the free energy for T > T,, by
universality, the manner in which F, vanishes as T— Tj"
must mimic that as T—Ty :

Fy(T) ~ —(T—T,) %0 (10)
T—Tg

I note that if the deconfining transition is of first order at
infinite N, then

F)(T) ~ frolT—-T,). 1y
T—T4i

The latent heat of the transition, f, TyN2+0(1), is deter-
mined solely by the free energy above T; to ~N 2. For a
first-order transition, there is no interesting restriction on
pcim).

Whatever the order of the transition at infinite N, while
all glueballs should be massive below T, this will not be
true above Ty;. When N = w0, as the vacuum spontaneous-
ly breaks a continuous [Z (« )] symmetry above T, there
will be a single massless state, a “Goldstone glueball.”
The Goldstone glueball is excited by the Wilson line:

(Q*(X)0))— | (Q)|? ~ l
i 1X

(12)

It is worth emphasizing that confinement below T; was
essential to obtaining constraints on the mass spectra. For
example, consider a self-coupled scalar field ¢, where ¢ is
an N X N matrix. In a confining theory, p(m)~O (1) con-
tinues to grow as m-—oo. In the unconfined ¢ theory
there are only a few states with different mass, but one of
them, say at m =m’, has p(m’)~N? as N— . The ¢
self-interactions, ~N ~2 at large N, are balanced by the
N? states at m =m’ to give effects of ~0O(1). Likewise,
for the ¢ theory, F,740 at all temperatures.

By smoothness of the limit N— 0, a Hagedorn spec-
trum should persist at large but finite N. Since at large N
interactions are small ( ~N ~2), Ty must provide an abso-
lute upper bound to T,; if the deconfining transition
remains of second order, most likely Ty =7T,. Interac-
tions will alter the relation between ag and ag(y), sO
ag=agop)+O0(N72). The Z(N) symmetry is discrete for
finite N, so Eq. (12) ~exp(—mg | X |) with mg the mass
of the (almost) Goldstone glueball. The (mass)? of nearly
Goldstone particles are typically linear in the parameter
which breaks the symmetry. For the pure glue theory,
this parameter is N ~2, so mg>~N —2 at large N. This is
similar to the %', for which m,,rzva—l.14

There is some indirect evidence for a Hagedorn spec-
trum at small N. Numerical simulations of an SU(2) lat-
tice gauge theory’ indicate that T;~200 MeV is much
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lower than the mass of the lightest glueball, mq~ 1200
MeV."® This could happen due to extremely strong in-
teractions between the glueballs, but as the Boltzmann
factor exp(—my/Ty)~10"3 for the lightest glueball, it
could be that Ty =T, for all N+£3. (For N =3, presum-
ably T;<Ty: A first-order transition occurs before the
second-order transition controlled by the Hagedorn spec-
trum.) Even at large N, while Ty and m are each
~O(1), there is no reason why, numerically, Ty could
not be significantly less than m; indeed, this is rather
natural for a rapidly increasing density of states. If Ty is
much smaller than mg, as the SU(2) data suggest, then
even the light glueballs are very rare about 7,;. While the
probability of an individual, very massive glueball is van-
ishingly small, there are so many heavy glueballs that they
end up dominating the free energy below T7.

II. LARGE N WITH QUARKS

For a finite number of colors, confinement is merely a
qualitative notion in the presence of quarks. Quarks,
which I take to lie in the fundamental representation of
SU(N), themselves carry Z(N) flux, and so external
sources of Z(N) flux, screened by virtual gq pairs, will
have finite free energy. As a heuristic example, the quark
bilinear trip(%,B)¥(X,0) is like the Wilson line, in that it is
invariant under local gauge transformations, while under
the global transformation A(X,?) of Sec. I, it becomes
A*tr(X, B)(X,0).

In contrast, even with quarks, confinement can be pre-
cisely characterized if there are an infinite number of
colors. The coupling to quarks of any glueball, or that of
gluonic operator such as the Wilson line, is suppressed at
least by ~N ~!, and vanishes at infinite N.!=> Thus T},
the order of the deconfining transition, the glueball mass
spectrum, etc., are all unaffected by the presence of
quarks.!® This is simply a consequence of there being
~N? gluons but only ~N quarks at large N.

With quarks, besides glueballs, there will also be
mesons, whose masses are ~O (1). (Baryons® have masses
~N, and so can be ignored.) Below T, the total free en-
ergy is a sum of glueball and mesonic contributions,

Fo(T)=F§$(T)+FX(T), (13)
where F§ is given by Eq. (5), and
FY (D)= [ " pm(m)F(m)dm (14)

with p(m)~O (1) the mesonic density of states. Since
glueballs and mesons decouple at large N, however, there
is no significant restriction on the asymptotic form of
pu(m). It is plausible that mesons do have a Hagedorn
spectrum with the same Hagedorn temperature as for
glueballs, but this is not necessary.

With quarks, F(T)s£0 above T,, while like F,(T),
F(T)=0for T<Ty,. F{(T) is not the dominant contribu-
tion to the free energy above T, so all that can be said
about how F;(T) vanishes as T—T; is that
Fy(T)~(T —T;) %, ap < 1.

At large but finite N, the effect quarks have on the
deconfining transition can easily be estimated. As sources
of Z(N) flux, quarks will induce a value of ()50, and
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s0 act as a background magnetic field for Q:!7

I,=h,Q . (15)

Relative to the Lg of Eq. (2), L, gives a () ~O0(1) if
hy~O(1). This is correct: without quarks, (Q)~N
above T,;. At large N, each quark loop gives a factor of
N~1, so diagrams with a single quark loop yield
(Q)~0(1) at all temperatures.

At finite N, if the deconfining phase transition is of
second order without quarks, there is, in the thermo-
dynamic sense, no true phase transition with quarks.!”
This is because the background magnetic field, due to the
quarks, prevents the critical fluctuations from diverging
as T—T,. For large N, h; ~O(1) is small, and this only
happens very near T;. To estimate it, I use mean-field
theory. With ¢, ~ —t, where ¢ is the reduced temperature
t=(T—Ty3)/T;, {(Q)Y~Nt'”? as T—T;. Then
Lo ~N?? L,~Nt'"?, and quarks do not cut off the criti-
cal fluctuations until Lo ~L,, or  ~N ~2/3. Hence, while
there is no true phase transition, at large N there is a
tremendous qualitative change in the theory, between a
free energy of ~O(1), and a free energy of ~N2. This
change occurs at a temperature which, to ~N ~2/3 is that
of T, in the pure glue theory.

If the deconfining transition is of first order at infinite
N, the presence of quarks can only reduce the latent heat,
~N? without quarks, by an amount ~N. Then at large
N, while there is no precise measure of confinement, there
is still a (first-order) deconfining phase transition.

To derive more interesting results, I assume there are
Ny flavors of massless quarks. Since the 77’ is a Goldstone
boson for infinite N,'* the global flavor symmetry is
U(Nf)XU(Ng). Under very plausible assumptions, Cole-
man and Witten showed that, at zero temperature, the
N = o0 vacuum must spontaneously break U(N,) X U(Ny)
to U(NV f).5 I assume there is a finite temperature T, at
which the U(N;) X U(Ny) symmetry is restored to the vac-
uum, and extend the arguments of Coleman and Witten to
show T, >T,;. While there are reasons for believing
T, > T4 for any N,'? it is worth knowing that this is una-
voidable at large N.!°

The logic of Coleman and Witten proceeds in two steps.
The first is the observation that diagrams with a single
quark loop dominate the effective potential for chiral-
symmetry breaking at large N. This is valid for the effec-
tive potential at any temperature, and implies that either
the chiral symmetry is broken completely to U(Ny), or
remains unbroken.” Thus there must be a single chiral
transition, at which the full chiral symmetry is restored.
[For a large number of flavors, it is easy to imagine that
there might be several chiral transitions, with only partial
restoration of the U(N;) X U(Ny) symmetry until the last
transition; this is ruled out at large N.]

The second step depends on the anomaly equation.?
Consider the color-singlet, chiral current j,
=PA(1—ys)ya, for some flavor matrix 4. If
Iaps(p,q,7) is the three-point function for this current,
where p, g, and r are the three external momenta,
p +q +r =0, then’

0
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o - %(TrA Neapsyp®a" - (16)

The anomaly equation remains valid at finite tempera-
ture.?! Since the current j, is a quark bilinear, in Euclide-
an space-time at a finite temperature, its momentum will
be like that of a boson; e.g., if p®=(p°B), p°=27nT, n an
integer, etc. In Eq. (16), I take each external momentum
to have zero energy, and a to be timelike. Precisely as at
zero temperature,” from the permutation symmetry of T’
in the external momenta, at nonzero temperatures, I' will
not be analytic at p=q=r=0.

The crux of the matter is that I is a physically measur-
able quantity, being a correlation function of gauge-
invariant quantities. In order that I" not be analytic at
P=q=T7=0, there must then be, as physical excitations,
massless particles which couple to j,.?

If this massless particle is a scalar (i.e., a pion), by
Goldstone’s theorem the vacuum must spontaneously
break the chiral symmetry; this happens for T < T,.
Without confinement, and with explicit chiral symmetry
(T > Ty, T.,), massless quark (gg) pairs will themselves
saturate the anomaly at zero momentum.

Assume that T, were less than T;.23 For temperatures
Ta < T < Ty, the nonanalyticity of I" cannot be due to
scalar particles (as T' > T'y,), nor to bosons with spin 1 or
greater,’ nor to free quark pairs (as T < T,;). Therefore,
when T, <T <Ty, there must be at least one type of
baryon, which I term a nucleon, which is exactly massless.
I stress that the necessity of massless nucleons for
Tag<T <T, follows only from the anomaly equation,
and is valid for any N. In general, in a confining, chirally
symmetric phase, all baryons need to be parity doubled.
The anomaly equation shows something much stronger—
that for some baryons, parity doubling must manifest it-
self via masslessness.

For two massless flavors, the appearance of massless
baryons when T <T <Ty; can also be seen from a o
model.?>?* In a o model, {(o)s£0 below T, {(o)=0
above T,. Since (o) is proportional to the nucleon’s
mass, the nucleons are massless above T;,. The anomaly
equation demonstrates that this conclusion is not peculiar
to the o model.

To satisfy the anomaly, however, the nucleons must not
only be massless, but couple to j,. It is here that a con-
tradiction is obtained at large N. j, is a quark bilinear,
while any baryon has N quarks. As Witten observed,? if
the probability for creating an additional ggq pair from one
gq pair is x (x < 1), the probability to produce N —1 extra
pairs is x¥—1. At large N, the amplitude for j, to pull
any BB pair (massless or not) out of the vacuum vanishes
exponentially at large N ~exp(—yN), y =—Inx > 0.

Therefore the anomaly equation cannot be satisfied if
Tiw<T <Ty, and so Ty, >Ty at large N. Since the
gluons dominate the quarks at large N, prejudice favors
T.,=Ty, but there is no simple reason why T, > Ty
could not be true; rough arguments suggest 7, cannot be
much greater than T;.'

What of the nature of the chiral transition? "At large N,
the € expansion predicts that the chiral transition is of
first order if there are two or more massless flavors.?*

1225

Since the quarks only contribute ~N to the free energy,
relative to ~N? from the gluons, the chiral transition is
unavoidably weakly first order.

I conclude this section by considering the large-N
theory in the presence of a quark chemical potential p140.
As has been seen, usually the effects of quarks are
suppressed by N ~!. For any N, though, naively one ex-
pects that the phase diagram should be similar for u and
T=0, as when pu=0, T+0; I argue that this is in fact
true.

To generate a net density of quarks over antiquarks, a
term ~ ;u/szp is added to the quark Lagrangian. In a con-
fining phase, u£0 can only manifest itself through a net
density of baryons. While the baryon mass mg~N,>
since each quark color is affected by pu=£0, the natural
scale for u is when Ny ~mgpg, or u~0 (1), as it is for the
temperature.

Analogous to hadronic matter, I assume that the light-
est baryons are those with the smallest possible total spin
(e.g., spin 5 for odd N, spin O for even N); then these
baryons will be the first to condense. When u~0O (1), the
density of quarks d, ~Nu’~N. If Dy is the Fermi
momentum of the baryons, the density of baryons is
dp~ pf3. As each baryon is composed of N quarks,
Ndg ~d,, and so the baryon py~O(1). Note that while
dg~0O(1), the Fermi energy for the baryons is
€f ~pf2/2mB ~N~1, and the baryon condensate is highly
nonrelativistic.

Because baryons are singlets under Z(N), the Z(N)
symmetry is not broken merely by the presence of a
baryon condensate. The effects of u-#0 will manifest
themselves indirectly, by the (virtual) interactions of the
Wilson line with the baryon condensate. Following Wit-
ten,’ the interactions of Q with the condensate, like those
of mesons or glueballs, are strong, ~O(1). For instance,
single-gluon exchange is nominally ~N~!, but as the
gluon can be exchanged with any one of N quarks in the
baryon, the cumulative effect is ~O(1). This is not in
contradiction with the previous estimate of BB production
from the vacuum, ~exp(—yN). At u=£0, the interactions
of Q with baryons are only with those in the condensate,
and not with those in the vacuum per se. A typical pro-
cess will be exciting a baryon, with momentum p <py in
the condensate, to a state with p >ps, and so on; the
momentum transfer ~O(1) is customary of glueball (or
meson) scattering.

I showed above that for large N, it is meaningful to
speak of a deconfining transition in the presence of
quarks. The strong interactions of Q with the baryon con-
densate should: decrease T,; by an amount ~O(1), for in-
creasing pu=0; similarly for T ;. When us£0, Ty, < Ty
cannot be excluded as was possible at u=0. Nevertheless,
this appears extremely unlikely for any u. Because of the
anomaly equation (which of course remains valid for u
and T0), if T, were < T, for some u=40, the baryons
in the condensate would have to be massless for
T <T <T4. No matter how strong the interactions in
and with the baryon condensate, it is difficult to imagine
why, at us40, a highly nonrelativistic condensate with
€~N ~1(for T < Tg), should become an extremely rela-
tivistic condensate with €, ~O0 (1) (for T, < T < T}).
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III. HADRONIC MATTER AND LARGE N

The phase transitions at large N may be a rough guide
to those of hadronic matter, as described by SU(3) color
with three light flavors.

There is experimental evidence for a Hagedorn spec-
trum in hadronic matter with Ty ~160 MeV.* Since the
width of very high mass states is comparable to Ty, this
value is not an absolute upper bound to whatever is meant
by a deconfining transition at 7;. Even so, the value of
Ty suggests that, as for the pure glue SU(2) theory,
T,(~200 MeV?) may be significantly less than the masses
of most mesons and baryons. The observed value of the
subleading power index for the Hagedorn spectrum,
Gexp~ 3" is not close to that for glueballs at infinite N,
ag=0ap2)~0. Granted the experimenal uncertainty in
the determination of c,, and that @, is measured from
mesons and baryons, this does not necessarily mean that
corrections in N ~! to ag ~ag() are large at N =3.

To say the very least, in the present view, the Hagedorn
spectrum is not the result of a limiting temperature, but
that of a (more or less) commonplace phase transition in a
confining theory.
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Preliminary estimates indicate that the (first-order)
deconfining transition in a pure glue SU(3) theory may be
washed out by the quarks.?> But at temperatures of ~200
MeV, surely there is a significant difference between a
phase dominated by pions, and possibly the tail of Hage-
dorn spectrum, and a deconfined phase of quarks and
gluons. After all, counting color and flavor degrees of
freedom, in the former there are only three types of pions,
while in the latter, there are eight gluons and six quarks.
Perhaps the deconfining transition in hadronic matter is
like that of a second-order deconfining transition at large
N. That is, the free energy is analytic for all tempera-
tures, but increases rapidly in value at some temperature
which can be approximately characterized as T.

There remains the chiral phase transition, which almost
certainly occurs in hadronic matter. In the end, the most
dramatic effects may be associated with the chiral transi-
tion,?* and not directly with deconfinement.
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