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Lattice action forms stable under renormalization
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We review the role of the generalized Gaussian solution to the Migdal-Kadanoff renormalization
group for SU(X) lattice gauge theories, and point out that it can be continued down to very low
values of the inverse coupling P. We thus explain the long-distance stable line of actions observed in
numerical investigations of SU(2), and propose a simple SU(3) Inixed action which should exhibit
improved scaling behavior.

The approach of lattice gauge theories to the continuum
limit is generally hampered by the smallness of the lattices
available in conventional simulations. As a result, it is not
immaterial in practice what action is used in a Monte Car-
lo simulation. Is it possible to improve the approach to
the continuum by a judicious choice of the action?

Consider the effective action which results out of renor-
malizing a theory defined on a lattice, by integrating out
degrees of freedom (decimation), so as to obtain a lattice
with fewer sites. The resulting effective action should, for
a lattice of a given size, provide an improved approach to
the continuum, as its irrelevant operators are suppressed.
In general, the effective action resulting out of the renor-
malization of single-plaquette actions is nonlocal, and can-
not itself be described in terms of single plaquettes. '

However, in the Migdal-Kadanoff (MK) approximation '

to the real-space renormalization operation, the effective

action lies in the space of single plaquettes, just like the
original bare actions.

Since the MK effective actions are definable in terms of
single plaquettes, they are reasonably easy to incorporate
into a conventional program and to manipulate without
the complications typical of the corresponding more exact
multiplaquette expressions. In the past, Bitar, Gottlieb,
and Zachos observed that the MK effective action for
SU(2) gauge theory is described essentially by

&=@(X)gp—0. 18X()

=PI Tr U —0. 18[(TrU)~—I ]j .

This action is universal in that it is the long-distance at-
tractor of a large domain of possible bare actions entering
the renormalization process —see Fig. 1. Since it reflects
properties of actions defined on lattices with spacings

FICx. 1. Reproduced from Ref. 5. The SU{2) MK renormalization trajectories of bare actions with a Wilson (pF) and an adjoint

(p~ ) component. Within a large domain around the Wilson axis, all trajectories are attracted to and coalesce with a line of effective
long-distance actions, Eq. (1). They then Aow along this universal line of actions to the infrared fixed point at the origin. Around the
adjoint axis, trajectories flow to another action, p(X~ —0. 18+2), whose next-to-leading component lies off the figure plane.
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smaller than the spacing of the lattice on which it itself is
defined, this action was conjectured to approach the con-
tinuum limit faster than the Wilson action commonly
used.

Following this clue, Otto and Randeria computed the
physical ratio of the mass of the lightest glueball (0+) to
the square root of the string tension in the SU(2) pure glue
theory for several values of the coupling P. They noted
that this ratio varies with P significantly less when the ac-
tion of Eq. (1) is used, as compared to the case when the
Wilson action is used. They therefore concluded that this
long-distance effective action (LDEA), Eq. (1), improves
the approach to the continuum limit, since it is less depen-
dent on lattice artifacts like variation with the coupling.

A natural extension of the above investigation would be
to find the corresponding LDEA for SU(3). Could one
perhaps avoid carrying out the cumbersome analog of the
renormalization calculation of Ref. 5'? In fact, this turns
out to be possible, provided we find a generic characteri-
zation of the LDEA's within the framework of the MK
approximation to the renormalization kernel.

Actually there exists empirical information on the gen-
eric form of the LDEA's of the MK kernel. ' '" ' In
some analogy to the central-limit theorem of statistics, "
they are Gaussians generalized to the appropriate group
manifold, quite close to the heat-kernel action. '
Here, we will try to make this characterization somewhat
more quantitative. By analogy with Eq. (1) for SU(2), we
will further conjecture that the following SU(3) action ex-
hibits improved scaling properties:

S ( U) =P Re[X3( U) —0.26Xs( U) —0. 10X6( U)],
where X3(U)=TrU constitutes the Wilson action, and
X6 (X3) (X3) Xs

~
X3

Let us start by a review of the MK renormalization re-
cursions. We will follow the conventions of Refs. 5, 9,
and 10. The actions for the gauge theories considered are
class functions, i.e., they cannot distinguish among dif-

dU -""X*„(U).
d„

Here X„(U) denotes the trace of U in the irreducible repre-
sentation labeled by r, d„=—X,(1) is the dimensionality of
that representation, and dU is the normalized group-
invariant Haar measure.

If every other link is integrated out in all directions, the
ensuing Gibbs factor will describe the exponential of the
renorinalized action. In general, this doubling of the basic
length scale yields single-plaquette effective actions like
the original ones only in the special case of two spacetime
dimensions. Nonetheless, Migdal proposed to extend the
two-dimensional result to arbitrary numbers of dimen-
sions d and scaling factors A, . His one-shot approximation
relies on judicious processing of the link variables which
reduces the problem to a two-dimensional one.

The (Migdal) renormalized Gibbs factor reads

A,
d —2

F'(U)=e ' '= QF„d„X,(U) (4)

This recursion has the correct d=2, A, =2 limit and, of
course, the necessary A, = 1 and S ( U) =constant limits.

A closely related, perhaps more intuitive, approxima-
tion has been provided by Kadanoff. In addition, there
have been attempts' to improve both approximations sys-
tematically, but at the heavy price of formal complication.
For instance, the desirable feature of remaining in the
original space of functions of single plaquettes is lost. We
will thus not be discussing these improvements here.

The joint recursion

ferent group elements which belong to the same
equivalence class. As a consequence, these actions can be
expanded in terms of the characters of the group, and so
can their Gibbs factors (their exponentials which enter
into the functional integral):

F( U) —=e ' ' = g F„d„X„(U),

A,
2

f« -" 'X'(V) d„X„(U)
gd —2 —b

(5)

describes both the Migdal (b =0) and the Kadanoff
(b =d —2) prescriptions through the different settings of
the formal parameter b. Iteration of the transformation
of Eq. (5) with a given b amounts to a succession of char-
acter analyzings and resynthesizings while raising the
relevant Gibbs factors or character coefficients to a power
at every step; note, however, that only the very first and
the very last of this string of exponents depend on b. This
may indicate that b is not a crucial parameter in the
mechanics of this renormalization process, as it merely
modifies the very initial and the very final couplings of
the evolving action.

Furthermore, for an upscaling by a small factor
A, = 1+e, the recursion, Eq. (5), reads

F'=F+e (d —2)FlnF+2+F, lnF„d„X„+0(e ) . (6)
r

The dependence on b starts only at the second order in e,
which is to say that the infinitesimal renormalization ker-
nel is identical for the Migdal and the Kadanoff transfor-
mations. ' In what follows, we will thus focus only on the
Migdal prescription, Eq. (4), without loss of generality as
far as the infinitesimal transformation is concerned.

We will now proceed to search for fixed lines of actions
of the recursion, Eq. (4) [or Eq. (6)], that is, actions which
preserve their form under renormalization and only vary
with respect to one parameter identifiable with the cou-
pling. Clearly, in two dimensions, a large class of actions
with lnF„=f (P)g(r) will do, provided the uniform rescal-
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e " ~cosr8=&4~/3 g e ~' +' " (8)

For SU(2) Menotti and Onofri have generalized this to

Zr(r+I)/Pd g (8)—

=n P
+ —P(()/2+2~1) /2e

sin(8/2)
(9)

The logarithm of n (/3) is an irrelevant additive constant in
the action, which may be obtained by normalizing Eq. (9)
at 8=0. Like all constant shifts in the action, it will not
be crucial in the discussion that follows, and will thus be
ignored. In general, for SU(X), the appropriate periodic
Gaussian representation of the Gibbs factor is proportion-
al to'

(t; —(I)/+2m(l; —lj )

; &J 2sin —,
'
[P; P/+2m(/; —lj)—]

Xexp —PQ (P~+2ml~) /4 (10)

Here the N invariant angles are dependent for SU(1V):

N

gy, =o;

they reduce to the N —1 independent class variables corre-
sponding to the rank of the group. [The angle in the
%=2 case of this formula is normalized by 2, Eq. (9), to
accord with standard angular momentum conventions. ]

For weak coupling (large P), the U(1) Villain action is
dominated by a periodic Gaussian. For instance, in the
Brillouin zone [—n., m.], the Gibbs factor of Eq. (8) goes
like

e ) +[1+e ~' ' 2 cosh(4'/38)+ . ] .

ing of f (/3) dictated by the recursion, Eq. (4), can be rein-
terpreted as a definition of the renormalized couplings:
k f(P)=f(P'). A particularly simple family with this
structure is the heat-kernel action ' ' defined through

F,=e (7)

where C, is proportional to the quadratic Casimir invari-
ant of the relevant group. For U(1) C„=r /4 and for
SU(2) C„=2r(r+1). Consequently, in two dimensions
these actions maintain their form, while exhibiting asymp-
totic freedom (and attract nearby renormalization trajec-
tories). Does this feature extend to higher numbers of di-
mensions, when the recursions, Eqs. (4)—(6), are no longer
exact~

In higher numbers of dimensions, the situation is less
clear, since raising E(U) to a power maintains its form
only if it happens that inF(U)=f(P)g(U). This is not
true for any known families of the type specified above.
However, it is approximately true for the heat-kernel ac-
tions in the weak-coupling regime, as we will now discuss.
For U(1), the heat-kernel action is equal to the periodic
Gaussian (Villain) action:

P 8
1

8/2
2 2 sin(8/2)

It turns out that the logarithmic term can be approximat-
ed reasonably well by a parabola in this region:

8/2
ln

sin(8/2)

8' 1
'81'

+ + ~ ~ ~

6 2 180 2
(12)

Hence, the dominant component in the action is a periodic
Gaussian ——,

'
(P——,

'
)8( 2 2„) with the requisite form for

stability under renormalization. ' '

A remarkable feature of Eq. (12) is the smallness of the
contribution of the 0 (8 ) terms: it amounts to a less than
10% correction to the Gibbs factor for all 8 less than 3.8.
This indicates that the Gaussian approximation will hold
for quite small /3's well below 1, as will be discussed later.

The renormalized )8 in the Migdal approximation is
read from Eq. (4):

pi & gd —2
3

P 1

A,
2 3

(13)

We should, however, reinterpret /3 ——,
' as the effective

coupling P. The renormalized P ' is then

Consequently the action is essentially P8( ), i.e.,
Manton's action, ' up to terms suppressed exponentially in
P—they smooth out this action's cusps on the boundaries
+m. of the Brillouin zone.

Since, in this approximation, the action has the
requisite form Pg(U) (i.e., its functional dependence on
the plaquette variables does not change beyond a rescaling
upon varying /3), it follows by inspection of the renormali-
zation recursion, Eq. (4), that the renormalized coupling is
P'=PA, . As a result, U(1) has a fixed-point behavior
for d=4. Thus, for any large P, the theory is essentially
free, as observed in studies of the iterated recursion. ' '
In these studies there is moreover an extremely slight re-
normalization towards smaller P's. This flow becomes
more apparent for smaller /3's as the suppression of the
terms ignored in the above approximation weakens. For
d g 4 and d & 4, inspection of the same weak-coupling ap-
proximation reveals asymptotic freedom and anti-
asymptotic freedom, respectively. (In the strong-coupling
regime, asymptotic freedom prevails for all d s, which dic-
tates a phase transition for d ~ 4.)

The situation for SU(2) is somewhat more complicated
because of the additional presence of the crucial measure
(8/2+2lm. )/sin(8/2), which accounts for asymptotic free-
dom in four dimensions, as we will now discuss. Let us
first take the logarithm of this measure so as to incorpo-
rate it in the action, and then focus on the first Brillouin
zone [—2n. , 2m]. In analogy to the U(1) case, for large /3,
the zone is dominated by its central region t9-0; note that
the singularities at 8=0 cancel between each +l pair of
terms. The important part of the action in this region is
then
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This coupling (P) is essentially identifiable with PF of the
LDEA of Ref. 5 and Fig. 1, since the projection of this
Gaussian action on the lowest SU(2) characters is, apart
from an irrelevant additive constant,

P 2 711—
~[ 2n—2n] P(~1/2 21~1+ '08~3/2+

8 7Ty fT

(15)

Inspection of Eq. (14) directly reveals the presence of an
unstable fixed point (and the concomitant phase transi-
tion) for d&4:

3(A, "—1)
(16)

For example, for d=S and a=0.1 we obtain /3, = —, +e,
which corresponds to PF, ——0.68, in accord with Refs. 3
and 9.

It is also clear by inspection of Eq. (14) that asymptotic
I

freedom prevails for d(4. In four dimensions, P de-
creases with a speed independent of its value

bP=P' —P= ——,e+o(e ) . (17)

This agrees well with the LDEA results of numerical MK
iterations (Table II of Ref. 5 and Ref. 9) down to
P=PF -0.4. In addition, down to the same coupling, the
fixed line of Fig. 1 is straight, with local slope 0.21 (Table
II of Ref. 5).

The above remarks suggest that the analytical treatment
discussed here holds for quite large couplings (PF &0.4),
even though it relies on the weak-coupling approximation.
For smaller P's, the quartic term in Eq. (12) becomes sig-
nificant and upsets the fixed proportion among the char-
acters, so that the LDEA begins to curve, aligning itself
with the Wilson axis. For sufficiently small P s, it is evi-
dent that the renormalization recursion, Eq. (4), dimin-
ishes the Wilson component less than all higher ones:

A,
d-2

e I F+1/2+I A 1+ 1+PF~1/2+PA+1+ ~1+
2 ~1/2+2 1

gd —2P 2.

X]+2

=exp[A," (PF 1', /2i2" '+PA" x1I3 '+ . . )] .
I

(18)

Since the LDEA we are studying is not a straight line
near the origin of the P s (Fig. 1), its straight portion does
not quite extrapolate to the origin. However, since the
corresponding interc pts are small, we choose to fit it with
a straight line of slightly smaller slope, Eq. (1), in the in-
terest of computational simplicity.

Bitar has suggested a refinement by providing a
strong-coupling approximation to the universal trajectory
with parabolic behavior. He was guided by saturation of
the Osterwalder-Schrader (OS) positivity bound, '
which is evident in weak coupling. In weak coupling, the
two approximations to the LDEA, namely, the heat-kernel
action [Eq. (9)] and the Manton action [Eq. (15)] satisfy
and violate OS positivity (F„&0),respectively. As they
approach each other for large P, they bracket the boun-
dary which separates the OS region from the domain of
negative norms. Bitar traces this boundary to strong cou-
pling and parametrizes on it the curved part of the LDEA
(the connection to the OS positivity boundary is, however,
only empirical). In any case, the resulting parametrization
is more elaborate than the simplest mixed actions we are
proposing for Monte Carlo simulations.

Let us now summarize our discussion of the SU(2)
LDEA's. For weak coupling and even well beyond the
crossover region, they are reasonably well approximated
by the heat-kernel and the Manton actions, both of which
exhibit smoother crossovers and improved scaling in the
Monte Carlo simulations of Lang et al. Moreover, the
two leading terms in the character expansion of the ap-
propriate gaussian provide a simple mixed action close to
Eq. (1), the ftt to the universal LDEA which was specified
by direct iteration to the MK kernel. This action was
empirically observed to exhibit improved continuum
behavior. 6 Let us now extend this reasoning to SU(N),
and, as a consequence, obtain the LDEA for SU(3).

The extension of the foregoing weak-coupling approxi-
mation to the general SU(%) case is straightforward. In
the central Brillouin zone, all the angles of the LDEA in
Eq. (10) are forced to lie near zero, and thus the logarith-
mic terms are well approximated by parabolas:

i &j 2 sin T~ (pi i/Pj )

2

2

„Xc (19)

We are thus led to the LDEA Gaussian for SU(3):

/3 1
'(t'1[ —m, m]

i=1

(&'+P'+()1/1)[ ], (20)

where $1=—8, (t 2
=p, and iI)3 ———(8+p ). The analog of

Eq. (17) is now b,P= —e+.O(e ). The character expan-
sion of this (real) action is

02+/ +OQ=C1+C3
X3+X3

X6+X6
2

+C8X8+ (21)

The real coefficients C; are obtained by performing the
following two-dimensional integrations:
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dU 0+ +0 =488,

f d U(8'+p'+8((})(X,+X3)= —2. '73,

f dU(8'+P'+8/)(X, +X6)=0.28,

f dU(8'+P'+8/)Vs=0. 70 .

(22)

The Haar measure in this parametrization may be found
in Ref. 9. Projecting onto the lowest three characters and
taking the intercepts of the extension of this line to be
zero, we obtain the mixed action of Eq. (2). Taking into
account the measure, this action agrees with Eq. (20) over
most of the variable range reasonably well, and represents
the approximate generic renormalization trajectory for
SU(3).

Since approach to this universal trajectory upon scale
expansion involves suppression of irrelevant components
in the action (lattice artifacts), we conjecture it to provide

better access to the continuum limit. As in the case of
its SU(2) analog, Eq. (l), we therefore wish to attract at-
tention to this mixed action as a convenient, improved al-
ternative to the Wilson action. Of course, since there is no
agreement on the reliability of the MK framework, the su-
perior performance of Eq. (2), or some action close to it, is
an open "experimental" question. It thus appears to us
that a Monte Carlo study of it should be quite worthwhile.
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