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A functional method of calculating superspace effective actions in supersymmetric theories is
developed by use of superfield functional integrals and multipole-expansion techniques. The super-
space effective actions for supersymmetric QED and the supersymmetric CP*~! model are con-
structed by this method without reference to component-field calculations.

I. INTRODUCTION

The superfield formalism! exhibits its inherent advan-
tages in actual calculations as well as in the formulation
of supersymmetric theories.”> Superfield perturbation
theory>* not only simplifies perturbative calculations but
also reveals some nonrenormalization theorems®> essential
to the development of super grand-unification ideas.®
Superfield techniques have also been applied to the evalua-
tion of effective potentials.”~1° In view of the utility of
superfields, it will be important to explore various tech-
niques for handling them.

The purpose of this paper is to present a functional
method for the construction of effective actions in super-
symmetric gauge theories. The key ingredient in our ap-
proach is a multipole expansion of superfields in super-
space; this enables us to express the nonlocal one-loop
functional directly in a series of gauge-invariant local
superfield products.

Recently, Veneziano and Yankielowicz!! have proposed
an effective Lagrangian which incorporates properly the
anomaly structure of supersymmetric quantum chromo-
dynamics. Subsequently, D’Adda et al.'? have elucidated
the low-energy structure of the superfield effective action
by an explicit calculation in the supersymmetric CP” !
model; their construction is based on a component-field
effective action translated into a unique superspace action
under some ansatz. Our approach can directly lead to the
superspace action, as shown later.

In Sec. II, we derive some functional-integral formulas
to be used in the succeeding sections. In Sec. ITI, we illus-
trate our basic algorithm by deriving the one-loop effec-
tive action for supersymmetric quantum electrodynamics.
The resulting action is a superfield version of Schwinger’s
result!? for quantum electrodynamics. In Sec. IV, we con-
struct the effective action for the composite supermulti-
plet in the supersymmetric CP" ~! model by a method dif-
ferent from that of Sec. III. Examination of the effective
potential shows that supersymmetry is unbroken in this
model. Section V is devoted to concluding remarks.

II. FUNCTIONAL INTEGRALS OVER SUPERFIELDS

In this section we study functional integrals over chiral
superfields with emphasis on how to handle the chirality
constraints involved.

Our notations are those of Ref. 14 modified so
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that the space-time metric is g,,=(1,—1,—1,—1). For

example, the covariant derivatives take the form
D,=03/30°—(p®), and D,=—0/30“ +(®11) with
() 0e=Pu(0") 30 P =19, and (0*),4=(1,0%) ;. In addi-

tion, extensive use will be made of the short- hand notation
z—(x" ®%,09), d¥ =d*x d*0d*®, d% =d*x d*®, and
d®z=d*x d2®, we shall call d%z;, d%, and d° the full,
chiral, and antichiral measures in superspace, respectively.
Of great use is matrix notation such as Z(zy,z;)
={z,|E|z;), where |z;})=|x;,0;,0;) (i =1,2) denote
the eigenstates of the coordinate operator z=(x,®,0 );
matrix multiplication is defined in terms of the full mea-
sure in such a way that

(21|23 |20) = [[d*23(z, | 2] 23) (23| 2| 22)

Let us first evaluate the Gaussian integral over the
chiral superfield ®(x,®,0 )=P(z):

WIZ]= [ [d®][dP Jexp [ifd821d822<1_>(z1)

X E(z1,29)P(z,) 2.1)
where ®(z) and its Hermitian conjugate ®(z) are subject
to the constraint D ®=D,P=0. Instead of explicitly
carrying out this constramed functional integral, it is ad-
vantageous to cast it into the differential form
SW/W =i [ d%2,d%2,85(2,,2,)( ®(2,)B(z,)), (2.2)
Then W is reconstructed out of the superfield propagator
(®®), (the connected two-point Green’s function),
which, in the present case, is easier to derive than W itself.
A simple way to obtain the propagator is to look for the
minimum of the actlon in (2.1) with the source term
fd J( z)<1>(z)+f 7J(z)®(z) added. In matrix nota-
tion, the superfield equation

— 4D E®+JT=0 (2.3)
is solved for ® in the form
®=4(D2D*=)"'D?J . (2.4)

Note that D27 has the same chirality as ®; corresponding-
ly D 2D?Z has been inverted in the sense

(D?D?%E),%(2,2)=1__(z,2z,), (2.5)
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which gives the symbolic expression for the inverse
Y=DDp=E)""1__,

where the chiral ) function® 1__(z,zy)

=(z|(—+D?)|z,) acts as a & function in combination

with chiral measures. The propagator is derived from

(2.4) by a functional differentiation with respect to the an-
tichiral source J:

(D(z))B(2;)) =iz, | (D D*E)"'D?D?|z,) . (2.7

(2.6)

Equation (2.2) is now cast into the functional form

8InW = —Tr[(D*D?=)~'D2D%=], (2.8)

which is integrated to give the desired expression for W:
W[E]=exp[ —Trin(D *D?=)], (2.9)

where the trace Tr is taken with the full measure f dbz.
Note that W[Z] has absolute normalization since
W[1]=1 (i.e., the free-field case).

The second example we consider is supersymmetric
quantum electrodynamics (SQED) described by the
matter-field action!’

o = [d*%2(BEQ,+,58,)+m [d% &,

+m fd6z_‘l_>lq_>2 ’ (2.10)
where ®(z) and ®,(z) are chiral superfields with opposite
electric charges. For generality, Z and X are treated in-
dependently in what follows: SQED is obtained by the
choice E=e?" and Z=e~%" in terms of the vector
superfield V(z).

It is convenient to write .« in the matrix form

oA =V Q¥ , 2.11)
o ml__  —4D?31,.. 012

T |—4D?%=1__ ml, ’ ’
where ¥=(P,,®,)", V*=(P,,®,), 1__=—5D2 and

l,,=—+D2 The dot implies summation over
superspace-coordinate labels using appropriate chiral or
antichiral measures, as indicated in the structure of . As
before, we solve the equation of motion to get the propa-
gator {WW* ), or equivalently Q!

mA_1__ +A_D*=1,,

Q= _ _ , (2.13)
TALDEI__  mA 1,

where A_=(m?—:D?3D?Z)~! and A, =(m?

—+D*=D?*3)"". The Q! is defined so that Q-Q~!
=diag(1__,1,,).

Let us denote by W =W|[Z,3] the functional integral
over ¥ and W* with the action (2.11). Its response to the

variation 8{) caused by 8= and 8% takes the form
SW/W=—7180-Q71), (2.14)

where the trace Jr is taken with appropriate chiral or

antichiral measures. Using (2.13) and the operator identi-
ty A+D25D 2=Dp2=A_D?, we rewrite this as _

SW/W=—Jr(A_SA_"11__), (2.15)
where 8A_~'=_—-(D?%=D?2+D?3D%E). On in-
tegration, this yields the expression

InW=—7r[In(A_"H1__]. (2.16)

Here InA_~! may be defined by the parametric-integral
representation:!?

1nA_—1=—f0°°d¢<1/r)exp<—im_-1), 2.17)
where, as usual, A_~! in the exponent is understood to
possess an infrared-convergence factor A_~'—i0, (or
m2—->m?—i0,).

Although In(A_~!)1__ is chiral, InA_~"! is not. The
nonchiral part of exp(—iTA_'l), however, is equal to
exp(—iTm?), which has a vanishing contribution to InW
because .7rl__=0. Consequently, InA_~! itself can ef-
fectively be regarded as chiral in (2.16); in view of the re-
lation f dbz = f d%(—+D?), this fact allows us to re-
place 7t combined with 1__ simply by the trace Tr. In
this way we are led to the following equivalent representa-
tions of W:

InW=—7r[ln(m*—+D?=D*E)1__] (2.18)
=—J1[ln(m?>—5D*ED*3)1, ] (2.19)
=—Trin(m?— ;D *=D%=), (2.20)

where the traces are taken with the chiral, antichiral, and
full measures, respectively. Equation (2.19) is an anti-
chiral analog of (2.18).

Equations (2.9) and (2.18)—(2.20) summarize in the
form of functional formulas the improved superfield
Feynman rules of Grisaru et al.*

An interesting decomposition law follows from the
comparison of (2.1) with (2.10) for m =0, when ®; and ®,
are decoupled:

Trin(D *=D’Z)=Trin(D*D *2)+Trin(D2D*E) . (2.21)
Note that TrIn(D2D %3) vanishes when = is either a chiral
or an antichiral local superfield 3(z), as seen from the
original integral expression (2.1); it is a simple exercise to
verify this directly with the functional expression.

The SQED action (2.10) is invariant under the gauge
transformation V—V'=V+i(A—A), &—e 2D,
®,—>e%Ad,, etc., where the phases A(z) and A(z) are
chiral and antichiral superfields, respectively. Gauge in-
variance is manifest in formulas (2.18)—(2.20), e.g., for
(2.18), I[V]=In( - - - )1__ transforms as

I[V]=eHAI[V']e %A . (2.22)

Gauge invariance is also embodied in W[ZE] defined by
the functional integral (2.1), such that W[E]=W[E’]
with Z'=e AZe’A. It is easy to verify this invariance
property directly with the functional formula (2.9) by use

of (2.21).
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III. SUPERSYMMETRIC QED

In this section we present our basic formalism and con-
struct the low-energy effective action for SQED. We shall
focus on the one-loop contribution from the matter fields,
I'=—ilnW, where InW is given by (2.18)—(2.20), and
treat ¥ as a background superfield.

Let us consider (2.18) cast in the parametric form

F[V]=—ifd6wf0wd7'(1/7')e""”2(w]eTLl___ |w) ,
(3.1

L=+D%""D%", 3.2)
where w designates the superspace coordinate w
=(u*£%E%). In the above, for notational convenience,
we have set 2eV—V since the coupling constant e can
easily be recovered. In addition, assuming that
m?—L >0, we have deformed the T-integration contour
(effectively 7— —i7); for other values of L, T is defined
by a suitable analytic continuation specified by the {0,
prescription.

The T'[V] is a gauge-invariant nonlocal functional of V,
as illustrated in Fig. 1(a). We attempt to evaluate it for a
slowly varying superfield ¥ by generalizing the concept of
a multipole expansion!® formally to superspace: Let us
look at Fig. 1(a), and expand the slowly varying fields V at
various superspace positions in multipoles at some fixed
position, which we take to be w =(u,&,€) in (3.1), as de-
picted in Fig. 1(b). This gives rise to a systematic expan-
sion of I'[V] in a series of local superfield products.
Remember, however, that the expansion in the fermionic
coordinate (®,®) is only a formal procedure which is in-
dependent of how fast V' (z) varies in real space-time; thus,
the range (or wavelength) of each superfield product is
determined by its x dependence rather than by the number
of covariant derivatives involved.

The expansion procedure is made manifestly supersym-
metric and gauge-invariant by use of suitable transforma-
tions introduced below. Let us denote the relative super-
space coordinate by £=(r*,0%,0%) =z —uw), i.e,,

xb=rktub, @*—6°+£% and O¢=0%+E9 .

We first consider the unitary operator

- O

(a) (b)

FIG. 1. (a) Schematic representation of the one-loop effective
action I'[V]. Wavy lines represent background superfields V
coupled to the quantum loop of the matter superfield. (b) The
superfields V at different positions are expanded in multipoles at
a fixed position (here chosen to be w) in superspace.

(3.3)

U, (0,6)=exp(EpO—OpE) , (3.4

which serves to convert the covariant derivatives
D,=3/00%—(p® ),=D,(0,0)

and
D,=D,0,0),

into those defined in the (x,6,68 ) coordinate:
U;D,(©,0)U,~'=D,(6,0)

and
U;D,(©,0)U,~'=D,(6,8) .

The vector superfield V(z) b;
unitary transformation V(x,0,0)
=U;V(x,0,0)U; ! with V; given by

Vi(x,0,8)=V(x +iEc0—iOF, O+& O+E).

This V;(x,6,0 ) may be regarded as being a result of either
a supertranslation on V'(x,0,0) or an inverse supertransla-
tion on ¥ (x,&,€). Hence, recalling the obvious reciprocal
(pu<>—py) structures'* of supercharge differential opera-
tors and covariant derivatives, we can write V; in the
form

V,(x,0,0)=exp[6°D ,(&£,E &)+ 8,D UEE)V(x,E,E) ,
(3.7)

(3.5)

thereby undergoes the
—V;(x,6,0)

(3.6)

where the covariant derivatives act on V(x,g,f ). Its
power-series expansion in 6 and 6 contains, as its coeffi-
cients, superfields in (x,&,£ ):

Vi(x,0,0)=Vy(x,0,0)+A;(x,0,0)+A;(x,0,0), (3.8
Vo(x,6,8)=60"0v,(x,£,E )+ 020W (x,£,E)
+0%0W(x,£,E)++6%0°C(x,E,E) , (3.9)
with the coefficients given by
vu(x,6E)=5Do,D—-D5,D)\V,
W, (x,6,E)=—+DD,V ,
(3.10)

Wd(xf,f )= —%DZBGV ,
C(x,£,E)=+DD*D,V=—+5DW, ,

where V =V (x,£,E). The A;(x,6,8) is chiral in (x,6,8)
[i.e., D4(6,0 )A; =0], with the expansion
Ar(x,6,0)=e "% Ly L 64D, V)—+6XD2 ], (3.11)
where V=V (x,£,€); similarly for its antichiral partner
A;(x,0,0).

The unitary operator Uj, acting on |w), is a unit
operator: U; |w)= |w). Consequently, for the integrand
(w]| --- |w) in (3.1), the effect of the present transfor-
mation is simply to replace the operators (D,D, V) within
it by those defined in the (x,0,8 ) coordinate. In addition,
the chiral parts A; and A; in V;(x,0,0) can be gauged
away since the transformation law (2.22) is carried over to
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the (x,0,0 ) coordinate.

The transformation law (3.7) applies to general super-
fields and preserves Hermiticity or chirality of the original
superfields. For a chiral superfield ®(x,®,0), the
transformed field ®;(x,0,0) is given by (3.11) with ¥ re-
placed by ®(x,£,€). In this way, the present unitary
transformation generates a multipole expansion of super-
fields in the fermionic coordinate.

It is important to examine how the coefficient super-
fields in (3.10) behave under the gauge transformation
V—V'=V+i(A—A) at position (x,£,6). Obviously,
Wo(x,EE), Wy(x,EE), and C(x,£,€) remain invariant.
The u,,(x,g,f ) undergoes the change
v,(x,&,&)—v, (x,6,6) with

vp (6,68 )=0,(x,E,E)+3,[Ax,EE)+Ax,EE)],
(3.12)

which is analogous to the transformation law of the ordi-
nary vector field. From this analogy we immediately see
that, by a suitable choice of A+A, u;,(x,g,g ) can be ex-
pressed as a functional of & ,,=3,v,—0,v, defined at the
fixed position w =(u,£,£). The necessary procedure is
essentially the same as for ordinary gauge theories,'® with
the result
o0 1 —

v},(x,§,§)= 2 m(r-a)nrv‘?vﬂ[v(u,g}é‘)] , (3.13)

n=0 ""*

where r#=x"—u# and the derivative r-d=r"d/du* acts
on F,,. It is possible to express # ,,[v] in terms of W,

and W:

Flvl=%(Do, W —-D5,W), (3.14)

where  (0*")P=i3(0#5"—0"G"),P and  (GM)%
=iz (50" —7 o)

Let us denote by H(r) the matrix element
(w] -+ |w) we have been considering. The nonlinear
gauge transformation that effects the multipole expansion
in r#, Eq. (3.13), leaves H (7) invariant, leading to the ex-
pression

H(r)=(0|e™1__|0), L =+D%"7D%”, (3.15)

where 7 =2~ (r,0,0) is equal to V(x,0,0 ) with its coeffi-
cient v,(x,§,5) replaced by v;,(x,é‘,f) in (3.13). To indi-
cate that the operators in (3.15) act on the relative coordi-
nate £=z —w =(r,0,0), we have introduced the notation
|2)=|r,6,0) for its eigenstate, i.e., |£)=|z=F+4w)
and |0)=|0,0,0)= |w). Remember that H(r) depends
on the fixed coordinate w only through the coefficient

superfields of 77( r,0,0), which are functionals of W,(w)
1

H (1)=2e?W?[cosh(at)—cosh(b7)]((0 | exp(II?) | 0))/(a®—b?)

where |0)) stands for the r#=0 eigenstate of the coordi-
nate operator r#. The |0))— | 0)) transition amplitude is
familiar from Schwinger’s work:!?

((0 | exp(7I1?) | 0))=(i /167*7?)det[eF 7 /sin(eF T)]'/? ,
(3.23)

and Wd(w) alone, as seen from (3.10) and (3.14). In terms
of the component fields of V(x,&,£ ),

V(x,&,E)=EB(X)E+E2EX(x)+EEX (x)
+5EED(X)+ -,
W (x,£,E ) is written as
W, =e "X (x) 4+ £aD (X) =i+ [y (X) (075 YE)q
+iEHBX(x))g] ,

where  f,,,(x)=03,B,(x)—03,B,(x);
W, (x,E,8).

In order to calculate H(7), we consider the operator
G (1)=e™1__, which satisfies the differential equation

(d/d7)G(T)=LG(T) (3.18)

with G(0)=1__. We solve this for the matrix element
G(1;2)=(£| G(7)|0); then H (7)=G (7;0). Practically, it
is convenient to consider the Laplace transform
G(s;8)= f dre*"G(r;Z), which, being chiral in 2
=(r,6,0), is expanded in the form

G(s;7,0,0)=e "% 4 (s;7r)+ 0% (s;r)+6*F(s;r)] .

(3.16)

(3.17)

analogously  for

(3.19)
Then the component fields obey the set of equations
[s —(II’+5C)]4 +5W¢=0,
(s —AN)Y+WF+AWA=0, (3.20)

[s —(I2—+C)F — s W24 + T WAY=58%r) ,

where Il,=p, — %v;,(x =r+u,£E), p,=id/drt, N
=Il,0", and I7[=II#E". We shall evaluate H(7) in a
slow-field approximation where W,(x,£,§) and
W, (x,&,E) are taken to be independent of x*; correspond-
ingly, C(x,£,€) is now independent of x* while v,,(x,£,€ )
is linear in r*. This approximation is equivalent to re-
garding the component fields X,(x), X (x), D(x), and
Sfuv(x) as constant fields in the effective action, as seen
from (3.17).

Let us solve (3.20) for A4 (s;r), which, in the present ap-
proximation, is cast in the compact form

A(s;r)=2e W (y*—a?®)~Hp?—bH)~18%r), ((3.21)

where y=s—II?, a =eC(w), and bzz(%eﬁ’mp‘“’)2
=5 FHiF T ) with Fr=F .0 and
FF = %E,WP,‘? BFPT. Here we have recovered the elec-
tric charge e. From (3.21) follows immediately H (7):

(3.22)

I
where % denotes a matrix #*, and the determinant det

acts on the Lorentz index. After some algebra, we get the
following expression for the one-loop effective action:

T[V]=(e?/167%) [ d*w W?/(a®—b?)
x [ Tdr(1/me~™h(r), (3.24)



1164

h(r)=[cosh(ar)—cosh(b7)]Im(b?)/Im(coshbT).
(3.25)

In the present approximation, % ,.(x,&,&)=/,(u)
C(x,EE)=D(u), and e [d%W>=a—b>42e%XX

a’—b2% The imaginary part of h(r) is equal to
—Im(b?)=—te*f,,f*, which is a four-divergence;
hence, T'[ V] turns out to be real, as it should be.

It is straightforward to expand I'[V] in powers of
1/m?. The O(m°) term contains an ultraviolet diver-
gence, which can be removed by the wave-function renor-
malization of the vector superfield V. In component
fields, the O (1/m*) term is written as
L= (e?/4mm®? [ d*u[(D>— 3>+ (L fF1] .

(3.26)

The superfield action (3.24) correctly reproduces the
component-field result to all orders in 1/m? It is a sim-
ple exercise to decompose (3.24) rewritten in terms of
component fields into three pieces such that

I'[V]=Tfg(e,m)+Tzle,m?—eD)
4+Tp(—e,m?+eD),

where I'(e,m) denotes the one-loop contribution from a
Dirac fermion of charge e and mass m while T'gz(e,m?)
denotes the contribution from a scalar field of charge e
and (mass)> m2. One can verify this structure by a direct
calculation based on the component-field Lagrangian.

We have also carried out a calculation, starting with
(2.20) written in terms of the full-measure trace Tr, and
confirmed!” (3.24). The calculation is somewhat more
tedious than the one presented here. It is therefore impor-
tant to start with a suitable choice of functional formulas.
Obviously, Eq. (2.20) is most suited for standard perturba-
tion theory.

IV. SUPERSYMMETRIC CP"~! MODEL

The supersymmetric CP* ~! model in its N =2 formu-
lation is based on the action'>!®

o = [ d* d*@d*B[B% ' —(n/g)V] @.1)
expressed in terms of N =2 chiral superfields ®°
(@=1,...,n), their conjugates ®° and an N =2 vector
superfield ¥ in two dimensions. The ¥V, which has no
kinetic term at the tree level, is an SU(n)-singlet composite
superfield to be expressed in terms of ®° and ®°. In the
large-n limit, it is promoted to represent a supermultiplet
of composite particles. The purpose of this section is to
derive the effective action for this SU(n)-singlet superfield
V.

It is advantageous to regard (4.1) as a dimensionally re-
duced version of the same action written in terms of N =1
superfields in four dimensions, since the two-component
spinor formalism can handle the dimensionally reduced
N =2 case equally well. We here adopt this standpoint
and inherit all the notation used in Sec. III.

We choose x#=(x%x3) as our two-dimensional coordi-
nate. The covariant derivatives become simpler in two di-
mensions: D;=0/3@,—p,0®,, D,=—-03/30,+p_0,
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and D, =-0/30,+@,p,, D,=38/30,—0,p_, where

P+=po tp;. There are only two nonvanishing anticom-
mutators of D, and D, {D,D,}=2p, and
{D,,D,}=2p_, which make the N =2 supersymmetry

manifest. In two dimensions, a four-vector B, is split into
a Lorentz vector B,, =(By,B3) and two Lorentz scalars B
and B,.

The quantum correction to the tree-level Lagrangian
—(n/g)V [in Eq. (4.1)] is derived from WI[ZE] in (2.1)
with Z=e”. The representation (2.9) is not particularly
suited for our present purpose because of the nontrivial
behavior of D 2D2= under gauge transformations. As an
alternative, we consider the differential form (2.2) or (2.8).
In view of the gauge-transformation law of the propagator
(P'D')=cA(DdD)e’A, it will be evident how to apply
the multipole-expansion procedure of Sec. III to the dif-
ferential form.

Let us substitute E=e” and 8E=E=8V into (2.8) and
represent (D 2D2Z)~! in a parametric form. Then, as be-
fore, we take the argument w =(u*,£%E%) of 8V to be a
fixed position and carry through the multipole-expansion
procedure. The result is

8T =—in [dw «(NsV(w) ,
M(V)= fowdr(a/ar)(o |exp(r#T7]) | 0),
NP 1=+D*D%xp(?),

where dw=d?u d*£d*€ now denotes the full measure
and 7~ stands for the vector superfield #7(,0,0) intro-
duced in (3.15). Among the four-vector coefficients
vu(x,EE) in 77(r,0,0), the two-vector part (vg,v}) is
given by (3.13). As seen from (3.12), v} and v} are gauge
invariant. Let us make their Lorentz-scalar nature expli-
cit by writing S =+(v;—iv,) and S*=<(v;+iv,). By
virtue of (3.10), they are expressed in the form
S(x,6,E)=5D D,V (x,EE)

and (4.3)
(x,£,6)=5D,D1v(x,£E) .

Using the expression (3.16) for V(x,£,E), S(x,&,E) is ex-
panded in component fields,

S =el{¢(x)+ £ X5 (x)— EX1(x) +EEo[D (x) +if 03 ()]}
(4.4)
¢(x)=5[B;(x)

(4.2)

where I=—§§p_+&6p, and
—iB,(x)]; analogously for S*.

The S and S* are the gauge-invariant coefficient super-
fields of lowest dimension (one in units of mass) appearing
in 7(r,0,6). The #7(r,6,0), as a matter of fact, is a
functional of S and S* alone. To see this explicitly, let us
here introduce some notation: The spinor £§,=(£,£,) is
converted to a new Dirac spinor &,=(£&,&,) by inter-
changing £,<>€,. This induces the rearrangement of co-

variant derivatives:
D,—% ,=(—D\,D,) and Dy~ ,=(—D;,D,). (4.5)

obviously satisfy the same
Note that S and S* are

These new derivatives o
superalgebra as D, and D,.
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rewritten as
S=—%@—2V(x,§,§) and S*=—%@2V(x,§,§) , (4.6)

where 22=9 *9 ,, etc. Hence, S(x,£,E) is chiral in the
sense that &, S=0 (Z,5*=0). Remember that this
chirality condition is different from that for ®% and ®°.
In this new notation, the remaining coefficient superfields
Wa, W, C, and F; defined in (3.10) and (3.13) are ex-
pressed as follows:

(WI’W2)=_'—gaS’ (WI,WZ)Z—:@_&S* s

_ 4.7)
CHiFpu=3DS, C—iFpu=5D’8*,
where the argument (x,g,f ) has been suppressed.
To calculate .#(V), we consider the operator
; G(r)=exp(rA/17 -1, (4.8)

whose Laplace transform G(s) obeys the algebraic equa-
tion

ss — A7 NG(s)=ANT17"] .

Note that G(r) and G(s) are chiral to the left, i.e.,
D,G(s)=0. We solve (4.9) for the matrix element
(,6,0 | G(s)|0) in the same manner as done in Sec. III. It
then follows from the definition of the Laplace transfor-

mation that .#(V) is equal to the s—0 limit of
1

(4.9)

Ii=5((0| (I 43O Ha,(IP—i+F o3) " +a,(IP+i+F3)"'1]0))
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s(0| G(s) | 0), with the result written as
MV)=—((0|[IP4++C —sWH)"'W]11|0) (4.10)
in the notation of (3.20) and (3.22). Here H”:lp,‘

—30u(6,EE) for p=0 and 3; Ij=—+v,=—+(S
+8*) and = — v, = —i+(S —8*).

A remark here is in order. In case V(x,6,0) is used for
7" in Eq. (4.2), s(0| G(s)|0) in general depends on the
chiral components of V; but is still equal to (4.10) for
s =0. This provides direct verification of the fact that
(V) is gauge invariant, which is manifest in the
functional-integral formula (2.2).

We shall evaluate .#(V), a functional of S and S*, in a
slowly-varying-field approximation where S and S* are
taken to be constant (i.e., x independent) superfields; cor-
respondingly, from now on, W, W—d, C, and F(; are all
taken to be constant superfields. The present approxima-
tion retains the component fields @, ¢*, X4, X & D> and fo;
(but not their derivatives) in the effective action. We shall
expand # (V) in terms of the number of covariant deriva-
tives & and Z involved, (V)= +. t® + #'¥
+ - -+, and evaluate terms up to .#'%.

The functional .#(¥), when expanded in powers of
W(---)W, is naturally split into three terms,
M (V)=Iy+1,+1I,, owing to the fermionic nature of con-
stant spinors W, and W&- The first-order term I is cast
in the form?!®

(4.11)

where a;=—2S*W,W,=S*(2°S)(Z,S) and a,=—2SW,W,=S(Z,S*)(Z %S*). This is represented in the

parametric form

I=["drY(nB(1),

Y(7)=((0]| exp[r(II*45C)]| 0))=(i /4m)[ +F o3 /sin(+F 037) Jexp[ —(SS* — 2 O],

B(r)=—+ fofdp(f——p)(ale_“*”-t—aze Py,

(4.12)
(4.13)
(4.14)

where ¢* =1(C +iF ;) =522 and ¢ =+ 2S*. Equation (4.13) follows from the two-dimensional version of (3.23).
2 7 )

The zeroth-order term I is given by (4.12) with B(7)—1.
It is easy to extract 2% and .#'? from Iy+1,:

MO = —(i /4m)In(SS* /u?) ,

MV =(i /A7) 5[ DS + D 3S* —(a,+a,) /(S5*)1/(SS*) =i /4m)~[(1/S*) 2 nS +(1/8)D *InS*],

where p is an ultraviolet cutoff.

The classical action of the CP”~! model possesses
superconformal symmetry, which is broken by quantum
anomalies. This symmetry begins to show up here in
#'?, which is not afflicted by the anomalies: Under
superconformal  transformations, V, (2 %InS*)/S,
(2%InS)/S*, and any function of these transform as total
derivatives.!? From this and (4.2) we learn that, in gen-
eral, the nonanomalous part of .#(V), such as .#'?,
transforms as a total derivative.

To derive .#¥, it is necessary to evaluate I,. Its
relevant portion is given by I, ~ —+ W?*W?2/(p?—SS*)*,
whose effect is taken care of by adding
— T W*W?2=7%a,a,/(SS*) to B(r) in (4.14). In

(4.15)
(4.16)

f
view of the superconformal symmetry, it is convenient to

express .#“ in terms of S and S* using the relations
a,=(88*)S(D%nS +SP*S~Y), C+iFp=S(D4InS
+3S27?S71), etc. The result is

-/”(4):(l'/47T)l—;2—[(S*_IgzlnS)2+(S_lg ZIDS* )2
—(2/8)D %(1/8*)22nS
—(2/8%)2*1/S)D *InS*] . (4.17)

The effective action T[V]=TO4+T?4+r®4 ... js
obtained by integrating .#[ V] over V. Note that
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Jd*wns)sv=— [d*w'ssSns , (4.18)

where d*w’'=d*u d?*€' denotes the chiral measure for
£,=(&1,&,). The extra minus sign originates from the re-
lation d’£d*€E=—d?*€¢'d*E’ with £,=(£,,&,). It is now
easy to construct I'?’ out of .#©:

9= (n /4m) [fd4w’S[ln<S/ﬂ>—1]

+ [d*s's*[In(s* /p)—11| , (4.19)
where d*w’'=d*u d*¢' and d*w'=d*u d*€'. The cutoff u
is replaced by a reference momentum uy through the
coupling-constant renormalization g =ggr/Z with the
choice Z =1 +(gg /2m)In(i /g ). Furthermore, the tree
term can effectively be included in I''”) by the replacement
1—>1—(27/gg) in (4.19). For .#'?, we first convert 8V
to 8S or 8S* by partial integrations. The subsequent in-
tegrations over S or S* yield the expression

I®=(n/4m)% [ d%'(InS)inS*

where dw’=d?u d*¢'d*€’. Likewise, .#“ is integrated
to give T'¥:

I'=—(n/4m)5 [ d°w'[InS(2’InS)/S*
+InS*(Z AnS*)/S] .

(4.20)

(4.21)

These expressions (4.19)—(4.21) coincide?® with those ob-
tained by D’Adda et al. in Ref. 12, where also the
higher-order terms I'™ (n > 6) are derived.

The I'?, whose structure is precisely what Veneziano
and Yankielowicz!! have proposed, embodies the correct
anomalous behavior under chiral, conformal, and super-
conformal transformations. Both I''?’ and I'* are invari-
ant under these transformations. We have here left it
unattempted to obtain a closed expression for higher-order
terms '™ (n > 6).

In Ref. 12, the component-field effective action calcu-
lated by the usual proper-time method is translated into
the superspace effective action I'=T®4 @4
+ -+ ; the supersymmetrization procedure, to a certain
extent, relies on inspection guided by superconformal
symmetry. On the other hand, we have constructed the
effective action by working entirely in superspace; no
reference to component-field calculations has been needed.
In particular, the multipole-expansion procedure has led
us to S and S* as a natural set of fundamental superfields
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and eventually to the unique effective action (4.19)—(4.21).

We conclude this section by studying the effective po-
tential, which is most easily obtained in the component
form. Let us retain only ¢ and D as constant fields and
denote the one-loop effective potential by P(¢,¢*,D)
(=-T/ f d?u). The superfield equation (4.2) combined
with (4.10) implies that

(3/3D)P(¢,¢*,D)=isnt (V)| c_z_,

=—i3n((0|(p*—¢*¢+3D)"'|0),

(3/3¢)P($,4*,0)=(3/3¢* )P(¢,$*,0)=0 . (4.22)
This uniquely determines P(¢,¢*,D),
P($,¢*,D)= —in(2m7) "2
D/2
de"p fo da(p’—¢*¢p+a)~!, (4.23)

which is combined with the tree term 5(n /g)D to give the
complete one-loop effective potential. As verified readily,
the effective potential, first extremized with respect to D,
attains the minimum value equal to zero for
¢*¢=pr’exp(—4m/gg) (and then D =0); hence, super-
symmetry is unbroken in the present model. This example
will clarify that our approach here based on (4.2) is a su-
persymmetric  generalization of Weinberg’s tadpole
method. !

V. CONCLUDING REMARKS

In this paper we have shown how to calculate effective
actions in superspace by combined use of superfield func-
tional integrals and some operator techniques. Our ap-
proach has been developed for supersymmetric gauge
theories; its extension to nongauge theories is straightfor-
ward.

Superspace functional formulas, in general, are
represented in a number of ways by adopting different
superspace measures to define a trace, as seen in Sec. II.
A lesson we have learned in Sec. III is that a suitable
choice of functional formulas to start with simplifies actu-
al calculations.

Our superspace multipole-expansion procedure plays a
key role in systematizing the derivation of effective ac-
tions. This feature will prove useful when one studies
models with extended and/or local supersymmetry.
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