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The renormalization-group equation in quantum field theory at finite temperature is investigated.
Owing to the freedom of the renormalization procedure, one can scale the temperature as well as the
momentum in choices of renormalization points. The result is an extended version of the renormali-

zation group at zero temperature.
renormalization-group coefficients.

Its Lie differential form defines two types of sets of
Several examples of the applications include the high-

momentum limit (deep-inelastic limit), the high-temperature limit, the low-temperature limit, and

the critical behavior near a phase transition point.

I. INTRODUCTION

The renormalization group emerges from the intrinsic
freedom which exists in our choices for the renormaliza-
tion procedure;! the change of the renormalization points
induces the redefinition of the renormalized parameters
without changing structures of Feynman diagrams. Its
applications are abundant in many areas of physics; in
high-energy physics, it supplies us with a powerful
method for analyzing the deep-inelastic limit.? In statisti-
cal physics, it has become the most powerful method for
calculating the critical exponents.> However, it is com-
mon in the latter application that the temperature is intro-
duced ad hoc through mass and other parameters. This
leads us to the following anticipation: the entire formula-
tion might acquire more solid ground and need fewer as-
sumptions if the usual quantum field theory is extended to
acquire temperature.

In recent years, the authors have developed a quantum
field theory at finite temperature (thermo field dynam-
ics).*~% There the usual quantum field theory is straight-
forwardly extended to situations at finite temperature
through a process of doubling the field operators. All the
machinery of quantum field theory with a real time coor-
dinate is usable, including the operator formalism, causal
formulation, and the renormalization procedure. Specifi-
cally, the Feynman diagram method can be used with real
time, and the structure of diagrams is not different from
the one at zero temperature. Since temperature is includ-
ed in the theory, faithfully reflecting the (grand) canonical
ensemble, we can study the renormalization group at finite
temperature in this formalism.

It is common to use the Matsubara Green’s-function
method’ to take into account the temperature effect in the
quantum field system. The extension of this method to
relativistic field theory and gauge theories is studied in
Refs. 8 and widely used among high-energy physicists.’
Therefore it may be useful for readers who are not fami-
liar with the thermo field dynamics (TFD) to mention
briefly the relations and differences between TFD and the
Matsubara Green’s-function method.

In the Matsubara method, the time variable is taken to
be imaginary (= —iu) in the finite region [0<u <,
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B=1/(kgT)], and the periodic (or antiperiodic) boundary
condition on the time variable is imposed to Matsubara
Green’s functions because of the trace nature of the
(grand) canonical ensemble average. Thus the Matsubara
method requires a modification of the Feynman diagram
method at zero temperature, by introducing discrete fre-
quencies iw, =2niw/f3 [or (2n 4+ 1)i7/B]. Such a modifi-
cation causes complexities when we identify amplitudes
given by Matsubara Green’s functions to those of actual
processes which are specified by (continuous) real energy
variables but not by discrete imaginary energies. In fact,
the analytic properties of N-point functions are usually
quite involved unless N <2. Therefore an analysis by the
Matsubara Green’s functions is often indirect.

Contrary to the Matsubara method, TFD is formulated
with the real time variable from the beginning. The time
variable and temperature are treated entirely on a different
basis. The ground state is identified as the temperature-
dependent vacuum. Any ensemble average is estimated as
an expectation value on this vacuum, and almost all
operator formalisms at zero temperature can be extended
straightforwardly.

It has been shown by use of the interaction representa-
tion that the Feynman diagram method in TFD and that
in the Matsubara’s formalism are related through a certain
analytic continuation.’ The relation between the axiomat-
ic statistical mechanics (the C*-algebra approach) and
TFD was discussed in Ref. 10. The extension to gauge
theory is' found in Refs. 10 and 11. The renormalization
scheme in TFD was studied in Ref. 6, in which the
scheme was shown to be a straightforward extension of
zero-temperature quantum field theory. Owing to the for-
mulation of TFD, one can easily define temperature-
dependent renormalized masses and coupling constants
which are directly related to the real observations, without
analytic continuations. Therefore TFD proves powerful
in analyzing many dynamical systems at finite tempera-
ture.

In the renormalization theory of thermo field dynamics,
the arbitrariness of the renormalization point for momen-
tum may lead to the same renormalization group as the
one at zero temperature. However, a new situation arises
from the fact that the renormalization procedure also in-
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cludes temperature; namely, one should choose a
temperature-renormalization point T, at which the renor-
malized parameters are determined. Any physical ampli-
tude at temperature T is expressed in terms of these renor-
malized parameters. This is possible without changing the
fundamental form of physical amplitudes as long as a sys-
tem belongs to the same phase at T and T,. It has been
shown that the procedure to write amplitudes at T in
terms of parameters at T, is a finite renormalization.
Because of these two types of freedoms of the choice for
renormalization points (momentum and temperature), the
renormalization group becomes a two-parameter Abelian
group. If one combines this renormalization group with
the scale transformation (i.e., dimensionality), the momen-
tum change and the temperature change are performed
through suitable renormalization. To clarify this point
and to formulate the renormalization group at finite tem-
perature are the main purposes of this paper.

This paper is organized as follows. For simplicity, we
use the ¢* model as an example. In the next section, the
renormalization scheme at finite temperature is presented.
In Sec. III, the renormalization group at finite tempera-
ture is obtained. Its Lie differential form leads to two
types of renormalization-group equations in the manner of
Callan and Symanzik, which define two types of sets of
renormalization-group coefficients. In Secs. IV and V,
several applications are presented. It will be shown in Sec.
IV that the deep-inelastic limit (the leading high-
momentum behavior) is not modified by temperature, that
the high-temperature behavior is related to the deep-
inelastic behavior, and that the low-temperature behavior
is determined by low excitation modes. In Sec. V we
analyze how the critical behavior is related to the low-
momentum behavior. The scaling hypothesis!? [that the
critical behavior is controlled by the long-range correla-
tion length, £&(T)— w0 (T—T,)], is not a hypothesis any
more, but a special result of the present analyses. The re-
lations between the renormalization-group coefficients and
the critical exponents will be shown. The final section is
devoted to the conclusion.

II. RENORMALIZATION AT FINITE TEMPERATURE

For definiteness we choose a simple model of the scalar
¢* model, in which the Lagrangian density is given by

£ =L@V —tmegt— St @.1)

In the thermo field dynamics,* each field has double com-
ponents:

#'(x)
#*(x)
The field components ¢*(x) (a¢=1,2) are considered to be
independent operators and form the thermal doublet ¢(x).

The superscript a will be called the thermal index. The
thermal Lagrangian density is given by

o(x)= . (2.2)

(2.3)

y:ze“

a=1

%(a¢a)2_ %m02(¢a)2_ 54(:_(¢a)4
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with €!=+1 and €= —1.

We consider the phase (0(B)|¢(x)|0(B))=0, where
|0(B)) is the temperature-dependent vacuum and
(O(B)| -+ |0(B)) is equal to the usual thermal average.
In the perturbation theory of TFD, the thermal Lagrang-
ian is divided i\nto the unperturbed part £, and the in-

teraction part .£:

™ 2
Zo=73 [5(3¢%)—TmU$3)], (2.42)
a=1

~ 2
Lr=2 € —%W'fa P (Z —1)[ (343 ) — T mA$E)?]

a=1

— 5m2(g )2—%(21 —1)(¢%)* (2.4b)

with
¢=Z""¢g , (2.5a)
g0=8Z127%, (2.5b)
dm?=(me® —m?Z'. (2.5¢)

The perturbation is carried out by the vertices given by
-Z 1 and the propagator

(0(B) | Tox(x)dk (») | 0(B))

~i [ (Z:;e""“"“y’A“"(k), 2.6)
in which
A% (k)=[Up( | ko | JAo(K)Up( | ko | )]*¥ 2.7
with
Ao(k) =7k’ —m3+ier)~!, (2.8)
1 0
=10 _1|- (2.9)
1 efo2 1
UB(w)=W 1 eB“’/z] (2.10)
The propagator A(k) is also written as
A(k)=A¢k)+Agk) , (2.11)
where
Aglk)= —2mi8(k*—m?)fp( | ko |) , (2.12)
1 1 ePe?
fg(w)=:5wt—l B2 (2.13)

(Examples of perturbation calculations are found in the
third and fourth articles of Refs. 4 and in Refs. 6 and 13.)

As was discussed in Ref. 6 in detail, several theorems
related to the renormalizability are easily proven; since A,
has the same structure as that of zero temperature and
there is no divergence caused by Ag, a theory is renormal-
izable if it is renormalizable at zero temperature. Also all
divergences are renormalized by the temperature-
independent counterterms. Therefore the renormalization
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at different temperatures is related through finite renor-
malization. The same counterterms renormalizing
Green’s functions with identical thermal indices can re-
normalize those with mixed thermal indices. Since the re-
normalization schemes and the topological structure of
the Feynman diagrams are not changed from those at zero
temperature, the multiplicative renormalization of quan-
tum field theory is also true at finite temperature.

For the renormalization conditions, we shall consider
the following two schemes.

A. T-renormalization scheme

We can define the renormalized coupling constant g (T
and the renormalized mass m (7) at each temperature 7.
This renormalization scheme will be called the T7-
renormalization scheme. A renormalized N—pomt proper
vertex function is denoted by [ (p,T;8(T),m(T),u),
where p is the abbreviation of the set of external momenta
(P1, .- .,pN) and p denotes the renormalization point of
momentum. I carries also the thermal indices
(a; - ay) with a;=1 or 2, whlch are omitted for con-
venience. The vertex functlon '™ is related to the un-
renormalized one, 1",, , through the relation

T Y, T;g(T),m (T),u)=Z (T *TV(p, T;g0,m0,A) ,
(2.14)

where A is a cutoff momentum which will be taken infin-
ite (A— ), Z(T) is the wave-function renormalization
factor

Z(N=Z(g(T),m(T),u,T;A) (2.15)
and (gg,m() and (g (T),m (T)) are related through

80=8(TNZ(g(T),m(T),u,T;A), (2.16)

mo=m(NZ,(g(T),m(T),u,T;A) . (2.17)

The renormalization conditions used in this section and
Secs. III and IV are

Rel P(p, T;8 (T),m (T),p) | p—piuy=—p>—m (T)?,

(2.18)
a_;_l Ref* Xp, Tig(Dm (Do) |, =—1, @19
and
Rel W(p, T3 (T),m (T),1) | p, —po=—8(T) , (2.20)
where
p(u)=(0,B(n)), Bu)3=u?, (2.21)

and p;(u) denotes a certain set of momenta to renormalize
'™ In (2.18)—(2.20), all the thermal indices of each
rw should be equal to 1; for example, ['? in (2.18)
means T' 3. Any other T ™ with a thermal index 2 is re-
normahzed by the same counterterms determined by the
above renormalization conditions. ® The real parts are
used since TV usually has an 1mag1nary part because of
the thermal effects.
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B. Ty-renormalization scheme

One can express amplitudes at T in terms of the renor-
malized parameters at Ty. This renormalization scheme
will be called the Ty-renormalization scheme. A renor-
malized N-point proper vertex function is denoted by
v )(p,T,g, m,u,Ty), where g and m are renormalized
coupling constant and mass at a renormalization point
(p(u),Ty). The vertex function 'Y is related to the un-
renormalized one through the relation

TN, T;g,m,u,To)=ZV* TN (p, T;g0,mo,A) ,  (2.22)

where Z is the wave-function renormalization factor at
Ty. The renormalized parameters g and m, and Z are re-
lated to the bare parameters g, and m, through the rela-
tions (2.15)—(2.17) with T replaced by T,. Therefore the
renormalization conditions are

Rel'Y(p,T';8,m,p1,To) | p—p(uy=—p*—m?,  (2.23)

T=T,
Dp,T;8,m,u,To) |p—piuy=—1, (2.24)
T=T,
and
Rel'“Yp, T;8,m,1,T0) | p_p.y=—8 - (2.25)

T=T,

The relation between I' ™ and T™) will be clarified in
the next section. Since g(T) and m (T) are directly related
to the coupling constant and mass at the temperature 7,
T ™ is convenient for investigating its properties of pa-
rameter dependence. For example, the condition m (T)=0
for p=0 indicates the existence of a massless mode at the
temperature 7.

III. THE RENORMALIZATION GROUP
AT FINITE TEMPERATURE

Let us start from the proper vertex function
'™ (p,T;g,m,u,Ty) of the T,-renormalization scheme.
The scaling of the renormalization point into (us,T?)
leads to the new renormalized parameters (g (s,2),m (s,t)):

(3.1
(3.2)

(1, To)—(us, Tot) ,
(g,m)—(g(s,t),m(s,t1)) .

Note that g=g(1,1) and m=m (1,1). With finite wave-
function renormalization, we have a renormalization-
group equation:

F(N)(P’T;g,m,.u, TO)
=p(s,t) N 2TNV(p, T;g (s,8),m (s5,8),u5,Tot) , (3.3)
where p(s,t) is given by
Z(g(s,t),m (s,t),us,Tot;A)
,0)=1i 34
Pl = i e e T A) G4

The renormalized parameters (g,m) and (g (s,z),m (s,t))
are related to bare parameters gq,mo) through relations
similar to (2.16) and (2.17):
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80=8Zg(8,m,p1,To; A) g(s,0)=9(g,m,u, To;us, Tot) (3.7)
=g (s,0)Z,(g(s,t),m (s,8),us,Tot;A) , (3.5) m(s,t)=4(g,m,u,To;us, Tot) , (3.8)
mo=mZ,,(g,m,u,To;A) and
=m (s,t)Z,, (g (s,t),m (s,8),us,Tot;A) . (3.6) p(s,t)=R(g,m,u, To;us, Tot) . (3.9)
Therefore g(s,t), m(s,t), and p(s,t) are functions of Because of the multiplicative renormalizability, ¥, .#,
(g,m,u,Ty) and (us,Tyt): and Z satisfy the relations
J
G (g,m,pu, To;15152, Tot182) =G (g (s1,¢1),m (s1,t1),u51, Tot1;145152, Tot 1 t5) , (3.10
Mgy, Tosus Sy, Tot1ty) =g (s1,t1),m (sy,t1),us1, Tot 38152, Tot t,) , (3.11)
and
R(gym,pu, Tosus 152, Tot182) =R(g,m,p, To;us 1 Tot )R (sy,81),m (sy,81),us1, Tot1;us 152, Tot123) - (3.12)
It can be shown, in a similar way as in the case of zero temperature, that transformations R;, defined by
R, (u,To)=(us,Tot) , (3.13)
R, (g,m)=(g(s,t),m(s,t)) , (3.14)
and
R, TN =p(s,t)~N/21N) (3.15)

form a group:
R 5,0, =Rs, ¢ Ry, 1, - (3.16)

Transformations R, , define a two-parameter Abelian renormalization group. If we combine the scaling transformation
(dimensionality)

T,
T N(p, T3g,m,p, To)=1"" TN ’%,%;g,%,*‘li,—lﬂ (3.17)
with Dy =4— N being the dimensionality of I'"), we have the relation
Tyt
TN(p, T3g,m,1,To) =1"pls, 1) =N /2T %)%;g(s,t%m%)—’%s_’“;_ (3-18)

Various asymptotic limits can be discussed by use of this relation.
The differentiation of (3.3) with respect to s and ¢ leads to two types of renormalization-group equations in the manner
of Callan and Symanzik:

3 3 3
—+Bo—+0m——Ny, \TN(p,T;g,m,u,Ty)=0, 3.19
H o Bsag 0; 3 Vs (p,T;8,m,u,To) (3.19
T0~a +3,——a +6 m=3_ —Ny, |T™(p,T;g,m,u,Ty)=0 (3.20)
8T0 8g t om t » 4,8, M,U, ’

where the renormalization-group coefficients are defined by

, 0;=is—{i—m(s,t)
m ds

d
Bs=s sg(s,t) p

d

s=t=1 s=t=1

s=t=1, (3.21)

d
Ys= —;—szlnp(s,t)

’ 61 = —l_t_d_m(s,t)
m

d
B,—tdtg(s,t) ar

s=t=1 s=t=1

d
Ye= %tzlnp(s,t)

s=t=1
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These quantities are functions of g,m,u, and T,. For finite s and ¢, g (s,?), for example, satisfies the relations as follows:

s—i—g(s,t):ﬁ,(g(s,t),m (s,t),us,Tot) , (3.22a)

t%g(s,t)=B,(g(s,t),m,(s,t),/,ts, Tot) . (3.22b)

The g (s,t) and m (s,t) are the generalizations of the running coupling constant and mass, respectively.
By use of the renormalization conditions (2.18)—(2.20), we can have several relations among the renormalization-
group coefficients. From the definition of the running parameters, we have

—u*ls?—m(s,t)*=p(s,t)ReT" X p, Tot;8,m,10,To) | p=p(us) » (3.23)
—1=p(s,t)—Rel"?(p, Tot;8,m,p,To) , (3.24)
ap p=p(us)
—g(s,0)=p(s,0"Rel"Y(p, Tot;8,m,,T0) | p,—p,us) - (3.25)
Differentiating (3.23)—(3.25) with respect to s and ¢ at s =t =1, we have
2
05 =7 1+1‘—2] , (3.26)
m
dp;(u)
Bo=4gy,—p T | O Rer(p, Tigm,pn, To) |y —pr » (3.27)
du | 9p; i
T=T,
0, =7, |14+ 425 | — L | 72 ReT @ (p, T3,m,,To) (3.28)
t =7Vt m2 2m2 aT D>1;:8,M,M, 1 §zp;g) s .
and
d
Bt :4g7/t - ng_-‘RerM)(P’T;g,m,,u,To) P1=Pi(l” . (3.29)
T=T,
Functions I' ™ and '™ are related through the following equations:
TN (p, To;g,m.pu, To) =T MAp, To;g (To),m (To),p) (3.30)
TN, T;3g,m,u, To)=p(T)~¥T M(p, T;g (T),m (T),u) (3.31)
with [cf. (3.5)—(3.7)]
T
p(T)=p 1,?— =R(g,m,u, To;u,T) , (3.22)
0
g(M=%(gmu,To;u,T), (3.33)
and
m (T)=4(g,m,u,To;u,T) . (3.34)

IV. ASYMPTOTIC BEHAVIOR

In this section, we apply the renormalization-group equation (3.18) to discuss the several asymptotic limits. Equation
(3.18), i.e.,

Tot
T™(p, T;g,m, 1, To)=1"p(s,t)~N/2PW %»%;g(s,t%ﬂ(ls’_t)’gli’% ’ 4.1)
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indicates that the change of the temperature is related to
the change of the momentum scale'* with suitable renor-
malization of the coupling constant, and of the mass, and
vice versa. The physical intuition of the above fact is that
the thermal excitation modifies clouds around particles,
inducing the renormalization of parameters, and of the
range of the correlation. Therefore the asymptotic limits
of the momentum variables and those of the temperature
are expected to have a close relationship.

A. High-momentum limit

The high-momentum limit can be obtained as usual by
scaling p into Ap and by choosing /=A, s=A, and t=1
(i.e., t fixed):

F(N)(KP, T;g,m,ﬂ, Ty )

__ 2 DN N |, T m(A,1) ﬂ
_7\' P(A,,l) r D, )\‘,g(krl): A sH )\

R AP (A, 1)~V 20 (5,058 (X,1),0,1,0)

4.2)
where we assumed

m (k,l)/kl—> 0. (4.3)

Equation (4.2) indicates that, at the limit A— «, the expli-
cit dependence of m, T, and T disappears. The result
shows that the leading behavior of the asymptotic limit
P — oo is independent of the temperature.

B. High-temperature behavior

Choose T=ATy, I=A, s=A, and t=A in (4.1). We
have

F(N)(p’A'TO;g,m SHs TO )

m(A,A)
A M|

(4.4)

=ANp(A,A)~N2R W) £ Toig(h,n),

where (3.30) was used. In order to investigate the A
dependence of p, g, and m, we use the transformation
properties (3.10)—(3.12). We have

gAM=F(g\1),m (A 1),ur, To;urTor) ,  (4.5)
m (AN =4(g (A, 1),m (X, 1),ur,To;ur,T,A) , (4.6)
and
P(AA)=2(g,m,u, To;ul, Tp)
X A(g (A, 1),m (A, 1),ul, To;ul, ToA) . (4.7)

By considering the dimensionality, in the limit A— «, we
have

1121

m(A,1) Ty

gAM=9 |g(A,1), x5 To

k_) g(g()\"l)youu"o;.ur TO)

=9%(g(A,1), (4.8)
m (k,k)hjwkul/(g(k, 1),0,1,0;14,Tg)
=A4*(g(A1), 4.9)
and
p(k,k)kjwp(l,1)%(g(7x,1),0,p,0;,u,To)
=p(A, 1)A*(g(A, 1)), (4.10)

where we have assumed again m(A,1)/A—0 as A— .
Equations (4.4) and (4.8)—(4.10) show that, in the limit
A— o0, '™ approaches

T'™(p,ATo;8,m 1, To)
= APNp(A, 1) =N 2% (g (A, 1))

X T N0, To; 9*(g (A, 1)), t*(g (A, 1)) , (4.11)

in which #*, $*, and .#* are functions of g(A,1). Apart
from the g(A,1) dependence, the scaling factor of the
high-temperature limit is the same as the one of the high-
momentum limit. Therefore when g(A,1) approaches a
constant as A— oo, the leading behavior of the high-
temperature and the high-momentum limits are the same.
This is physically understandable since the high-
temperature behavior is controlled by high-energy excita-
tion.

C. Low-temperature behavior

Low-temperature behavior is closely related to the low-
momentum behavior. Examples of this are discussed in
the textbook of Ref. 4. A systematic investigation of the
relations between low-energy behavior restricted due to
symmetries (i.e., restrictions from Ward-Takahashi rela-
tions), and the low-temperature behavior, are found in a
recent paper of Ref. 15.

To study the low-temperature behavior, it is convenient
to use renormalized parameters at zero temperature. Then
the temperature dependence appears in the Feynman dia-
grams through propagators A(k), each of which is
separated in a boson case as (2.11):5!!

A(k)=An(k)+Ag(k) . (4.12)

When the mass m of zero temperature is finite, the
temperature-dependent part Ag in (4.12) damps faster than
exp[ —Bm /2] as B— o (T—0). Therefore the low-

temperature behavior is controlled by the lowest excitation
mode. Special interest lies in the case of a massless mode,
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which is a possible lowest mode. We write I'" in the fol-
lowing form:

T'™(p,AT4;8,m ,u,0)

_ 2Dy —N2TWN) | P . m(s, ) ps
—)\, P(sr) r A,TO:g(S, > }» ) }\. ’0 >

(4.13)

where p(s, ), g(s, ), and m (s, ) indicate that they depend
only on the scale parameter s of the momentum renormal-
ization group.

We assume that the boson mass m vanishes at zero tem-
perature, which leads to the condition

m(s, )—0. (4.14)
s—0

The massless particle may interact even in the zero-energy

limit and therefore

gls, )—>g*, (4.15)
s—0
with g* being a certain nonvanishing constant.
When m (s, )/s goes to m* (finite) as s —0, choose s =A
in (4.14). We have

F(N)(P,}VTMg,m ,'LL,O)

. ADNP(K, y=N/2pm) %,To;g*,m*,,u,o

A—0

(4.16)

Therefore thg momentum-independent part of IV
behaves like A Vp(A, )~N/2 at low temperature.
When m (s, )/s goes to infinity as s—0, we can always

choose s as
m(s, )/ A=m* (4.17)

for small A, where m* is a certain mass parameter. We
denote s which satisfies (4.17) by s(A). Then we have

I'™(p,ATo;g,m,u,0)

A_+0A”Np(s(k>, )y=N/2p {-,To;g*,m*,o,o , (4.18)
where we have used
*
LB_EnS g, 4.19)
A m(s, )s—0
The momentum-independent part of I''"Y) behaves as

XDNp(s (A), )~N/2 at low temperature. These results show
that the low-temperature behavior of physical quantities
which are independent of momentum (such as the coeffi-
cients of momentum expansions) is controlled by the
behavior of the low-excitation mode of m (s, ); specifical-
ly, a massless mode.

V. CRITICAL PHENOMENA

In order to discuss the critical behavior,'® we modify

the definition of T"Y) by use of the temperature measured
from the critical temperature T,. The critical temperature
T, is defined by

r'®(o,7,;g,m,u,Ty)=0, (5.1)

which gives T, as a function of g,m,u, and Ty:
T.=T.(g,m,u,Ty) . (5.2)

Note that Eq. (5.1) defines T, independently of the renor-
malization procedure. Because of the definition of T,
given by (5.1), the phase transition we consider is the
second-order one. Owing to (5.1), one can define the most
fundamental critical exponents, 7 and v, as

RCF(Z)(p, Tc;g’mrll"TO) |p0=0 oc I _ﬁ ' 2= ’ (5'3)
?—)0
ReF‘Z’(o,T;g,m,u,To)T < |T—T,|7. (5.4)

It is convenient to use the following renormalization con-
ditions which are different from those of the previous sec-
tions:

Rel'?(0,To;8,m,u, To)=—m?, (5.5

Re a5 T'?(p, To;g,m,u,Ty) 0= 1, (5.6)
and

Rel'*(p, To;8,m,14,To) | p,=p,)=—8 - (5.7)
We define 7 and 1, by

r=T—T,, 1o0=To—T, . (5.8)

Since T, is a function of (g,m,u,Ty), T'"Y) can be also con-
sidered as a function of (g,m,u,7,7):

F(N)(p’ T, +78mu,T, +To)= r (N)(Pﬂ';g: m, i, 7o) .
(5.9)

By following an argument similar to the one in Sec. III
and by taking account of the renormalization-point
independence (u,T, independence) of T,, we have a
renormalization-group equation similar to (3.17):

T M(p,7;g,m,p,70)

T, m(,t) ps Tob
4 l’g(s’t)y l » l ’ l

(5.10)

D ~
—1PN5( )~ N2T W) P
p(,1) ]

In the renormalization scheme of (5.5)—(5.7), the mass pa-
rameter and the wave-function renormalization factor are
defined at a fixed momentum p=0. Therefore the
renormalization-dependent quantities, p and m, depend
only on ¢. The correlation length is defined by

Ref (2)(p,T;g,m,/.L,7'o)

&(r) 2= — =
(a/ap Z)Rer (2)(P,T;g>ma#,7'o)

, (5.11)

p=0

which is renormalization-scheme independent. The defi-
nitions (5.5) and (5.6) indicate that

m( ,1)?=£(r)2

Wlth t=T/T()=(T—Tc)/(T0—TC).

(5.12)
It should be insisted
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that the critical temperature T, is independent of the re-
normalization procedure and that m (s,t) does not depend
on s, and therefore

T.=T.(g(s,t),m( ,t),us,7ot) . (5.13)

The Lie differentiation of (5.10) leads to two types of sets
of renormalization-group coefficients (S;,6,,7,) and
(B:,6¢,7:), among which 6;=v,=0 in the renormaliza-
tion scheme (5.5)—(5.7). (Although we have been using
the variables 7 and 7, instead of T and T, hereafter we
use the same notation as before for the renormalization-
group coefficients, etc., in order to avoid notational com-
plexities.)

The condition for the critical point (5.1) leads to the

condition
m( ,0%=0 (5.14)

Then we can define another critical exponent, v, by
|

f (N)()"pao;g’mnu','r()) I p0=0k_’0(p0t0)-

where

: —o*
iﬁr})g(k,t(k))—g

7
P( ,t) —*opot >

N/2) PN —(N/DYE /v

m( ,t)2t—>0m*2t2". (5.15)
We first assume that v< 1.

The low-momentum behavior of T"™ at the critical
temperature (7=0) is obtained in the following way. In
(5.10), replace p by Ap and choose / =s =A. Also choose
t=t(A), where t (L) satisfies

m( ,t(A))=u*A (5.16)
with u* being a certain mass parameter. Note that
t(A) — oA (5.17)
A—0
with a constant ¢, given by (u* /m*)!/* and
(M) 0 (v<l)
A a0 [to (v=1). (5.18)
Then we have
v<l
M(p,0;g* M hu’{‘roto})‘po——o for yv=1" (5.19)
(5.20)
(5.21)

with ¢ being the limiting value of v,( ,#)/2. The infrared stability (5.20) is physically reasonable since the renormalized

coupling constant should be well defined even in the low-momentum limit. The coefficient rw

of (5.19) is nonvanishing since p5<0.

Let us now consider the 7—0 limit for static and homogeneous quantities, i.e., p;

[=s, we have

’Tot

(0, 7ot ;g’m,'u’TO):sDNp( )~ N2Em

p( t)—N/ZF (N)

Tol
O,T;g(s,t,,m,_t) L

0, ——,g(s 1), -’-n—(-—t)—

) on the right-hand side

=0 for all i. By choosing 7=,

’, ’

N

(5.22)

The function T ¥ in (5.22) is the renormalized vertex function of the T-renormalization scheme (see Sec. II), and there-
fore g (s,t) and m ( ,t)/s are considered to be a coupling constant and a mass at temperature 7ot /s. Now choose s =5 (2),

where s (t) satisfies
m(,t)=u*s(t) .
Note that
t tv,
s( )t-_—:oso

where so=15 *=m™*/u*. Then we have

DN _N/2tVDN—-(N/2)‘Y‘1.\(N)(O {

f“”’(O,Tot;g,m,#,fro)—»Oso Po
t—

where use was made of (5.21) and (5.20):

}in(l)g(s(t),t)=g* (5.26)

We can make 'Y on the right-hand side of (5.25) non-
vanishing by choosing u* (u* =s, ™ !m* =t,"m*) suitably.

-ro/so}’g u*u) for

(5.23)

(5.24)

(5.25)

’

I

The A behavior of ¢(A) in (5.18) or the ¢ behavior of s ()
in (5.23) originates from the critical behavior of the corre-
lation length (5.15). Therefore (5.19) and (5.25) indicate
that the critical behavior of static quantities is controlled
by that of the correlation length £(7), which proves the
scaling hypothesis.
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From (5.19) and (5.25), it is easy to obtain the scaling
law '

(2—n)=y/v (5.27)
by identifying that

n=vi/v=v;/6} , (5.28)

r=26; —vi (5.29)
with 67 being the limiting value of 6,( ,z). From the

derivation of the critical exponents in this section, it is ob-
vious that they are closely related to the low-momentum
behavior of physical quantities, rather than the higher-
momentum behavior, in the present formalism. The criti-
cal behavior strongly depends on the appearance of a
massless mode at T,. Therefore we may expect that the
scaling law such as (5.27) continues to hold in each of
various theories even below critical temperature as far as
massive partners of Goldstone modes incline to massless-
ness.

When v> 1, the low-momentum behavior at T, is given
by a relation similar to (5.19):

T M(ap,0;g,m,p,T,)

m(,A)

=)\'DNP( ,k)_N/2f(N) p,O;g(k,k), . LS To

— *
O_N/Z?»DN (N/2)y; T M(p,0;g*,0,u,7) . (5.30)

e
However, since the 7—0 limit at p; =0 is obtained from
T ™0, 170:8,m,14,70)

N Tol
=p( , )~ N2PNp W O,T";g(s,t),’"—(s"—),y ,(5.31)
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there is no choice of s, which makes both ¢/s and
m( ,t)/s finite simultaneously with the condition
lim,_,om( ,t)/s#40. Therefore one needs to know the
m —0 behavior of T (0,74;¢*,m,u); this limit usually
induces an infrared catastrophe.

V. CONCLUSION

In this paper, we have studied the renormalization
group in quantum field theory at finite temperature and
presented several applications. Thermo-field dynamics is
a powerful ingredient in the analyses since the structure of
Feynman diagrams is not changed and therefore the free-
dom of the temperature and momentum renormalization
point comes in the theory naturally. Because of this free-
dom, we can relate the momentum change to the tempera-
ture change, which makes it possible to discuss, for exam-
ple, high-momentum and high-temperature behaviors and
the critical behavior in the renormalization-group ap-
proach. In thermo field dynamics, the frequency depen-
dence is also included in the theory. Therefore no modifi-
cation of the theory is required to analyze the dynamical
critical behavior. Examples of explicit calculations of
critical behavior in the present formulation and the exten-
sion to the dynamical critical behavior will be discussed
elsewhere.
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