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Heavy cc and bb quarkonium states and unitarity effects
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We construct a unitarized quarkonium model which uses the quark-pair-creation model for had-
ronic vertex functions. The mass shifts and mixings induced by DD, I'I', DD *, etc. , loop diagrams
are calculated. These improve in particular the fit to the resonances such as P{1D)and Y{4S)which
are strongly affected by the first threshold. When comparing the leptonic widths with experiment
the unitarized model gives considerably better agreement compared to single-channel Qg potential
models. The improvement is partly because of the mixing between different excitations induced by
hadronic loops, and partly because of the fact that the wave functions (at the origin) are modified
compared to nonunitarized models.

I. INTRQDUCTION

(0) (0) (o)
41D IS41S+ 2S P2S +a 1D41D + (1.2)

which is induced by the tensor force HT in the Breit-
Fermi Hamiltonian with a typical quarkonium potential,
one finds a &, -a2, -0.02, which is much too small to ex-
plain the datum (1.1).

Taking into account the recoil corrections in the matrix
elements of the electromagnetic currents, one finds a
larger contribution. Then the Van Royen —%'eisskopf for-
mula is modified in the following way:

}=4ct eg Ifs+fD I

f =atsgls(0)+azA'2s(0)

5 PPi) "(o)
fD= ~ a1D2~2 m~

(1.3)

Since the discovery of J/f and P' in the fall of 1974,'

eleven charmonium states and at least four b-quarkonium
states have been established. Many authors have explored
various potential models to study properties of these
states. Some of them are motivated by QCD, but others
are not. We have learned that (i) the quarkonium poten-
tial is flavor independent (i.e., charmonium and b
quarkonium states can be described by a common poten-
tial), (ii) we can determine the form of the quarkonium
potential between 0.1 and 1 fm by studying properties of
charmonium and b-quarkonium states, and (iii) the poten-
tial in this region is close to a logarithmic curve.

Although the potential model for cc and bb systems
proved to be extremely successful phenomenologically we
should not forget that it is not sufficient. Pure potential
models fail to predict correct e+e branching ratios of
charmoniurn states. For example, if the S-D mixing and
recoil effects are neglected, g(1D) cannot decay into e+e
because 1(~D(r =0)=0, while the experimental datum is

I (g(3770)~ e+e }=257+46 MeV .

If one takes into account the S-D mixing

In order to estimate P„'z'(0) and P'tD "(0), we use a typical
potential model ' which describes cc and bb meson
masses and even roughly light-meson masses:

V(R) = Vo(R)+ V;„,(R),
Vo(R)= V~F(R)+aR, V;„,(R)= be—

12~
3 R ' ' 25 2 ln(p/R )

p=(Aer) ', y=0. 5772, A=0. 5 GeV,

a=0.787 GeV/fm, b=1.378 GeV, c=1.20 GeV

m, =1.9 GeV, mb ——5.25 CieV .

(1.4)

We find g&s(0)=11.92 fm, gzs(0)=9. 02 fm, and
1(I&(0)=51.7 fm . Therefore, fD &gfs if the S-D mix-
ing is induced by the tensor force; thus we neglect fs. By
using the formula (1.3) one finds

(0)«0

2 2 2

I.„(1D) fD'/~~„'
I'„-(») q„(0)'/M, «'

(1.5)

(0.986)'&& (3.097)'
(11.92) )& (3.770)

0.0046 theory
0.056+0. 11 experiment (Ref. 3).

Thus this is still too small by an order of magnitude.
Furthermore, looking at the e+e widths of the radial-

ly excited states even more serious problems arise in the
naive potential model:

(i) I „(2D) is experimentally even larger (770+230 eV)
than 1 „-(1D) (257+46 MeV), while the simple potential-
model prediction remains small.

(ii) In contrast to this the experimental values of
1 „-(3S)/I „-(1S) and I „(4S)/I „-(1S) are smaller than
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TABLE I. The cc and bb spectra (in MeV) predicted by various potential models.

Data Ono Eichten Martin Richardson Buchmuller-Tye Bhanot-Rudaz Krasemann-Ono
(Refs. 3,12) (Refs. 4,S) (Ref. 6) (Ref. 7) (Ref. 8) (Ref. 9) (Ref. 10) (Ref. 11)

@(1S)
f(2S)
P(3S)
1(t(4S)

Q( 1P)
g(1D)
f(2D)

3096.9+0. 1

3686.0+0. 1

4030 +5
4415 +6
3521'
3770 +3
4159 +20

3097
3696
4077
4393
3526
3812
4152

3095
3684
4110
4460
3522
3810
4190

3095
3687
4032
4280
3502
3787
4092

3095
3684
4096
4440
3514
3799
4173

3100
3700
4120
4480
3520
3810
4)90

3097
3685
4113
4483
3519
3803
4191

3097
3684
4112
4483
3517
3800
4189

Y(1S)
Y(2S)
Y(3S)
Y(4S)
Y(SS)
Y(6S)
Y( 1p)

9460
10019
10351
10573

9449
10014
10343
10593
10 806
10999

9849

9460
10050
10400
10670
10920
11 140

9960

9460
10025
10360
10600
10760
10920

9861

9452
10007
10338
10 598
10 824
11 025

9888

9460
10020
10350
10620
10 860

9890

9460
10026
10339
10 583
10 812
11 014

9899

9460
10015
10328
10 575
10795
10997

9888

'Center of gravity.

potential-model predictions.
More systematically, we have studied several potentials

which reproduce the cc and bb spectra reasonably well.
The mass spectrum and I „are compared with the data in
Tables I and II, respectively. We find that predicted
values of I „(3S)/I „-(1S) and I „-(4S)/I „-(1S)are sub-
stantially larger (by a factor of two or three) than the data
except when using Martin's potential which predicts only
a slightly larger value (around one standard deviation).
However, Martin's potential predicts too small masses for
g(4S) and g(2D); thus I „predictions by Martin's poten-
tial are unreliable. Therefore, it seems there is no way out
for the pure potential model. As we shall show in this pa-
per, many of these difficulties can be overcome when one
takes into account the hadronic mass shifts and the mix-
ings induced by the coupling to DD, FF, DD ', etc.

In Sec. II, we show our formalism of the unitarized
quark model and the quark-pair-creation model. In Sec.
III, the energy shifts, mixing angles, and Okubo-Zweig-
Iizuka (OZI) decay widths obtained in our model are
shown and the bare mass spectrum is calculated. In Sec.
IV we show three potentials which fit the bare mass spec-
trum. e+e decay rates are computed and compared

with the data in Sec. V. In Sec. VI, we compare our re-
sults with related work. In Sec. VII, a summary and con-
clusions are presented.

II. THE UNITARIZED QUARK MODEL
AND THE QUARK-PAIR-CREATION MODEL

As widely recognized, because of unitarity, the naive
potential model is only an approximation even within a
nonrelativistic framework. The DD etc. , channels couple
strongly to the charmonium giving large widths above the
DD threshold. Because of analyticity these channels also
contribute large mass shifts both below and above the
thresholds in question. Thereby one needs a coupled-
channel formalism, where, in addition to a confined chan-
nel (cc ), one has several (in this paper, DD,
DD, +D*D,D*D*,FF,FF'+F*F,F*F*) two-meson
channels (Fig. 1). Calculations within such a formalism
are, due to their complexity, found rather sparsely in the
literature (Refs. 6 and 13—15 for cc and bb, Refs. 16 and
17 for light quarkonia).

In this paper we use the "unitarized quark model"
(UQM) designed by one of us' to study mainly qq
(q =u, d, s ) mesons. Combining this model with the

TABLE II.

CC

The leptonic widths predicted by various potential models. Unitarity corrections are not taken into account.

Data Ono Eichten Martin Richardson Buchmuller- Tye Bhanot-Rudaz Krasemann-Ono
(Refs. 3,12) (Refs. 4,5) (Ref. 6) (Ref. 7) (Ref. 8) (Ref. 9) (Ref. 10) (Ref. 11)

I, (2S)/I, (1S)
I, (3S)/I, (1S)
r„(4s)/r (1s)

0.45 +0.08
0.16+0.04
0.11+0.04

0.51
0.35
0.27

0.44
0.31
0.23

0.40
0.25
0.16

0.45
0.32
0.24

0.46
0.32
0.25

0.44
0.33
0.26

0.44
0.33
0.28

r, (2S)/I, (1S)
I, (3S)/I, (1S)
r„(4s)/r„(1s)
r„(5s)/r„(1s)
r„(6s)/r„(1s)

0.46+0.03
0.33+0.03
0.23 +0.02

0.51
0.36
0.29
0.23
0.19

0.36
0.25
0.20
0.18
0.16

0.51
0.35
0.27
0.21
0.17

0.42
0.30
0.27
0.22
0.18

0.44
0.32
0.26
0.25

0.43
0.29
0.24
0.22
0.20

0.45
0.31
0.27
0.24
0.22



K HEI&~11.~ N ~ TORNqVIST, AND SEIJI ONO 29

D, FD, F

D,FD, F

FIG. l. Coupling of cc states to DD, I'"I"I' DD, etc.

quark-pair-creationt' (QPC) model for the vertex functions
DD, .) have an explicit self-consistent sc erne

where we can calculate widths, mass shifts, and mixmg
angles.

(M )The full mass matrix is a sum of a bare term &

and a hadronic-mass-renormalization term II(s):

[M„(s)] =(Mb„,„)+II„(s),
n, m =15,25, 1D, . . . . (2.1)

W 1 ti istic kinematics, although for heavy cc ande use rea 'v'

bb systems linear mass relations give numenca y a mos
the same results.

"naive" sin le-The bare-mass term is given by the "naive" sing e-
channel cc potential, while II(s) contains all the complexi-
ties due to the threshold singularities. The imaginary part
ImH(s) cs given y aH( j

' '
b a sum over the thresholds, where each

threshold contributes a piece which is a product o two
vertex functions Vz „(s),discussed later, and phase space:

ImII"„(s)= ImII"„(s), (2.2a)
8C =DD, FI', . . .

ImII"„(s)= —V~„(s)V~~ (s)2vrE~Esk

&& 8(s —(mz +mii ) ) . (2.2b)

The kinematic factor 2' E is introduced for later con-
venience and 6 is the step function.

Note that (i) the off-diagonal elements of ImII need not
ll than the diagonal elements (therefore one can

obtain comparatively large mixing between e
nances, and (ii) the vertex functions (see below) make
ImII vanish exponentially for large s. Therefore one as

11 a cutoff in our model and ReII"(s) can be
computed from an unsubtracted dispersion relation

ImII„(s')
ReII"„~(s)= ——f, ds' . (2.3)

Th d' I elements of ReII(s) are in general negative
and contribute a negative mass shrift to the resonances.
In Fig 2(a), we show the real and imaginary parts of
II s is(s)~ 1.e.~ t e iish f t diagonal element of the DD contri-

As can bebutton o et the hadronic mass renormalization. As can e
eV.h hift term ReH is negative below 4.4 Cxe

n Fi . 2(b), the corresponding quantities are plotte or

excitations more no es apped s appear. The off-diagonal elements
are of the same order of magnitude, but for t ese
—ImII(s) is not always positive.

Equations (2.1)—(2.3) define the mass matrix in the

reference frame of the bare states. The physical states are
obtained after diagonalization:

Md;, s (s)=a '(s)M (s)a(s),

where the mixing matrix ix satisfies a a= 1, i.e., a is an
orthogonal matrix since M is symmetric. Above the DD
threshold, a obtains an imaginary part, i.e., the mixing
matrix becomes complex.

The physical states are given by

1 T
phys +nn' gare

n'

(2.4)

+ f dkaDDiDD&+ . . (2.5)

In pnnc~p e a so e
'

1 1 the continuum contributions for states
below threshold can be computed in our model,

1 ~
i
Imli@ (s')

i d, (2.7)

2.2where II~ (s) denotes the DD contributions in Eq. 2.
~ resd th resonance mass. For a resonance a ove

~ ~

threshold one cannot define the DD content in t is way

( aI
1 I 1 1 1 1

[
1 i I 1

i
~ & 1 11 I I I I i

1 1 I 1 t I I 1 1 i
1 1 I I

3—0.3

—0.2

-0.1

3
I

r 5 1 (1' I) 6
/

is, isJ/9 & ]
/

II I 1 1 I 1 I 1 1 I I I 1 I I 1 I 1

(bj
I i I 1 I 1 i 1 i 1 1 i 1 I 1 I l I I 1 1

i 1 I I 1 J 1 1 I I

-0.3

—0.2

—0.1

3
I

pp+ fD, ID

5 vs (Gev)

I I 1 i I I I 1 i I 1 I 1 il 1 i i 1 l 1 1 1 (}
FIG. 2. Real and imaginary parts of a hadronic renormalaza-

tion term H(g).

Th atrix elements of a determine the relative mixing ofe ma rix e
the bare states. Since the continuum contributions a
smaH and do not change the results in this paper, we
neg ect t em. u1 h . Th s our normalization at each resonance
energy (s=mii ) is

T = 2 2— (2.6)
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[Eq. (2.7) diverges], as should be expected for unstable
states which eventually go 100% to DD, etc.

To estimate the OZI-rule-allowed coupling and vertex
functions of the quarkonia, we use the quark-pair-creation
model, ' since it has proved successful to describe various
decay processes. In this model the overlap integral is
given by the following matrix element:

Im", ,m„=Xgpc f dq &i '(2q+hgk)gg "(q ——,'h, k)

(2.8) J~ = L„+S~

B= SB
a= So

2m@ 2mq
hq —— h

mq +my mq+mg
(2.9!

where k is the decay momentum, y&pc is a coupling con-
stant describing the strength of the pair creation, and oth-
er notations are self-evident from Fig. 3. It is also possi-
ble to define the model so that Eq. (2.8) has an extra phase
factor (i) "

( =i " since Lz Lc). This——extra
phase factor disappears when the integral is expressed in
the spatial coordinate. We choose the phase factor so that
we obtain the correct e+e decay rate of g(1D).

In order to calculate the overlap integrals, we must as-
sume a potential for the bare meson masses. In principle,

FICr. 3. The A-BC vertex in QPC.

the bare mass spectrum is determined after unitarity ef-
fects have been unfolded. Since hadronic shifts do not de-
pend very sensitively on the details of the potential, we use
the potential Eq. (1.8) which was used in previous pa-
pers ' to compute the overlap integral Eq. (2.8).

The reduced matrix elements are defined for the two al-
lowed angular momenta between final mesons L =Lz+1:

4m
WL ( —)—:g I " (Lg, mg, l, mp

~
Lg —1,0)

m&, mp

1/2

1'qpc(i) 6Lg

2Lg —1

x f r~'drAuL (rA) f, q'dq ua(q)uc(q)[ qj i(qr~~jL, —i( 'h, «~)+ 'hgkj—o(qr~)jI—„( 'h, «~. )]—,

(2.10)
1/2

~&„(+)= g I „" (L„m„,l,m, iL, +1,0)
mg, mp

ygpc(i) " 6(L~+1)
2Ig+3

& f r„dr~uL (r~) f q dqua(q)uc(q)[qji(qr~)JL, „+i(T~hzkra)+ zhgkjo(qrz)jL ( , hqkrz)] . (2—.11)

We show forms of Wz(+) for P(1S),g( 2)SP(3 )S, g(4 )S~DD and WD(+) for g(1 D), g(2 D), g( D3)~DD in Figs. 4
and 5, respectively.

The vertex function for a particular decay A ~BC is given by

ig iq Ig

Vg ——g tg iq Ic
I 0 Ig

where

Sg Sq Sa

Sg S~ Sc 1 1 0 eW(L),
S~ 1 ST L ST J

(2.12)

J1 J2 J1 J2 J12

J3 14 J34 ——[(2J)z+1)(2J34+1)(2J|3+1)(2Jp4+ 1)]' ~ J3 J4 J34

~13 J24 ~13 ~24

(2.13)
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(2.12).defined in Eqerte& functioTA@I.E III.

LST

1 ~ ( —)
2~3

process

SEIJI ONO„TORNEY&ISK-. HEIKKILA~

3S

2S

2
I

1

3S,4S) for ]S 2S7ral ~~(+

DD

r FF

3D, ~DD
or FF

D D

orF F

3S,~DD

2
0
0

3
1

3

1 ~ ( —)
2&6

1 ~ ( —)
6~5

~7/15Wa(+
—', W'D

0

~s(+)
2~3

' ~s(+)

') =2~I'"(s=m„' =
~

V„ (s)
~

E E

overlap j.ntegFIG. 4. The ov te

nd — 3 if qq =ss; andg
is rk isospin (spin . li

d DV

ec ixing induce y
' E .

2.4), the total widt is

or FF
SI ~DD

or FF

S, D*D

S, DD*
~g(+)

—
6 ~&(+

(2.14)

(2.15)

1 the widths areu modeel, int eu '
v

ter diagona gazaobtained a ter i gaza

M g(s)/vs
~

1m~ diag

'Sp~ DD
or FF

'Sp~ DD
or FF

'S D*D *

orF F

2 ~S(+)

' ~,(+)5

e mass isical resonanceand the physica

M = M (s)/vs
i

=ReM diag (2.16)

=Mg —Mg

(~)/(2~~ ) ~,ReII s
thresholds

(2.17)

s shift ofrox' '
as Eq. (2.1.14) the mass s

'
roximation a

bare ~

he resonancet er
bare

ift is negative, pa art
f bo h

ac c tiontot e
sonance ar

Table III our re u'fid i T rrb asil veri
'

ho ld ob I-widths near thres o

1D

I

(GeV/c )( GeV/c) 1

I

2D, 3D~DD.

--.2

2

( —) for 1D,) and WD—l for ~D(+Overlap integra sFIG. 5. v
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I ( S, DD):I ( S, DD +.D'D):1 ( S, D*D'):I ('S DD'+D D):I ('S D D )=1:4:7:6:6, (2.18)

g vvv(PA +PB )pic EA EBv

+g~v(&~ +Pc ~„~a"~~&c

+gvvv(Pg +q )&Eg6g ec, foi g~ D*D* (2.21)

and fixes the ratios between the g's [in analogy with usual

SU(6)iv arguments, cf. Ref. 19] to give the ratios 1:4:7:6:6
between the reduced widths near threshold.

However, above threshold the helicity amplitudes with
a longitudinally polarized D* have an additional factor
s/mD» . Of the seven helicity amplitudes in g~D D*,
four have a longitudinally polarized D' and in g, ~D'D
and D* is always longitudinal. Therefore, one obtains fas-

which follows from the spin-angular-momentum overlaps
(9—j symbols) in Eq. (2.12).

These ratios are, however, obtained in nonrelativistic
models only. For example, if one uses Bethe-Salpeter am-
plitudes one finds these ratios only in the weak-binding
limit.

More generally, one starts from the following relativis-
tic amplitudes:

T=gvpp&g&(Pii Pc)"—, for /ADD (and rl, ~DD'),
(2.19)

T=gvpv ~ &&p&sP~+gPPec, for Q~DD»
vs

(and g, ~D'D *), (2.2p)

I

ter growing widths and instead of 1:4:7:6:6one finds

1:4: 4 +3 :6 :6 .
4m, (mD+m, )

(2.22)

We refer to this as the relativistic spin overlap (RSO) and
the previous one as the nonrelativistic spin overlap
(NRSO).

For the same reason the RSO gives larger ImII(s) for

g, than for g. Neglecting the D D' m-ass difference one

has ImII ' ~ 6+6s/4mD vs Imlli &x 8+4s/4mD2.
Therefore also ReII(s) in Eq. (2.3) and the negative mass
shift will be larger for q, than for g. This may be a
source for the f g, mas-s splitting. The difference is nu-

merically non-negligible and we return to this point later.

III. UNFOLDING THE HADRONIC MASS SHIFTS

We are now turning to the actual comparison with ex-
periment. We compute the mass matrix Eq. (2.1) with the
bare masses and Pair Parameter yQpc as free Parameters.
The eigenvalues are compared with data, whereby y&pc is
essentially determined by the best-known experimental
width. It is known that yQpc is fairly flavor indePen-
dent. ' Therefore, we use the same value yqpc=3. 029
both for cc and bb states. A similar value of yQpc was
found from various hadronic decay processes. In Refs.
5, 19, and 10, a slightly different definition of y was used,
i.e., y(Ref. 19)=(m./2v 6)yQpc.

We show the bare cc,bb spectrum in Tables IV and V

TABLE IV. Hadronic mass shifts and the OZI-rule-allowed decay widths (NRSO).

P( IS)
f(2S)
g( ID)
P(3S)
g(2D)
g(4S)
q, (1S)
g, (2S)

c(3S
g, (4S)

Physical mass
(Mev)

3096.9
3686
3770
4030
4159
4415
2981
3599

Bare mass
(MeV)

3286.8
3837.3
3932.1
4127.6
4262.3
4439.0
3167.7
3728.1

(4017.0}
(4338.0}

hM
(Mev)

—189.9
—151.3
—162
—97.6

—103.2
—24

—186.7
—134.1
—84
—23

I (MeV)
experiment (Ref. 3)

25+3
52+10
78+20
43 +20

I (MeV)
theory

0
0

10.9
60.1

71.5
19.6
0
0

72
29

9489.5
10066

(10 184)
10409

(10469}
10644

(19661)

—30
—50

54
—62

—75
—11

(9489.5)
(10066)
(10409)
(10634)

Y(1S} 0
Y(2S) 0
Y(1D) 0
Y(3S) 0
Y(2D) 0
Y(4S) 14+5 13.9'
Y(3D) 48 3'
Y(5S)
vyb(1S) —30 0
7Ib{2S) —50 0

b(3S) —62 0

gb(4S) —65 0

'Using the recently reported experimental B-meson mass (Ref. 39) (instead of our guess of 5280 MeV),

the Y(4S) width increases to 19.8 MeV and Y(3D) decreases (because of the node structure) to 40 MeV.
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TABLE V. Same as Table IV, but with RSO.

l((1S)
lt (2S)
$(1D)
$(3S)
g(2&)
g(4S)
g, (1S)
g, (2S)
vy, (3S)
g, (45)

Bare mass
(Mev)

3309.3
3851.8
3932.1
4136.5
4262. 1

4441.6
3204.2
3751.5

(4032.5)
(4343.6)

AM
(Mev)

—212.4
—166
—162
—106.5
—103
—26.6

—223
—152.5
—102.5
—28.6

r (Mev)
theory

0
0

11
62.4
71.1
21.6
0
0

78
32

XM (bare) =hM +3 MeV = 119 MeV,

MV*(bare)=6M*+17 MeV=110 MeV, (3.2)

by using RSO and NRSO, respectively. The results are
rather insensitive to the number of radial excitations in-
cluded. Only the highest state depends, as expected,
slightly on whether or not the following radial excitation
is included.

As can be seen, the bare masses are all heavier by
20—200 MeV than the physical masses due to the general-
ly negative sign of mass shifts as discussed in Sec. II. But
the mass shifts are not equal in magnitude, e.g., the P(1S)
state is shifted more than the higher excitations. This is
because the node structure in a higher excitation
suppresses the mass shifts. On the other hand, the larger
distance to the thresholds for 1S compared to 2S compen-
sates for this effect somewhat.

The mass shifts for the b-quarkonium states are quite
different from those of charmonium because the position
of the BB,BB*,etc. thresholds are relatively much higher
(near the 4S state rather than 2S for charmonium). There-
fore the lowest Y states have the smallest mass shift.

The mass shift for n S is not much different from that
for n'S. For NRSQ this is understandable from Eq.
(2.18). For the RSO [Eq. (2.22)] the mass shift of the rI,
is slightly larger than that of the 1t, i.e., part of the g-q,
splitting could be accounted for by the hadronic shifts. In
general, hadronic mass shifts between different J states
are sensitive to assumptions of the spin symmetry as-
sumed. For example, with fairly small violation of the ra-
tios in Eq. (2.18), a larger contribution to the P-g, mass
splitting could be obtained. But, assuming Eq. (2.18), the
only difference comes from mass difference between D
and D* and that between I' and F*. Experimentally
known hyperfine splittings are

EM=M(J/P) M(g, )=116—+4 MeV (Ref. 25),
6M*=M(lt') —M(q,') =93+5 MeV (Refs. 25 and 26),

(3.1)
i.e.,

AM*/AM =0.80+0.03,
Unfolding unitarity effects we get hyperfine splitting for
the bare states (see Tables IV and V):

For NRSO.

i.e.,

bM'(bare)/XM(bare) =0.92 .

For RSO:

AM(bare) =AM —11 MeV= 102 MeV,

EM*(bare)=EM'+14 MeV=107 MeV, (3.3)

i.e.,

bM'(bare)/EM(bare) = 1.05 .

IV. POTENTIAL MODELS WHICH FIT BARE
MASS SPECTRA

In the previous sections we have computed mass shifts
due to virtual annihilation into two meson states. After
removing these mass shifts we find a new spectrum which
we call the bare-mass spectrum. The bare mass spectrum
is higher than the physical mass spectrum by 20—200
MeV for ce states and by around 50 MeV higher for bb.

Any spectrum predicted by a model (potential model,
field-theoretical model, etc.) which neglects these loop
corrections should be compared to the bare spectrum rath-
er than to the physical spectrum. In the following we try
to find potential models which fit the bare mass spectrum.

We consider three potentials:
(1) Martin potential:

From a potential model we can compute hM*/b, M by
using the Breit-Fermi Hamiltonian. b.M /hM becomes
slightly larger if a simple contact term H„~5 (r)cr~ a2 i. s
used than the one obtained by assuming H„~ V V. In any
case, bM" /bM stays around 0.5. Therefore, we confirm
the conclusion by Martin and Richard, i.e., if we take
into account the effect of virtual D-meson pairs the ratio
AM*/bM becomes difficult to accommodate by a poten-
tial model.

As seen in Table I if the unitarity effect is not unfolded
the potential model usually predicts too high a value for
Y(4S). This is why it is generally believed that the Y(4S)
mass is strongly influenced by the 88 threshold. Our cal-
culation indeed gives such a large shift for Y(4S) (see
Table IV) which makes the fit by a potential model easier.

In Tables IV and V, OZI-rule-allowed decay widths are
also listed. Agreement with the data is reasonably good.
We have fixed the B-meson mass so that Y'" has correct
decay width. We use the potential of Eq. (1.4) to fix mass
differences B*—B, B,—B, and B,*—B. Thus we use
B=5280 MeV, B =5325 MeV, B,=5362 MeV, and
8,' =5398 MeV. See, however, Ref. 28.

The QPC without mixing predicts' ' the correct ( -22
MeV) decay width for 1((1D) while we obtain here only 11
MeV. %'e indeed get 19 MeV before mixing. However,
due to the strong mixing with p(2S), the 1((1D) state tends
to decouple with DD, while the P(2S)-DD coupling be-
comes stronger. In general, if two energy levels which are
close to each other couple to a certain channel, the higher
one decouples and the lower one couples stronger after the
mixing (see Ref. 30).



29 HEAVY cc AND bb QUARKONIUM STATES AND. . . 117

V(R) = —7.873+6.870R "~,
m —1.8 GeV mb —5. 10 GeV,

[V(R) and R ' in GeV] .

(2) R +Coulomb potential:

V(R) = —— +BR'~'
3 R

A =980 MeV, m, =1.90 GeV,

8=0.35, mb ——5.215 GeV,

a, =0.35 .

(4.1)

(4.2)

CC Bare mass R +Coulomb Martin
Lichtenberg-

Wills

1S
2S
1D
3S
2D
4S
1P

3287
3837
3932
4128
4260
4439

3283
3820
3938
4165
4242
4438
3686

3258
3861
3979
4212
4283
4464
3694

3245
3803
3916
4168
4242
4461
3649

TABLE VI. Comparison between the bare mass spectrum
and the potential-model predictions (MeV).

(3) Lichtenberg-Wills (LW) potential '
8m. (1—A,R)
25 R in(A, R)

A, =Acr, y=0.5772 . . (Euler's const. ),
A=350 MeV, m, =1.90 GeV,

A = —850 MeV, mb ——5.21 GeV . (4.3)

1S
2S
1D
3S
2D
4S
1P
2P

9489
10066

10409

10644

9513
10082
10229
10391
10483
10623

9991
10317

9494
10067
10 180
10402
10469
10641

9908
10290

9510
10051
10 176
10 369
10448
10612

9931
10275

These three potentials are almost numerically identical
between 0.1 and 1.5 fm. However, at short range ( &0. 1

fm) they have very different behaviors:

constant, Martin potential,
4a,

V(R) ~ — —,R +Coulomb potential,o' 3 R

25 R 1n(A,R) '

At origin the Martin potential is not singular, while the
second one has a 1/R singularity and the LW potential
has a softer singularity.

As seen from Table VI, these three potentials reproduce
the bare-mass spectra of cc and bb reasonably well. We
have changed the potential parameters and the quark
masses from the original values. Lichtenberg and Wills
used A=676 MeV, but after unfolding unitarity effects
we find A =350 MeV.

As for the quark mass difference mb —m„we find
around 3.31 GeV for all three potentials. By using the
Feynman-Hellmann theorem one can determine mb —m,
in a potential-independent way. By neglecting the spin-
dependent force, Bertlmann and Martin found
3.36 & mb —m, & 3.69 GeV and by taking into account the
spin-dependent force, Bertlmann and Ono found
3.30&mb —m, &3.55 GeV. Our value for mb —m, is

below these lower bounds of Ref. 33. This is understand-
able because if one unfolds the unitarity effects, quark
mass differences become smaller. This is related to the
fact that lighter quarkonium states shift downward more
than heavier ones.

V. MIXINCrS AND e+e DECAY RATES
OF QUARKONIA

The mixings of various states are given by

T ~p& . . 1S,2S, 1D,3S,2D, 4S for cc
'«J =

1S,2S, 1D,3S,2D, 4S,3D for bb .
(5 1)

a; J for cc and bb are listed in Tables VII and VIII, respec-
tively.

Normalization of these states is given in (2.6). As ex-
pected, mixings 2S-1D, 3S-2D, and 4S-3D are larger than
other mixings because these masses are close to each oth-
er. The e+e decay rates of quarkonia are given by Eq.
(1.3), where

T g(P)(0)
I fs+fD I

' —=

k =S states

+
2v 2mg k=D states

(5.2)

TABLE VII. Mixing coefficients o;;J. defined in Eq. (5.1) for cc states.

Re
1S

Im
2S

Im Im Re
3S

Im Im
4S

Im

Q( 1S) 0.9997 0 0.0128
f(2S) 0.0276 0 0.9883
Q(1D) —0.0028 —0.0010 0.2061
1((3S) 0.0310 —0.0134 0.0283
Q{2D) 0.0125 0.0080 —0.0450
tN 4S) 0.0510 —0.0176 0.0478

0
0
0.0670
0.0981

—0.0290
0.0365

—0.0002
—0.1480

0.9747
—0.0161
—0.0388
—0.0016

0
0

—0.0139
0.0299
0.0376

—0.0024

—0.0127
0.0179
0.0169
0.9867
0.0854

—0.1340

0
0
0.0179
0.0006
0.1509
0.0129

0.0005
—0.0055

0.0444
—0.1118

0.9813
0.0038

0
0

—0.0157
0.0210

—0.0129
—0.0079

—0.0137
—0.0180
—0.0030

0.0028
—0.0092

0.9875

0
0

—0.0049
—0.0292

0.0259
0.0009
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The wave functions f'k' must be determined by using a
potential which reproduces the bare mass spectrum. We
use the three potentials discussed in the previous section.
Results are compared with the data in Table IX. Com-
pared to Table II, we find remarkable improvements in
I „(3S)/I „(1S),I „(4S)/I „(1S),and I"„-(1D)/I „(1S).
The increase of I „(1D)and I „(2D) comes from the S-D
mixing and the decrease of I „(3S) and I „-(4S) partly
comes from the S-D mixing and partly come from the po-
tential behavior for large r (since these potentials increase
slower than linearly, the wave functions of higher states
spread out).

We find no way to accommodate the extraordinarily
large branching ratio

I „-(2D)=770+230 keV, (5.3)

g(3S)=cos8 1/3z' —sin8 1/zD,

l//(2D) = s1118$3S +cos8 I/) 2D

From Eq. (1.3) one gets

(5.4)

although our prediction is much larger than those of po-
tential models. The datum (5.3) is 12 times higher than
our prediction.

To clarify the situation consider 2D and 3S states only,
and neglect mixings with the other states:

QG

O O
O O

OG OOO
O O

I',F(2D)

I „-(3S)

2

sin8 $3S'(0)+cos8 /AD
"(0)

2 2fll~

2

cos8 1//3S(0) —sin8
2 1/zD "(0)

2 2Hz~

(5.5)

OO

O O
Q O O Q

O O
O

I

In a typical potential model one gets

~

q',"(0)
~

8

mc

(5.6)

By neglecting the second term for simplicity one obtains

I „-(2D)
I „-(3S)

(5.7)

QC

O
O O

ao

O O
O

OO

Experimentally this is of order one. This means 0-45',
thus 3S and 2D are nearly equally mixed. In such a case,
I „-(3S) must be around one half (sin 45'= —,

'
) of the one

predicted by the potential model. From Table III, one
finds that this might be the case.

However, it is difficult to find such a large S-D mixing
within the model which we are considering here.

OG
Ch W P M CO

O O O O O

VI. COMPARISON %'ITH RELATED WORKS

Mass shifts of cc and bb states due to the virtual annihi-
lation into two meson have been studied comprehensively
by the Cornell group ' and the Nijmegen group. '" The
Nijmegen group uses a harmonic-oscillator potential and
QPC, while the Cornell group uses a Coulomb-plus-
linear —type potential with a different kind of coupled-
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TABLE IX. Same as Table II, but unitarity corrections are taken into account.

CC

I (2S)/r (1S)
I (3S)/I, (1S)
I, (4s)/r, (1s)
r„(iD)/r (1s)
I, (2D)/I (1S)

Data

0.45 +0.08
0.16 +0.04
0.11 +0.04
0.050+0.011
0.17 +0.06

R +Coulomb

0.351
0.247
0.154
0.0311
0.0108

Martin

0.348
0.227
0.133
0.0386
0.0129

Lichtenberg-
Wills

0.373
0.269
0.171
0.0362
0.0133

r„(2s)/r„( is)
I, (3s)/r, (1s)
r„(4s)/r„( is)
I (1D)/I, (1S)
I, (2D)/I, (1S)
I, (3D)/I, (1S)

0.46 +0.03
0.33 +0.03
0.23 +0.02

& 0.04

0.378
0.293
0.240
0.000 272
0.0010
0.0127

0.534
0.4287
0.3550
0.000 137
0.000 808
0.0210

0.464
0.379
0.325
0.000 253
0.001 06
0.0183

Cornell results Our results Experiment

30 MeV 11 MeV 25+3 MeV

I „(1D)
I „(1S) 0.0149 0.03—0.04 0.056+0.011

Thus these widths are sensitive to the details of the model.

channel model.
We believe that our model has various advantages.
(i) We use the @PC which is already confirmed to be

able to explain various hadronic decay processes (e.g., see
Refs. 18—22, 24, 29, and 35—37).

(ii) We are using QCD-motivated potentials consistent-
ly. We have shown three potentials which fit the bare-
mass spectra for cc and bb. The Cornell group used a
Coulomb-plus-linear potential only for cc and a
harmonic-oscillator potential for the D, D' meson.

Compared to the Cornell results our mass shifts for cc
states are of the same order of magnitude, but relative
shifts are different. The Cornell group found only —48
MeV for the cc 1 S~ state while our value is —190 MeV.
The Nijmegen group also found that the mass shift for 1S
states is large in agreement with our result. It has been ar-
gued that the mass shift of states much below threshold
is small; thus the virtual DD can survive only b, t —1/600
MeV -0.3 fm, which is shorter than the size of the D
meson (-0.6 fm). In our model this effect is included in
the energy denominator of Eq. (2.3), which suppresses the
mass shift for states far below the DD threshold [cf. Fig.
2(a), Rell].

The Cornell group did not chose their potential parame-
ters very carefully. From Table VII of Ref. 11, we see
that they predict correct 1 S&, 2 S~, and 1I' states, while
they got M(4 S&)=4625 MeV, this is as much as 210
MeV higher than the experimental value 4415. Another
problem is that they found 23D~ —3 St ——5 MeV, while
the experimental value is 129+25 MeV. Our potential pa-
rarneters are chosen much more carefully (see Table VIII).

As to the P(3770), our results are different from theirs:

As to the 2D state, we agree with the conclusion of the
Cornell group, i.e., we find too small a mixing with the
3 S) state.

One might think that the DDz thresholds (Dz uc, P——
state, Dz-2400 MeV) become important. However, in
calculation of the overlap integral the integration of a
function which includes the radial wave function R4, (r)
becomes small due to the node structure of R&,(r). Thus
mass shifts due to DDz thresholds should be relatively
small. On the other hand, the mass shift for the 1S state
due to the Dz state becomes also relatively small because
of the large distance. Therefore, we expect relatively
small negative shifts due to DDz thresholds for the
1b(1S), . . . , $(4S) states.

For the Y states the corresponding BBz thresholds are
very far away at about 11.1 GeV and therefore the contri-
bution from these should be very small.

VII. SUMMARY AND CONCLUSIONS

We have combined the unitarized quark model with the
quark-pair-creation model and studied OZI-rule-allowed
two-meson couplings to cc and bb states. Our conclusions
are as follows.

(i) Hadronic mass shifts due to the coupling to virtual
mesons are from —20 to —200 MeV for cc and around
—50 MeV for bb We have studied several potential
models which fit the bare-mass spectra of cc and bb ob-
tained after unfolding the mass shifts. The Lichtenberg
and Wills potential is one of them, where we need A =350
MeV to fit the bare mass spectra while Lichtenberg and
Wills used A=676 MeV to fit the physical spectra. Ex-
perimentally A~& ——50—400 MeV (where MS denotes the
modified minimal-subtraction scheme).

(ii) We need a smaller quark mass difference rnb —m, to
fit the bare-mass spectra than that to fit the physical mass
spectra.

(iii) Our value of I (1 D&~ e+e ) is much nearer to
the datum than that of a coupled-channel model by the
Cornell group. We have obtained much improved values
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of I (g~ e+e ) for higher excited cc states compared to
the pure potential model. This is partly due to the mixing
induced by the matrix a and partly due to the fact that
the potential for the bare states is modified giving broader
wave functions for higher states and therefore smaller
g(0). As for the 2D state, I + becomes too small in

agreement with the Cornell model.
(iv) Our model nicely reproduces the spectra, OZI-rule-

allowed decay widths, and I + for cc and bb states
which include even the one for which the Cornell model
calculation completely breaks down, i.e., the 4S cc state.

(v) As for the ratio

bM'/bM = [M(P') —M(g,')]/[M(J/@) —M(g, )],
we have reached the same conclusion as Martin and
Richard, i.e., hM" /AM for the bare mass spectra is dif-
ficult to explain by a potential model and even the unitari-
zation does not help in this case if one believes Eq. (2.18).

(vi) For b-quarkonium states we find the largest mass

shift for Y(4S) because the BB threshold is near this reso-
nance. Such a large shift to Y(4S) makes the fit by a po-
tential model easier. The b-quarkonium mass shifts are
rather different than those of charmonium because of the
different relative position of the thresholds (BB,BB*, etc.
are near the 4S state) compared to the charmonium case
(DD,DD, etc. are just above the 2S state). Therefore the
mass shift of the lowest Y state is the smallest.
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