
PHYSICAL REVIEW' D VOLUME 29, NUMBER 6 1S MARCH 1984

Electromagnetic energy and linear momentum radiated by two point charges
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We consider the linear four-momentum radiated by a system of two point charges during two
proper-time infinitesimal intervals. As a simple generalization of Schild s result for a single charge,
we show that the radiation rate is independent of the hypersurface which is used to integrate
Maxwell's tensor and we give an exact covariant expression for it. Using the preceding result we

give, in the framework of predictive relativistic mechanics, a definition of radiated linear four-
momentum for a system of two interacting charges. We calculate this quantity at the lowest ap-
proximation in perturbation theory and we compare our result to the familiar one obtained in the
framework of the slow-motion approximation.

I. INTRODUCTION

We consider the electromagnetic energy and mornenturn
radiated by a system of moving point charges. To avoid
complications in the notation, we shall restrict ourselves
to the case of two charges. Nevertheless, the generaliza-
tion of this work to X charges is an obvious one.

The definition of radiated energy and momentum we
use is a trivial generalization of the usual one for a single
charge: the four-momentum radiated by the two charges
during the infinitesimal intervals of proper times
[r„r,+d~, ], a =1,2, is the contribution to the total elec-
tromagnetic four-momentum which is present at future
infinity due to the fields created by the charges in the con-
sidered intervals. The consistency of this definition is
guaranteed by the fact that the aforementioned contribu-
tion is independent of the hypersurface which is used in
the calculation of the electromagnetic four-momentum at
future infinity. Therefore, this is a well-defined four-
vector. The proof of this statement is almost identical to
the one given by Schild' for one charge; it can be found in
Sec. II.

This independence, moreover, allows us to choose, in
Sec. III, a particular integration surface which makes rela-
tively easy the calculation of the exact covariant four-
momentum radiated by the charges during two infini-
tesimal proper-time intervals. This "radiation rate" de-
pends only on accelerations, velocities, and the relative
four-position of the charges in the considered configura-
tion.

But, if we wish to calculate the four-momentum radiat-
ed during a finite interval of coordinate time or even
simply —and this makes a big difference with respect to
the case of a single charge —the momentum radiated per
unit of coordinate time in a given spacelike configuration,
we must know something more about the world lines, i.e.,
about the dynamics of the motion of the charges.

In Sec. IV, we shall analyze this problem in the frame-
work of predictive relativistic mechanics and show how,
in principle, it can be calculated at any order in perturba-
tion theory. At the same time we obtain a new definition

Let us consider two pointlike particles with charges e„
a =1,2, and let their tirnelike world lines I., be given in
Minkowski space-time by the equations

x =P, (r, ),
where r, is the proper time of particle a:

P, (~, )P, (~, ) = —1 .

(2.1)

(2.2)

We take the speed of light c = 1 and the metric
i)~i =diag( —1,1, 1,1). A dot indicates derivatives with
respect to the proper time.

For an inertial observer with four-velocity n, the elec-
tromagnetic linear four-momentum corresponding to the
value A, of its own proper time is

P (n, A, )= —J T ~d o p, (2.3)
X(A, )

where T @ is the electromagnetic Maxwell tensor, X(A, )

denotes the spacelike hyperplane of the equation

X ll~= —A, ,

and d o—:d o n is the volume element of X(A, ).

(2.4)

of total four-momentum, as a function of the positions
and four-velocities of the charges, as being the free four-
momentum at past infinity minus the radiated four-
momentum along the world lines coming from past infini-
ty to the configuration which is being considered. This
definition differs from that given in Ref. 3 and it is, we
hope, free from the pathologies which beset the latter at
the approximations which take into account effective elec-
tromagnetic radiation.

Finally, we perform some calculations at the first
nonzero approximation of perturbation theory using the
product of the charges as an expansion parameter. We
check, in particular, that an additional expansion in
powers of c ' leads at its lowest order to the well-known
expression for the dipole radiation of two charges that
move according to Coulomb's law.

II. RADIATIGN RATE
GF LINEAR FOUR-MOMENTUM
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P (n, A)= , g P, (n, A, )+P)2(n, A, ) .
a=1

(2.5)

Here the contribution due exclusively to the field of parti-
cle a is

r (n, A)

p, (n, A, )—= —f dr, f, , T, Pd o,p

with

(2.6)

Since we suppose that the total electromagnetic field is
the sum g, 1F,P of the retarded fields created by the
two partic1es, the momentum (2.3) can be decomposed in
the following form:

which is also independent of the timelike unit four-vector
n .Hence, we can interpret the quantity in Eq. (2.16) as
the joint contribution "orresponding to the mixed terms
of Maxwell's tensor —to the radiated linear momentum
and energy of the retarded fields generated by the two
charges per unit of proper times. Clearly, this contribu-
tion is zero if in the corresponding configuration the
four-vector P) (r) ) —Pz(r2) is timelike. The radiated linear
four-momentum corresponding to the fields created by the
charges up to proper times ~] and ~2 is therefore

2 ~~ dP
P, (r),r2)= g f dr (r)

a=1 a

Tap (FayF p+ 1 ylapFySF ) (2.7)
CX

+ f d'r f dr "
(r,r ) . (2.17)

a a2
d 0 —=d7ad og (2.8)

(F yF,yp+F, yF, p+ , q pF'ysF, —s), (2.10)
4m

r(n, A)be, ing the value of r, at the intersection of the
world line La and the hyperplane X(A, ). X, (l,,r, ) is the
intersection of X(A;) with the future light cone C,+(r, )

with vertex at the point P, (r, ).
Similarly, the joint contribution due to both fields is

r1(n, A, ) ~2(n, A, )

P)2(n, A, )—:—f dr1 f dr2

fz (g )
T12 d~)2P (2.9)

12 ' 1p 2

with

Since the electromagnetic energy-momentum tensor is
quadratic in the field and this field satisfies the superposi-
tion principle, in the case of N particles we would merely
obtain as an obvious generalization of Eq. (2.18) the sum
of N-particle contributions and the mixed contributions
corresponding to the N(X —1)/2 pairs of charges.

The proof of the independence of the quantity (2.16)
with respect to the four-vector n is very similar to the
one given by Schild' for the single-particle case. The re-
tarded electromagnetic field of particle a at the point x
of space-time is

. =e.r. 't [r. '+-«.k. )](u.k-. u. —
+(PkP gPk. ) I, — (2.18)

d Cr, =dvadO. ]2, (2.11) where

where X)2(i,,r„r2) is the intersection of X)(A,, r)) with
X2(A, ,r2).

The last integral in Eq. (2.6),

r, = —(l,u, ), l, =x —P, (r, ),
u, =P, (r, ), P=(t, (r, ), (2.19)

(n, A, ,r, )—=—,, T, d cr,p,
87 a

(2.12)

(2.14)

We shall prove that the last integral in Eq. (2.9),

(n, A, r), r2) = —
z , (~ )

T)2do 12P, (2.15)
BZ)8&2

' ' ' ~12(~ &1 ~2)

has a limit

depends on n and k, but as Schild' has proved the limit

dp „BP,
(r, )=— lim (n, k, ,r, )

A,~+ oo ()7 a

is in fact independent of n and can be understood in the
single-particle case as the rate of linear momentum radiat-
ed by the particle which is being considered. Its value is
the well-known relativistic generalization of the Larmor
formula:

Parentheses denote the scalar product of two four-vectors
and ~, is the proper time at the intersection of world line
t., with the past light cone of event x

I.i..=o, I.')o. (2.20)

(k, u, )= —1 .

The volume element of the light cone C,+(r, ) is

(2.21)

(2.22)

where d Q, is the element of solid angle in the instantane-
ous rest frame of particle a for the value r, of its proper
time. A straightforward calculation which makes use of
Eqs. (2.10), (2.18), and (2.22) shows that

e)e2
T)(dc,p= I[r, '+(k, g, )][(k,k, )u, —(k, u )k, ]4m.r ~

The future-oriented null four-vector k, is normalized by
the relation

g2p
(r), r2)—:lim (n, k, , r), r2),8 ]8 A, + 8 ]8

(2.16)

+(k,k, )g, . (k, g, )k,—. Id Q, dr,

(a'&a) . (2.23)
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(2.24)

because on those domains of the light cones that bound
V(k) the quantity (2.23) falls off as r, ' +0—when
A,~+ ao. In fact, the same argument holds using the ap-
propriate limit at future infinity if we take in Eq. (2.15)
any pair of hypersurfaces —spacelike or not—provided
that they cut all the light rays generating the four light
cones which we have considered.

III. MIXED CONTRIBUTION
TO RADIATED FOUR-MOMENTUM

We now proceed to calculate the quantity (2.16) for
spacelike configurations. As stated in Sec. II, this quanti-

ty is zero for timelike configurations and the result we ob-
tain is also valid for the limit case corresponding to a null
configuration.

Let us take two values, v] and w2, of proper times. They
are arbitrary with the restriction that (i) the relative posi-
tion four-vector

x]2 =0'1(+1) 02(+2) I2 ~1 (3.1)

Let us consider the four-volume V(A, ) bounded by
C]+(r]), C]+(7]+d'7]), C2+(r2), Cq+(v2+dr2), X(A), and
X'(A, ), the latter being the associated families of orthogo-
nal hyperplanes corresponding to an arbitrary pair of
timelike unit four-vectors n and n' . Since T~&~ is diver-
genceless off the world lines of the charges, if we apply
the Gauss theorem to this tensor in the four-volume V(A, )
and take the limit A,~+ oo, we obtain

BP BP
lim (n, k, ~],~2) — (n', A, ,r],~2) =0,

i,~+ ao 81 ]B'r2 81 ]812

As is easily seen, in the orthonormal system ( u, ,i~,j r, m )

we have the following decomposition:

—(u]l )u]+pr2] '(costi +sinpj )

+r2] '[(x]2u])(u]l, ) —,' g,—x]2]m (3.10)

where il, = ( —1)'+ ',

p =x]z [(l]u])(lzu]) ——,'x]2 ],
and where P H ( m.,n.—] is the angle defined by

p cosP =r z] (iI ] ) =rz] (il2 ),
p»nk=r21(j~]) =r2](jI2) ~

(3.1 1)

(3.12)

(3.13)

j (1]x ip)
cosP =—

I
1 ix 121

(3.14)

in three-dimensional notation.
As we prove in the Appendix, the volume element of

any hyperplane orthogonal to u ~, at a point that lies in the
intersection of light cones C]+ (1])and C2+ (w2), is

d cr =r]r2r2] 'u]d&]d&2dg,

and thus, at such a point,

do]2 ——r]r2r2] u]dP .a a

From Eqs. (3.10) and (3.11) we find that

(3.15)

(3.16)

The geometrical meaning of the quantities just intro-
duced is more easily seen in the rest frame of an inertial
observer that moves with velocity u ]. In such a frame we
have, for instance,

where l, were defined in Eqs. (2.19), is spacelike,

a
X)2 =X )2X)2a +0, (3.2)

lliil r2 l'] =ct +p cosp,
r&~oo

(3.17)

and (ii) the velocities of the two particles are not equal, »m k] =x]2r2] '(costi +sinpj~)+s~
ri —+ oo

(3.18)

(u]u2)& —1 . (3.3)

At the end though the final results will be valid also for
parallel four-velocities.

Since the quantity (2.16) is independent of n, we take
for simplicity

lim k2 ——(a+p cosp) ' lim k, ,r)~oo

where

(3.19)

na=u, .

Let us define

l = —r2] 6 u ]fgrx]2s

J = —A E r x]2pu]ru2s,

m =r2] '[x]2+(x,2u])u] ],

(3.4)

(3.5)

(3.6)

(3.7)

cx = —(su 2 )

=r2] [(x]zu])(x]2uz) —(u]uq)x]2 ],
—1 ~ —2p= —x ]2r2] (lu2 ) =Ax ]2r2]

s =u ] —(x]2u] )r2] 'm

21 l(x]2u I )x 12 x]2 u 1 ]

(3.20)

(3.21)

(3.22)

2 2 2r„=x]2 +(x,2u, ) (3.8)

where e ~~ is the completely skew-symmetric Levi-Civita
tensor with eo]23 ——1 and

and we have a & p & 0. Note that in the limit the two null
vectors k~ and k2 are parallel. This fact yields, after a
direct calculation where use is made of Eqs. (2.10), (2.16),
(2.18), and (3.16),

=x]2 [(u]u2) —1]
—[(x]pu]) +2(u]uz)(x]2u])(x]2uz)+(x]2uz) ] .

(3.9) with

9 P)2„
dPP (4 'r] +2)

O'T~B7 2
(3.23)
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e1e2
p (p, r1,r2)= r21 '(a+/3cosp) ' lim I[(u1u2)(k1$1)(k2$2)+(u1$2)(k1$1)+(u2$, )(k2(2)+(g1g'2)]k, I .2' rI —+ oo

(3.24)

The quantity p —i.e., the "mixed" radiated linear momentum per umt of r1, ~2, and p—is a null four-vector whose
direction lies in the asymptotic intersection of C1+ (~,) and C2+ (r2). Similar to what happens in the case of Larmor's for-
mula, the only nonzero contribution to p comes from the radiation fields of the charges. Consequently, p vanishes if
one of the charges moves at constant speed, as can also be seen from Eq. (3.24).

Using Eqs. (2.21), (3.23), and (3.24), we obtain

with

~ &12r

B1 18'r2

le2 aI t3 [(u1u2)$1@—(u 1g 2)g 1' —(u2$1)u1Q+($1/2)u1u(]P P P P

~21
(3.25)

I ~r= lim dP
r1~ m 2m' —~ (a+pcosp)

and from Eq. (3.18) we get

I ~r=x, r, I,i i~ir+I s s~s" +S[x, r, I3j j~sr+x, r, I i s~sr

+x12 r21 (I4 Il )1 J J +x12 r21 (I2 I3)1 1 s ]

(3.26)

(3.27)

2cx a a
p3 (

2 p2)1/2 p( 2 p2)3/2
(3.28)

1 1
I2 —— dP

(a+/3cosg)
1 ~

d~
sing

(a+Pcosg)

CX

(
2 p2) 3/2 (3.29)

—1 (3.30)
p2 (

2 p2) 1/2

(a+Pcosg) (a /3 ) /—
Of course, though j is a pseudovector, I ~~ is a tensor.

Also, the final expression for Eq. (3.25) obtained using
Eqs. (3.5)—(3.7), (3.9), and (3.20)—(3.22) is symmetric with
respect to the exchange of the particle indices a =1,2.

We do not give this final expression because we do not
need it in the following. In fact, from now on we assume
that the whole motion of the charges lies in a timelike
three-plane of Minkowski space-time. The reasons for
this assumption will be briefly indicated in Sec. IV. In
this case we can use the following decomposition,

g =g, a,x12+b„u, +b„u, , 2), =(—1)'+' (3.32)

where S means cyclic summation over the indices a, /3, y,
and where

1 ~
d~

cos'1i)

(a+P cosP)

If we use the notation

k = —(u1u2),

A =k —1,
z, =q, A [(x12u, ) —k(x12u, )],

a a a
t+ =Qg —keg

a a a=X 12
—Z1Q 1 +Z2Q 2

I~ =b~ —z. a.
and the relations

Pa=na&ah +/aa 4
A =Ah,
r„=(h +A z, )'/

x 12 ——h —z1 +2kz1z2 —z22= 2 2 2

i'= —A-'h -'r„'(A'z, h +h-'t, ),
A—:h A

a=r2, (kh +A z1z2),
2 2 2 —2a /3 ="12 "21—

s =r21 (z1 —kz2)h —A t1

A 'r» '(kh—'+—A'z,-z, )t, ,

we finally get, after a straightforward calculation,

(3.35)

(3.36)

1
d~

1

2m. —~ a+/3 cosP
1

2 p2)1/2

cosP 1

a+Pcosg P

(3.33)

p( 2 p2)1/2
(3.34)

and 8 P12,/B~1c, ::."2 is then more easily obtained directly
from Eqs. (3.23) and (3.24) by making use of Eqs. (3.29),
(3.31),

=e1e2 g (A, U, —Bw, ),
87 10'T2

where

3,=(kz,a, + I )(z,a, +I, ,),

(3.37)

(3.38)

—A-2r., —'t, , (3.39)

U, =g,r„(kz, z, )h~ Ar„(—kh +A—z,z, )t,
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8=(h +2kz)zz)a(a2+2kl)pl2)

+ (z 1 + kz2 )a i l2i + (zz +kzi )a 2l i2 (3.40)

for spacelike configurations (for timelike or null configu-
rations we simply drop the integral), and the asymptotic
condition

(3.41)

It should be noted that in Eqs. (3.37)—(3.41) the symmetry
with respect to the particle indices appears explicitly.

IV. RADIATED LINEAR MOMENTUM
IN COPHASE SPACE

lim R ~(v)R2(r)P„(xg, u, ) =0 .
7 ~—QO

(4.7)

(4.8)

In Eq. (4.6), W(H, ) denotes the Lie derivative with
respect to the vector field,

u, P(xg, u,~)=0

and the Droz-Vincent equations

(4.3)

Hitherto we have assumed that the world lines of the
particles were known but, in fact, to calculate
8 P~2„/Bv ~B~z for fixed values of v ~ and ~2 we only need to
know the positions, the velocities, and the accelerations of
the charges corresponding to these proper times. On the
other hand, to find the linear momentum radiated per unit
of coordinate time we must know —unlike the case of a
single charge —something more about the world lines of
the charges. For instance, if the values of r& and ~2 are
such that x &2 is spacelike, we get from Eq. (2.17)

BP„dP~,
(r), 'rz) = (1,)+f„dr, (4.1)

+gg' Br] 'T2 T+ =T'

where ~„ is the value of proper time ~, at the intersection
of world line L, and the past light cone with vertex at the
point P, (v, ). To handle this problem we shall use the hy-
potheses and results of predictive relativistic mechanics.

Let us assume that the world lines of the charges we are
considering are the solution, for given initial conditions,
of an invariant predictive system, i.e., of an ordinary dif-
ferential system of type

dX~ CLg=u, , =g, (xg, u,~), (4.2)
d'T d7

where the functions g(xb, u,r) are Poincare four-vectors
which satisfy the orthogonality condition

and

G, (xg, u, )
—= , e,—g, (xb, u, )u, ,

2

6~2=—e~e2 g (A, U, Bm, )—,
a=1

(4.9)

(4.10)

where A„U, , 8, and w, are defined in Eqs. (3.38)—(3.41).
The retarded proper time r„(xb,u,~) is defined by

[x, P, (x,u—;r„)][x, —P, (x,u;r„)]=0,
x, —P, (x,u;~„)~0, (4.11)

&g(x, u;0) =x, , P, (x,u;0) =u, .

P,*,denotes the dual map of the map

(4.12)

P, ,:(x, ,x, , u, , ug )~(x, ,P, (x,u;~), u, ,{t,(x,u;~)),
and R, (~) is the shift operator defined by

(4.13)

The quantity P„(xg,u,~) so defined is the linear four-
momentum radiated by the system along its motion corre-
sponding to initial conditions (xP, u, ) from past infinity to
this configuration, whereas the total four-momentum ra-
diated in the whole evolution is given by

P, (x,u;v) being the solution of Eqs. (4.2) for the initial
conditions (xP, u,~):

p, (x, u;~) =+[gab~(x, u;~), pr(x, u;~)],

ua' p +Pa' p
=0 .

BX BQg
(4.4) P,„(xg,ur)= lim /~+2+„(xg, u~) . (4.14)

If we assume also the invariance of P under space reflec-
tions, the following decomposition holds:

Pa gaaa~ +~aa'ta' (4.5)

(4.6)

We are using, of course, for obvious reasons the same no-
tation P, that we used in the preceding paragraph to
represent here the functions of (xg, u,~) which define the
dynamical system (4.2).

According to Eq. (4.1), we define the radiated linear
momentum of the dynamical system (4.2) as the function
P„(xg,u,~) defined in cophase space by the evolution
equation

~(H, )P„(xg,u,~)=I, (xg, u,"):—G, (xg, u,r)

+ f dr/, G~q(xg, u,')

P (xg, ur) =P (xg, u,~) P„(xg,u,~), —
where

(4.15)

2

P (xPu~~) —= g lim m, P, (xg, u,~;r),7~ 00
(4.16)

m, being the mass of the particle a.
Once the functions I, (xb, u,~) are known, the differen-

tial equation (4.6), together with the asymptotic condition
(4.7), can be put in an equivalent integrodifferential form
which in turn can be formally solved within the frame-
work of perturbation theory by means of known tech-

We define the linear four-momentum of the dynamical
system (4.2) corresponding to a given configuration as the
free linear four-momentum the system had at past infinity
minus the four-momentum radiated up to the configura-
tion we are considering, i.e.,
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g, =e,e, (rl, a,""h +l,',""t, )+O(e ), (4.17)

where O(e ) denotes terms vanishing at least as e when
e =e1 ——e2~0 and where

(1,1) —1y —3
Qa

' =Via
y(1, 1) —1 —3i aa — Ala Za raa'

(4.18)

Furthermore, because of "spontaneous predictiviza-
tion, " (4.17) holds not only for all the solutions of the as-
sociated invariant predictive system —which are always
solutions of the corresponding hereditary system —but
also for any solution of the Lorentz equation, or of the or-

niques. In order to calculate I, or (4.14), the explicit
dependence in Eq. (4.6) on the solution of the predictive
invariant system is not a real problem because the general
solution of such a system can be found with some inver-
sions of functions and with simple algebraic calculations.
To illustrate this, we shall now proceed to calculate in per-
turbation theory the first significant order of I, .

In classical electrodynamics the evolution equations of
an isolated system of two charges interacting through the
Lorentz force, or according to the Lorentz-Dirac equa-
tion, are of hereditary type, i.e., they are delay differential
equations in which the accelerations depend on the past
history of the tWo charges. But, so far as one assumes
that the accelerations can be expanded as power series of
the charges, it can be proved ' that there is one and only
one invariant predictive system associated to the heredi-
tary one, in the sense that the functions g, in Eq. (4.2)
coincide with the accelerations of the particles moving ac-
cording to the hereditary equations when the relative posi-
tion four-vector is null. In the case of the Lorentz force,
as well as in the case corresponding to the Lorentz-Dirac
equation, the associated invariant predictive system can be
written as follows:

X(t. +kt. )+O(e') . (4.19)

To calculate the integral contribution to I, , we note
that2

p, (xg, u~r;r)=x, +ru, +O(e ),
r„(xP,u~r ) =g„+0 (e )

with

g„(xg,u,r) = —(x„u, ) —r„.

(4.20)

(4.21)

(4.22)

Consequently,
0

J, (xg, u,r):—f dr„P,,Giq(xg, u,r)
+aa'

0
=ei ez drR, (r}G&q ' '+O(e },1 2

where G12 ' ' is the function that we obtain when in Eqs.
(4.10) and (3.38)—(3.41) the a,""and l,",'" given in Eqs.
(4.18) are substituted for a, and l« .

It is easily seen that if we use the notation given in Eqs.
(3.35), Eq. (4.23) can be written as

Z I

J, (xg, ur)=e& eq J„d uG~&z~' ' i, „+O, (e ),
Za'

where

(4.24)

z, =—R, (g«)z, =kz, —r« . (4.25)

After a lengthy but straightforward calculation, we get
from Eqs. (3.38)—(3.41), (4.10), (4.18), and (4.24)

der reduced Lorentz-Dirac equation, constructed by the
methods of steps, provided that we are beyond the first
step and that the distance between the charges does not
become too small.

The calculation of contribution G, to I, is readily
made using Eqs. (4.9) and (4.17). The result is

J, =e, eq m& 'mz 'r„(rl,p, h +o„t,+o„t, )+O(e )

with

(4.26)

Pa=
Z +2 k2

A raa h raa
3+

k2 Il 2 kz ~2
ln(Au +R ) + 2 g —2+ +k2 t n

—1

4

k2 2kz 2 ~2 k2
g4p2 g2 3 I 2

1nR +
2 2

4h raa'
uR-'

kZ +2 ~2Z 2 k2Il 2

+ —k uR + R
~2Il 2 4 4~2

Z I

Z I

(4.27)

Za k
2

3 5
ln(Au +R)—

r

k 1 ~u kz, A zatan-'
2A3I Il ~2 3

2k

raa' c& raa'
Z Ia

raa' A Il r„2A 2A
7

Z
(4.28)
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4k (h —h A z—, )+Az, k—h
) Autan-'

8W'h'
uR-'z kzAr„h r„2 2

kz,
+2

4k'(h'+h'& ' -z.—')+A".' kh—'
A 8+2h 2 2+2

(4.29)

where APPENDIX

R=R(u)=(h +A )' (4.30) Let us consider two four-vectors, n and j, satisfying
the conditions

and thus

R(z, )=r.. .
R (z, ) =R, (g„)r, ,=kr„—A'z, .

(4.31)

where G, and J, mean the values of functions G, and J,
when their arguments take the values

From these results one can easily obtain, for instance,
the energy radiated per unit of coordinate time, '

2

(t, xb, v, )= g (u, ) (G, +J, )+O(e ), (4.32)

n n = —1, no)1,
j j =1, (nj)=0,

(A 1)

with

and let (y ) be a coordinate system for which n =(1,0).
Let us consider also the curvilinear coordinates (A.,w] 72 p)
defined by Eqs. (2.4), (2.20), and

p cosp = e~ttrsn —I &1/j
(A2)

p sing = [ [(n&, )(jI2 ) ) —(nl2 )(jl, )]'—2(1,&2 )(jt, )(jl2 ) j
' '

0 0 i
X1 =X2 =t~ Xg =X~ (4.33) p = —2(l~i2)(nl~ )(nl2) (I~I—2) (A3)

Note that, in fact, dE/dt depends only on x ~
—x2, v ~, and

v2.
Finally, let us say that, if desired, an additional expan-

sion of (4.32) in terms of powers of c ' would allow a
comparison with the results obtained with the slow-
motion conventional method. In particular, to lowest or-
der one obtains after a straightforward but lengthy calcu-
lation

d 0 =d On, d O=dy dy dy (A4)

or equivalently

Note that the latter is equivalent to Eq. (3.11) because of
the identity x» ———2( l

& l2).
Taking into account that y =X, the volume element of

the hypersurface X(A, ) is

dE 2 e1e2 e1
2 2

dt 3 g3 m

where

2

r4 ' (4.34)

1 2 3)
d~,d~,dy

B(~),&2,$)

g(yo y
1 y2 y3)

)(~ d'r)d1r2dp . (A5)

r—:(x, —x2)(x);—x2;) .l (4.35) The Jacobian can be easily calculated by making use of
(A2) and

Equation (4.34) is the well-known" expression for the di-
pole radiation of two point charges moving according to
Coulomb's law.
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I

BA,

By

Bv.

By

BI,
By&

to find

~a na ~

=5p+r u I p

(A6)

a(x,~„~„y)
~(x'a 'a' z')

(Iil2)[(jl& )+(j12)]+[(nl~ ) —(nl2)][(jl & )(nl2) —(jl2)(nl& )]
r, r2p sing (A7)
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We now choose two fixed values ~~ and ~2, a given time-
like vector n =ui, and the vector j defined by (3.6).
Hence, property (3.13) is satisfied in the intersection
of X(A, ), Ci+ (rq), and C2+ (r2) and at such a point we get

t)(i,,ri, ~2,$)
O & 2 (AS)

Finally, using (A4), (A5), and (AS) we obtain Eq. (3.15)
for any point of the aforementioned intersection.
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