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In 1976 Unruh showed that a scalar quantum particle in a box accelerating through the vacuum
of scalar quantum field theory responded as though it were in a thermal bath at temperature
T =Ra/2mck. Here we show an analogous result within classical electromagnetic theory. A classi-
cal electric dipole oscillator accelerating through classical electromagnetic zero-point radiation
responds just as would a dipole oscillator in an inertial frame in classical thermal radiation with
Planck's spectrum at temperature T=Aa/2mek. In an earlier work it was shown that the elec-
tromagnetic field correlation functions for an observer accelerating through classical electromagnet-
ic zero-point radiation correspond to a spectrum different from Planck s. The same spectrum is
found in the quantum analysis of a vector field where the departure from Planckian form is as-
signed to the change in the number of normal modes associated with the event horizon of the ac-
celerating observer. The present work shows that the relativistic radiation reaction for an accelerat-
ing classical charge contains a term which exactly compensates the departure of the electromagnetic
spectrum from Planckian form so as to bring the oscillator's behavior into precise agreement with
the usual Planckian thermal form.

INTRODUCTION

A physical system undergoing a uniform acceleration a
relative to an inertial frame behaves as though it were im-
mersed in a thermal bath at temperature

T=Ra /2m. ck,
where A is Planck's constant and k is Boltzmann's con-
stant. This profoundly simple result was introduced into
physics by Unruh' and by Davies as part of the analysis
connected with black holes in relativistic astrophysics.
The original arguments involve sophisticated work in both
quantum field theory and general relativity, and touch on
subtle questions distinguishing between real and virtual
quanta and quantum fluctuations. This article treats the
thermal effects of acceleration within the simpler context
of classical electromagnetism and special relativity. The
use of this simpler context may help a larger group of
physicists to understand the matter, and may also serve to
clarify the essential aspects of the phenomenon.

Newtonian mechanics does not show any thermal ef-
fects of acceleration. Hence in order to understand the
matter we must go beyond classical mechanics to include
classical electromagnetism and specifically random classi-
cal radiation with a Lorentz-invariant spectrum, classical
electromagnetic zero-point radiation. This minimal classi-
cal extension of elementary physics which shows the
thermal effects of acceleration is termed random electro-
dynamics or stochastic electrodynamics. The theory is
simply the classical electron theory of Lorentz in which
the homogeneous boundary conditions on Maxwell's equa-
tions have been chosen to include classical zero-point radi-
ation. The theory gives quantitative explanations for
several phenomena which are usually thought to require
quantum analysis.

This article is the second discussion of the thermal ef-
fects of acceleration within classical theory with classical
zero-point radiation. In the first article we considered
the spectrum of random classical radiation seen by an ob-
server undergoing uniform acceleration through the classi-
cal zero-point radiation. Our analysis for scalar zero-
point radiation found that the accelerating observer saw
exactly Planck's spectrum of scalar radiation with tem-
perature as in (1). However, when we moved on to the
electromagnetic case, we found that the observer undergo-
ing uniform acceleration through classical electromagnetic
zero-point radiation found field correlation functions cor-
responding to a spectrum different from Planck's spec-
trum. This seemed discouraging. However, upon investi-
gating the quantum literature for vector fields, we found
that there too the resulting spectrum was not Planck's and
was completely in agreement with our classical results.
The quantum treatments within general relativity spoke of
the spectruIn as "thermal" but "non-Planckian. " Now a
radiation spectrum which is "thermal" but non-Planckian
makes uneasy at least those physicists who are not experts
on general relativity. To be sure, the sophisticated analy-
ses reassure one that the departure from Planckian form
involves a change in the counting of normal modes associ-
ated with the event horizon in the frame of the accelerat-
ing observer. Nevertheless the untutored physicist is like-
ly to remain dissatisfied and to wonder why the effects of
the event horizon appear in the vector-fiel case but are
not seen for the scalar field.

The situation has remained in this form since 1980.
However, now a stumbling block in the simpler analysis
has been removed. The ordinary physicist who may have
had his enthusiasm dampened by the complications found
at the end of the first article is encouraged to look again
at the matter because of the results we are reporting in
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THE BASIC THEGRY

Classical electron theory consists of Newton's second
law of motion for the charged particles, Maxwell's equa-
tions for the electromagnetic fields, and boundary condi-
tions on the associated equations of motion. In the tradi-
tional classical electron theory developed at the turn of the
century, the homogeneous boundary conditions on
Maxwell's equations were chosen so that there was no ra-
diation in the far past. Classical electron theory with
classical electromagnetic zero-point radiation changes this
homogeneous boundary condition to assume that in the
far past there was random classical electromagnetic radia-
tion with a Lorentz-invariant spectrum. The random ra-
diation can be written as a sum over plane waves:

E'~(r, t)= g f d km(k, A. )FI,~(co)

Xcos[ k. r —tot —8( k, A, )], (2)

B'P(r, t)= g f d k[(kXe)/k]M, ~(co)

Xcos[ k r —cot —8( k, A, )],
where the 8(k, A, ) are random phases distributed uniform-

ly on (0,2ir), independently distributed for each k, A, . The
assumption of Lorentz invariance determines the sf&ec-

trurn up to a single multiplicative constant which is
chosen as Planck's constant A,

this second article. The situation is as follows. The spec-
tral calculations reported in the first article were based
upon mathematical evaluation of the correlation functions
for the electromagnetic field. However, measurements by
an accelerating observer should refer not to purely
mathematical functions but rather to the behavior of
physical systems. In the present case we can imagine a
uniformly accelerating observer carrying along a classical
electric dipole oscillator which interacts with the random
classical radiation, and the observer measuring the
response of this physical oscillator. In this article we cal-
culate the behavior of just such an oscillator undergoing
uniform acceleration through classical electromagnetic
zero-point radiation. Although, as found in the first arti-
cle, the field correlation function which drives the oscilla-
tor is non-Planckian, there is also a new acceleration-
related term in the relativistic radiation reaction force for
the oscillator. The two departures from the usual
inertial-frame behavior exactly cancel. The oscillator
responds exactly with a Planckian distribution at the tern-
perature given by (I). Thus the oscillator appears as
though it were in a thermal bath of Planckian form and
any measurement using the oscillator would never reveal
the departure of the field correlation function from
Planckian form. Again an untutored physicist will feel
comfortable with the results. Mechanical systems indeed
respond on acceleration as though they were in a thermal
bath in the normal sense.

vr H, p (co)= ifico .

The introduction of Planck's constant at this point, and
only at this point, allows this purely classical theory to
give results beyond those of the traditional classical elec-
tron theory of the early part of the century. Van der
Waals forces and diamagnetic results of the theory are in
quantitative agreement with the quantum-theory predic-
tions. In this article we find a further advantage of the
new choice of boundary condition over the traditional
choice since classical electron theory with classical elec-
tromagnetic zero-point radiation shows the thermal ef-
fects of acceleration whereas the traditional classical elec-
tron theory does not.

RELATIVISTIC PARTICLE EQUATION OF MOTION

The mechanical system we consider in this article is a
small harmonic electric-dipole oscillator. Although the
system may be described in these general terms, we will
picture and discuss the system as though it were a particle
of mass m and charge e at the end of a massless spring of
constant K=m~0 . In an inertial frame the equation of
motion for the displacement r(t) of the particle from the
spring equilibrium position can be written in the nonrela-
tivistic dipole approximation as

md r/dt = —mcoo r+ ,'(e /c )d —r/dt

+eE'"(R,t) .

Here the term , (e /c )d—r/dt is the radiation damping
and eE'"(R,t) is the force due to an electric field (not in-
cluding the self-fields of the particle), evaluated at the
fixed equilibrium position R of the oscillator at time t.
We have assumed an isotropic oscillator. This equation
(5) is an approximation to the relativistic equation of
motion which holds in any inertial frame,

mx"=Fi'+ —,'(e /c )(x'"+c x "x "x,)

+(e/c)W'" "x„,
where m is the rest mass, x"=(ct,r) is the four-vector
displacement of the particle, F& is the four-force due to
the spring, ~'""" is the electromagnetic field tensor (ex-
cluding the particle self-fields), and the overdots refer to
differentiation with respect to the particle proper time.
The term involving e /c is the relativistic form for the
radiation damping.

In this article we are interested in the situation when
the dipole oscillator experiences a uniform acceleration
through the random classical electromagnetic zero-point
radiation. We assume that the equilibrium point of the
spring moves with uniform proper acceleration a and that
an external electric field Eo——m a/e exists which causes a
uniform acceleration for the charged particle in the ab-
sence of the spring. The massless spring provides a force
—mmo r in the instantaneous rest frame of the spring
equilibrium position. For simplicity of calculation, we
will restrict the oscillator to the yz plane perpendicular to
the x direction of acceleration, a =ia.
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In our analysis we will use a fixed inertial frame I» and
a set of inertial frames I, defined by the condition that the
spring equilibrium position is instantaneously at rest in I
at the proper time ~ measured by a clock at the spring
equilibrium position. We assume that the equilibrium po-
sition moves along the positive x axis of I», coming in-
stantaneously to rest when the coordinate X» of the spring
equilibrium position takes the value X~ =0 at time t~ =0.
In each frame I the spring equilibrium position labeled
by (X„&~,Z~) = (X„O,O) moves with instantan-
eous acceleration (d X,/dt, ),=a at time r. The ac-
celeration as seen in I~ is related to that seen in I by
d X»/dt» =y, a where y, =[1—(dX /dt, ) ] '~ and
dX» /dt, is the velocity of the spring equilibrium position
and of I, relative to I» at time r. We can solve the ac-
celeration differential equation for X»(t» ) and then relate
the time t~ to the proper time ~ measured at the equilibri-
um position giving

X, =[( c/a) +t» ]'i c

t, (r) =(c/a )sinh(ar/c),

X»(r) =(c /a)[cosh(ar/c) —1],
with the other spring equilibrium point coordinates

(1O)

by assumption of motion along the x„-axis. Clearly in
this notation the inertial frame I» agrees with the frame
I at ~=0.

The coordinate frame S carried along by the accelerat-
ing dipole will agree with the inertial frame I, when the
proper time at the equilibrium position is ~. We choose
the spring equilibrium position at the origin of S, and
denote by (cr, r ) =(cr, O,y, z) the coordinates of the parti-
cle in the accelerating coordinate frame S. Also at time ~
the spring equilibrium position is at the origin of I at the
time t =~.

EQUATION OF MOTION IN THE ACCELERATING
FRAME

We are interested in evaluating the displacement r(r) of
the particle from the spring equilibrium position as a
function of the time ~ read by a clock at the equilibrium
position which is the origin of S. In order to obtain an
equation of motion for r as a function of r we go back to
the relativistic equation of motion (6) for the displacement
x" of the particle relative to an inertial frame. We will
evaluate this equation in the fixed I» frame, correspond-
ing to putting a subscript asterisk on the quantities of Eq.
(6), but then will rewrite the variables involving the parti-
cle displacement x~~ and particle proper time in terms of
the displacement X~ of the spring equilibrium position,
and of the displacement r and time ~ in the S frame.

As a start we note that the quantities x ~~, x~~,x "„are
each four-vectors bemuse the particle proper time indicat-
ed by the differentiation overdot is a Lorentz scalar. Then
four-vector transformations can be used to relate the
quantities in the fixed inertial frame I, to the quantities

in the frame I, instantaneously at rest with respect to the
spring equilibrium point at time ~. In the y and z direc-
tions transverse to the direction of acceleration, we see
from the four-vector form of the Lorentz transformations
that the displacements y~, z„and four-force components
E+y F+z are identical with the y ~,z, and F~,F~ seen in I~
and hence with the y, z, and Fz,E, in S.

At this point we emphasize the small-dipole approxirna-
tion which we use. One should be quite clear about just
what approximation in the usual inertial-frame analysis
allows us to rewrite the relativistic oscillator equation (6)
in the form (5). This is the small-oscillator approxima-
tion. In the inertial frame in which the oscillator (spring)
potential is at rest, the magnitudes of all displacements
and velocities depend upon the size of the oscillator and
the characteristic frequeilcy ct)p. If the size of the oscilla-
tor is small compared to the radiation wavelength
A, =2'/~0, then the dipole approximation is justified in
the inertial frame in which the oscillator potential is at
rest. Also, if the size of the oscillator is small, then the
characteristic speed u=~0r will be small compared to c
and hence a nonrelativistic approximation is justified in
the inertial frame in which the oscillator potential is at
rest.

We wish to make the small-oscillator approximation in
the present calculation, but we must be careful to apply it
in coordinate frames where the oscillator potential is at
rest. Thus at time ~ we will use the dipole approximation
in the frame I, instantaneously at rest with respect to the
spring equilibrium position; we neglect the magnetic force
(e/c ) v && 8 and evaluate the driving electric force
eE,(r„t,) not at the particle position r, but at the equi-
librium point of the oscillator as eE,(0,r). Furthermore
working in the approximation of a small oscillator so that
the particle displacements and velocities in S are small, we
can ignore the distinction between the proper time interval
for the particle itself and the proper time ~ measured by a
clock at the origin of S. Thus all the derivatives which
werp denoted by overdots will now be regarded as deriva-
tives with respect to the time ~ in S.

From the comments above about four-vectors and the
approximation that the particle proper time agrees with
the time ~ in S, we have

y =-dy /dr, z, =-dz/dr,

and analogous equations involving second and third
derivatives.

The final step in our analysis of the equation of motion
for the oscillator involves the radiation reaction term
—,(e /c )(x'" +c x~x "x ) of (6). In the usual nonrela-
tivistic approximation in an inertial frame the term
c x &x x is omitted entirely because of the additional
factor of c . However, in the present work we are taking
a relativistic point of view where all approximations are
justified solely from the assumption of a small oscillator.
Looking at the space components of the relativistic radia-

tion reaction, we see that the first term r involves one fac-
tor'in the size of the oscillator. The second term has r,
which depends upon the oscillator size, multiplying
c x "x„. Now in the usual inertial-frame calculation
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+(e/c)W,*~~x, (13)

with a similar equation for the z component. Now, insert-
ing the considerations of this section and particularly Eq.
(12), these equations can be written together as a vector
equation for an oscillator isotropic in the yz plane:

r

+eE*,~(0,r), (14)

x x„ is second order in the size of the oscillator making
e rx x~ third order in size and hence negligible com-

pared to r. However, in the present work we find x x
includes a contribution from the uniform acceleration of
the oscillator and this contribution does not depend upon

the size of the oscillator. Thus both r and c rx x„ in-
clude terms first order in the oscillator size, and hence
both terms must be included in the calculation. Retaining
only those terms which do not vanish with the size of the
oscillator, we write x, —=X, and have from (8) and (9)

x,"x,„=(d ct, /dd) (d X—, /dr )

=a sinh (a~/c) —a cosh (ar/c)
g (12)

Thus the radiation reaction for the point charge involves
an unfamiliar additional term which is not specific to the
binding potential, but rather reflects the uniform accelera-
tion a. It is this term which is needed to compensate for
the non-Planckian form of the field correlation functions
seen in the accelerating frame S.

The y-component of the relativistic equation of motion
for the particle as seen in the I, frame follows from (6) as

where r is the vector displacement of the particle in the S
frame, r is the time at the origin of this frame, and
E',~(0,r) is the zero-point radiation field seen in the iner-
tial frame I at the oscillator equilibrium point at time ~.

The equation of motion (14) for the uniformly ac-
celerating oscillator in its own frame S is similar in form
to the equation of motion (5) for a small isotropic oscilla-
tor at rest in an inertial frame. The differences between
the equations reside in an additional term
—,(e /c )( —a /c )dr/d~ in the radiation reaction force
and a change in the random driving field E'". We will
find that these two changes in Eq. (14) combine in just
such a way as to give oscillator behavior identical to that
found for the inertial oscillator in (5) when the driving
spectrum is not zero-point radiation but rather thermal ra-
diation with Planck's spectrum.

SOLUTION OF THE EQUATION OF MOTION

The equation of motion (14) is a linear stochastic dif-
ferential equation in r(~) with a random driving term
eE',~(0,r). The driving term involves the electric field
seen at the equilibrium point of the oscillator in the iner-
tial frame I instantaneously at rest with respect to the
equilibrium point. This field may be found by Lorentz
transformation from the random field E,'~(R„t„) found
in the inertial frame I~ at the known position R~(r) of the
spring equilibrium point at time t, (r). Thus from the
zero-point electromagnetic field of Eqs. (2) and (3), the
coordinate equations (8), (9), and the known Lorentz
transformation equations for the electromagnetic fields,
we find"'

2
E*,~(0,r)= g f d kyrie„+jy, [e~ —p,(k Xe),]+ky,[e,+p,(k Xe) ]j

XII,„(co)cos[k R (r) —cot, (r) —8(k, i, )]

2
= g f d kyrie„+j cosh(ar/c)[e„—tanh(a~/c)(k Xe), ]

+k cosh(a~/c)[e, +tanh(ar/c)(k Xe)y]]II,p(co)

Xcos[k„(c /a)cosh(ar/c) —co(c/a)sinh(a~/c) —8(k, A)] . (15)

(16)

and

E',"(O,r) =(2m) '~ f dQ X(Q)exp[ i Qr], —

The zero-point radiation spectrum (4) is Lorentz invariant, taking the same form in each inertial frame I,. Accord-
ingly there is no preferred inertial frame or preferred time for the uniformly accelerating dipole, and hence the displace-
ment will be a stationary random process.

It is natural to solve a linear differential equation with a stationary stochastic driving term by means of Fourier
transforms. Writing

r(~) =(2m. )
' f dQ ri(Q)exp[ i Qr]—
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the differential equation (14) becomes

2
Q

~ m( —iQ) —— ( —iQ) —( —iQ) +mcoo i)(Q)=eX(Q)
3 C3 C2

(18)

with the solution

1
Q

e X(Q)exp[ —iQi]r i
(2ir)'~ m [coo Q—iI'—(Q +Qa /c )]

where the damping parameter I is

I = —,e /mc2 2 3

(19)

(20)

Rather than working with an isotropic two-dimensional oscillator we can obtain the more familiar one-dimensional
oscillator by projecting out the component x(i.) of r (i.) in an arbitrary coordinate direction n within the yz plane,

x(i)=n. r(i.) . (21)

Here we denote this coordinate by x(i.) even though it will actually be perpendicular to the direction of acceleration; pre-
viously we had called the direction of acceleration the x direction.

The average value of x (i.) follows from (19) and (21) as

1 e inrein—'r(X (Q)X+(Q))
(x (i.))= dQ dQ'

2m m [coo Q i—I (Q—+Qa /c )][coo Q' +—iI (Q' +Q'a /c )]
(22)

where we have used the fact that x(i.) is real to write x (i.) as x(i.)x*(i.) The av. erage value (X„(Q)X„(Q')) needed in
the integrand is related to the average value of the fields through the inverse Fourier transform from (17),

(X„(Q)X„(Q'))=(2m. )
' f di f di'exp[iQi. ]exp[ —iQ'i'](E,„(o,i.)E~x(o,i') } . (23)

Now the correlation functions (E«(o, i.)E~J(o,i') ), (E„(o,i.)B~J(o,i') }, (B„(0,&)B~J(o,i') } for the electromagnetic
fields seen at a point undergoing uniform acceleration were precisely what was evaluated in the first article of this
series. Using the expression (15) we showed that the correlation function (E«(o,i )E~~(o,i ) }was the same irrespective
of the direction of acceleration and that"

4

(E„(O,i-)E,(o, i-') }=5,j
4' a

KC 2C
4 a (i.—i.')

csch
2C

2

=5; — f dcoco 1+2 A' a
3 ETC 0 CCO

coth cos[co(i i')], i,j =—1,2,3 .
Q

(24)

The correlation functions depend only upon the time difference i i', just as req—uired for a stationary random process.
Rewriting the integrals in (23) to take advantage of the i —i dependence, recognizing the integrals leading to 5 func-
tions, and integrating over co, we have

(X„(Q)X„'(Q'))=(2ir) ' f di f d(i' —i.)exp[ —i(Q —Q')i]exp[iQ'(i' —i)]
' 2

f dc' co 1+2
3 mc

'2
CCO

ETC CO
coth

a
cos[co(i.—i') ]

5(Q —Q')2Q 1+2 a
C cQ

mcQ
coth

a
(25)

A factor of 2 arises from equal contributions from co =+Q'.
Next we substitute this expression (25) back into (22), integrate over Q to remove the 5 function, and find

1 ~
dQ e 2 fi 2Q [1+(a/cQ) ]c toh(nc Q/)a

m 3 c (coo —Q ) +II Q [1+(a/cQ) ]I
(26)

If I = —,'e /mc is small, corresponding to an oscillator
interacting weakly with the electromagnetic field, then the
integrand of (26) is sharply peaked at Q =coo. According-
ly we may write Q=co0 in each of the terms not involving
Q —~0=z. The integral takes the form

00 1
Gz z'+1 (27)

(x (i ) ) = ,' (A/m coo)coth—(nccoola ) . . (28)

Thus in the narrow-linewidth approximation (26) becomes
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The expectation value for the square of the velocity
may also be easily evaluated from the Fourier transform
expression (19). The derivative with respect to time r
merely brings down a factor of 0 in (19), which is then
converted to a factor of coo in the narrow-linewidth ap-
proximation. ' Thus the average value for the velocity
squared involves two factors of coo compared to (28):

((dx/dr) ) = —,(iruoo/m )coth(vrccocla ) . (29)

The forms for (x (r)) and ((dx/dr) ) are indeed
those of stationary random processes, independent of the
time ~. They have a familiar form. The average values
are identical with those found' for classical oscillators in
an inertial frame bathed in Planck's spectrum' of random
classical radiation at temperature

T=fia/2rrck . (30)

We have now followed to completion the calculation re-
quired for our report at the beginning of this article. The
correlation functions (24) for the fields involve a spectrum
which departs from Planckian form by an additional fac-
tor of [I+(a/ceo) ], but the final oscillator behavior in
the accelerating frame takes exactly Planckian form.
Indeed our evaluation of the equation of motion for r(r)
and of the average value of x (r) is very similar to that
used for an oscillator in an inertial frame. In the familiar
integral, corresponding (26) when the acceleration a van-
ishes, the term in I in the denominator of the resonant
integrand removes the factor of I = —,'(e /mc ) in the
numerator. In the integral (26) needed here the term in
{I[1+(a/ceo) ]I in the resonant denominator cancels
the factor of I [1+(a/ceo) ] in the numerator. The radia-
tion reaction correction due to the acceleration cancels the
density of states correction in the correlation function for
the random fields.

CLOSING REMARKS

Why does an accelerating observer find a state different
from that holding for a inertial observer? The quantum
analysis, in which the thermal effects of acceleration were
first discovered, views the quantum electromagnetic vacu-
um as containing fluctuations but no photons. ' However,
a thermal spectrum does indeed involve photons. Thus in
the quantum description there is a problem as to how by
acceleration one goes from a situation of no photons to a
situation where there are photons, or at least seem to be
photons. The usual quantum analysis speaks of virtual
photons in the vacuum being made real by acceleration, or
of other such ideas. Indeed there is some uncertainty' as
to whether an accelerating quantum detector records a vir-
tual photon, making it real, or just what. In this connec-
tion authors from the quantum viewpoint often look back
to the classical situation and refer to an article by Mould'
dealing with the detection of signals by an accelerating
classical system.

This puzzlement over the correct quantum description
stands in sharp contrast to the present classical analysis
for the thermal effects of acceleration. Classical electron
theory with classical electromagnetic zero-point radiation
regards the zero-point radiation as real, just as real as
thermal radiation which is always treated as radiation
above the zero-point energy level. Thus on acceleration
the change in the spectrum is not a change from some-
thing virtual to something real. In this article we have
carried through the calculation for the behavior of a small
classical oscillator undergoing uniform acceleration
through classical electromagnetic zero-point radiation.
We find that the oscillator responds exactly as it would in
an inertial frame when bathed by Planck's spectrum of
thermal radiation including zero-point radiation.
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