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If one is interested in cosmological models with inflation occurring at or near the Planck energy
then the effects of quantum gravity have to be taken into account. We may still hope to use an ap-
proximation with the Einstein action as a starting point but the semiclassical approach breaks down,
forcing us to use the superspace construction for the wave function of the Universe. Using a recent-

ly proposed formulation of the ground state of the Universe, we obtain a unique quantum cosmolo-

gy for a given inflationary model. Besides recovering the semiclassical inflationary picture, the
wave function has other consequences, such as the following: (1) The wave function is suppressed
for small values of the scale factor and can therefore be interpreted as corresponding to the nu-

cleation of a bubble universe. (2) The parameters of the wave function become uncorrelated at
small values of the scale factor which means that the concept of time breaks down. (3) The wave
function at later times possesses structure on scales smaller than the Planck scale which leads to a
spacetime-foam picture of the Universe. We may therefore view the existence of the Universe itself
as a consequence of inflation.

I. INTRODUCTION

Although a great deal is known about the equations
which govern the evolution of the Universe, relatively lit-
tle work has been done towards finding out what the ini-
tial conditions should be or equivalently why the Universe
follows the particular cosmological model that it does.
An important step forward has been the discovery of the
inflationary models' in which a wide range of initial con-
ditions leads to the same outcome of a universe closely ap-
proaching a spatially flat Robertson-Walker model.

These inflationary universes have so far been semiclassi-
cal in structure involving one-loop quantum effects only
in the effective potential of some scalar Higgs field. We
wish to proceed a little further in this paper to consider
quantum-gravity corrections using a minisuperspace for-
malism in which the quantum state of the Universe is
described by a wave function depending upon the spatial
geometry and matter fields and satisfying the Wheeler-
DeWitt equation. ' Then the problem of specifying the
initial conditions is replaced by one of selecting a particu-
lar solution and for this we shall employ the suggestion of
Hartle and Hawking for defining the vacuum state of the
Universe. Our results show that this gives a realistic
quantum cosmology with grand unified, inflationary, and
broken-symmetry eras.

In the classical version of the inflationary universe, the
Universe starts out in a high-temperature phase of unbro-
ken symmetry. This symmetry is broken when a Higgs
field P evolves away from the symmetric value zero to-
wards the minimum of the Higgs potential. If this poten-
tial is sufficiently flat near zero, then the vacuum energy
of the symmetric state will come to dominate the energy
density of the Universe leading to an exponential expan-
sion of the scale factor. As a consequence of this, the spa-
tial hypersurfaces become almost flat which explains why

singulari ty spacetime foam

FICz. 1. The scale factor R is sketched as a function of time
in the two versions of the inflationary universe.

the Universe today is homogeneous on large scales with a
density close to the critical density. Furthermore, the en-
ergy density in the form of radiation becomes vanishingly
small but more is recreated from the decay of oscillations
in the Higgs field about the minimum of the potential
after the inflationary period is over. We therefore learn
very little about the nature of the Universe prior to the
phase transition.

A variation of this picture, proposed by Vilenkin, is
that the Universe arose spontaneously in the inflationary
phase through a quantum-tunneling or bubble-nucleation
event from "nothing" or from a preexisting phase where
the classical notation of spacetime breaks down (Fig. l).
The decay of the false vacuum would then lead to causally
separate Friedmann universes lying in a de Sitter
metauniverse because of the rapid expansion of de Sitter
space and the slow transition rate (Fig. 2).

In either picture the homogeneous inflationary universe
has spatial fluctuations imposed upon it arising from
quantum Auctuations in the matter fields. Most infla-
tionary models considered so far lead to too much inho-
mogeneity to be consistent with the observed isotropy of
the cosmic-microwave-background radiation unless the
gauge coupling constant is fine tuned. This problem can
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univ&see l

de Sitter space

FIG. 2. This conformal diagram shows universes nucleating
in a de Sitter metauniverse.
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Here R is the Ricci scalar and a,go are coupling constants.
l

be less severe in primordial-inflation models' where the
unification occurs at energies near the Planck energy of
10' GeV at which quantum gravity becomes important.
Furthermore, grand unified theories with larger symmetry
groups usually involve more fields and consequently
higher unification energies which can easily be close to the
Planck energy.

We have chosen to approach this problem by construct-
ing a wave function 4 which represents a quantum
cosmological model. We shall choose an inflationary
Higgs potential

—,RP'+ V(P),

where

Inflation would be expected to take place in this model be-
cause the potential possesses a metastable minimum at
/=0, a global minimum at /=go, and a low potential
barrier between them (Fig. 3). The choice of the quadratic
term in (1) was determined by our desire to include the ef-
fects of the dominant curvature term in the potential but
with the coupling constant chosen to simplify our
analysis. Although we do not claim that (1) is the true ef-
fective potential, it possesses most features that are re-
quired for a quantum inflationary model.

We shall also employ the most stringent minisuperspace
hypothesis, that is, we consider wave functions 4 which
depend only on a homogeneous field P and the
Robertson-Walker smle factor a. As usual with this ap-
proach, there is no dependence of %' upon time because a
choice of the scale factor fixes the position of a spatial hy-
persurface within spacetime, but nevertheless all the
large-scale information about the Universe, such as the
amount of inflation and the entropy, should be obtainable
from %. Furthermore, one might expect our approach to
quantum gravity to hold approximately even when the ra-
dius of curvature is of the order of the Planck length
10 cm or even smaller. Thus, one may ask, for exam-
ple, what the probability is of finding a universe with a
size less than the unification-epoch Hubble radius in order
to test the validity of the Vilenkin picture for which this
probability should be vanishingly small.

The equation satisfied by 4 is the version of
Schrodinger s equation known as the Wheeler-DeWitt
equation, '

2'2
3mp

2Q Q a
Ba Ba 2 4~

3mp Q 3~@2 2 2

a~+ — a — +P + a V(a P) 4=0,
2 4m 4m

(3)

where the dimensionless field P =a/ has been introduced
in order to diagonalize the differential operator. The fac-
tor p represents the arbitrariness introduced by the factor-
ordering problem. Fortunately, this affects the behavior
of the wave function only when the scale factor is less
than the Planck length and does not have a significant ef-
fect on the physical interpretation of' O'. We shall there-
fore take p=0.

In order to realize an effective quantum cosmological
model of this kind, one needs to specify which solution of
(2) corresponds to the Universe. A way of uniquely defin-
ing the vacuum state of (2) using a Euclidean path integral
has recently been suggested by Hartle and Hawking. The
expression they used is

%(a,P) = I [da][dP]e (4)

where SE is the Euclidean action, i.e., t~it, and the path
integral is taken over paths a (t) and P(t) which go from
zero to the end points a, P. Unfortunately, taking the sim-
plest models for V(P) leads to empty universes. This can
be avoided by choosing excited states but then the attrac-
tive uniqueness is lost. The inflationary model (1), on the
other hand, releases latent heat which mn give large ener-

gy densities even in the vacuum state. This encourages us

to investigate the quantum cosmology which corresponds
to the Hartle-Hawking definition of the vacuum state of
the inflationary universe. One may contrast this with the
usual approach to the initial conditions of cosmology
where the Universe is assumed to leave the Planck era in
thermal equilibrium with at least enough spatial flatness
and homogeneity to reach the unification scale in the case
of the inflationary universe, or considerably more flatness
and homogeneity in a noninflationary scenario.

During the inflationary era, the spacetime within an
observer's event horizon rapidly approaches the empty de
Sitter spacetime' (a process known as cosmic baldness)

FIG. 3. The Higgs potential 6RP2+ V(P) is sketched for
various values of the curvature R.
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and consequently becomes homogeneous. It is also known
that the effects of quantum fluctuations on inflation are
dominated by homogeneous modes of the fields" because
these can fluctuate most rapidly being essentially massless.
One would therefore expect that neglecting inhomogene-
ous modes in the wave function should be an even more
reasonable approximation for these inflationary models
than for the usual minisuperspace models considered by
previous authors. . There should, however, be no obsta-
cles in extending the model to include some effects of non-
isotropy or nonhomogeneity.

When an inhomogeneity is larger than the event horizon
then the region inside the horizon can be considered as if
it were a separate, homogeneous universe. This is what
happens in the metauniverse picture. We may therefore
look at the metauniverse as an ensemble of nearly homo-
geneous univ erses. When we go over to the fully
quantum-mechanical picture this is represented by the full
wave function. If we restrict ourselves to homogeneous
modes, this suggests that a quantity like

~

0'(a, P)
~

can be
interpreted as the probability density of measuring the
values a and P in a random universe from the
metauniverse. Comparing this with DeWitt s interpreta-
tion of the wave function in terms of a many-worlds' pic-
ture we see no reason to distinguish between the two, that
is, the Universes of the semiclassical-metauniverse picture
should be included in the worlds of the many-world's pic-
ture under canonical quantization.

With this interpretation of
~

4
~

we do not expect any
probability-conservation equation, but 4

~

should be
normalized to unity over the whole a, P plane. There does
exist a conserved current corresponding to Eq. (3), but we
reject interpreting any of its components as a probability
because this would be superspace-coordinate dependent
and can lead to negative probabilities.

As might be expected, the solution of (3) and (4) is quite
complicated. This has led us to consider a preliminary ex-
amination of a quartic potential with a negative coupling
constant in Sec. II. We find that the wave function in this
case is exponentially suppressed in the region where the
scale factor a is less than the unification-epoch horizon
size H ' and can therefore be interpreted as the nu-
cleation of a bubble universe. The scalar field also tunnels
through the potential barrier from the metastable values
near /=0, where the wave function resembles the Hartle-
Hawking result, to larger values where the symmetry is
broken. This simple behavior of the wave function still
occurs for small P or a when the full potential (1) is used
allowing us to integrate (3) numerically using the result
for small a as initial data. These numerical results are
given in Sec. IV.

With the introduction of the inflationary potential in
Sec. III, the wave function becomes suppressed at large
values of P but develops some interesting behavior around
the global minimum of the Higgs potential near P=Po.
This is where, in the semiclassical picture of the inflation-
ary universe, the vacuum energy gets transformed into
Higgs-field oscillations which behave like pressure-free
dust. It is possible to determine the amount of inflation
from this or from the maximum size of the Universe. We
find that the fall-off of the wave function with increasing

radius is rather flat but a natural scale of inflation around
(mI /H) emerges. This is insufficient to give rise to the
present-day universe which requires a value of around 10
unless H is very small, but this is to be expected because
previous calculations have suggested that the conformally
coupled mass term (1) is too steep. We expect that a
smaller mass term will give the correct scale for our
universe.

An interesting feature that turns up in the probability
amplitude is the existence of a microstructure below the
Planck length in the region around P=Po. The Universe
seems to jump between values of a rather than move
smoothly. When the inhomogeneous modes are taken into
account, these values of a will vary from place to place
and one would see the spacetime-foam picture of Wheeler
and Hawking emerging. '

II. THE CONFORMALLY COUPLED
SCALAR FIELD

We shall consider first of all the case of a scalar-field
potential which has the form

—,RP'+ V(0) ——,
'

A,P',
where A, and V(0) are positive constants. If the dimension-
less field P=aP is used then the action can be expressed
as the sum of two terms:

SE[a,p] =S~[a]+SE[p],
where

T

3mp $ 3mp
SE[a]=— — a' +— a

2 4m 2 4m

—V(0)a dg,

Here g is the conformal time parameter which satisfies
adrt=dt and the prime denotes differentiation with
respect to g. As a consequence, the Hartle-Hawking vac-
uum state defined by (4) decomposes into a product,

V(a, P) =%(a)%(P),

where, in order to keep down the number of indices, the
two separate functions 0'(a) and %(P) will be dis-
tinguished by their arguments.

Now it is clear that the path integral for %(P) will not
converge because the potential (5) is not bounded below.
This is a problem also encountered in statistical mechani-
cal problems' where the resolution is to evaluate the in-
tegral for negative A, and then perform an analytic con-
tinuation in A, . Proceeding in this way, one therefore
needs to calculate

+(0)= f [dd ]exp —y ( ,'0 '+ ,'y'+ .'&y')—dq, —(9)—
L

where A, = —A, and the. paths p(g) go from 0 to p. This
integral can be evaluated in the steepest-descents approxi-
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mation. Then the dominant contribution comes from a
solution of

then be essentially identical in form to (12) but with the
opposite overall sign in the exponent,

4"=0+~0' (10)

such that p(g)~0 as 21~—ao. We therefore take the
solution

1/2

p(2I ) = — (sinht) )

%(a) =exp

where

8' V(0)
3mp

2

[(1—H a ) —1]
4+H

and the corresponding first approximation to 4 is

%(P)=exp — [(1+—,
'

A,P ) —1]
3A",

When we analytically continue A, we get
r

(12)

which is sketched in Fig. 4(b).
The branch-cut ambiguity in (14) can be resolved by use

of the Wheeler-DeWitt equation (3). For the separable
wave function (8) we have

+P ——,AP %(i') =E%'(i'),
0'(P) =exp [(1——,AP ')'/' —1] (13)

which is sketched in Fig. 4(a). For small P this wave
function has the same form as a simple-harmonic=
oscillator ground state, but at larger i)j'1 there is an oscillat-
ing tail where, because the analytic continuation in X is
complicated by a branch cut, we have an ambiguity in the
sign of the exponent. One choice of sign can be associated
with tunneling away from the metastable minimum of the
potential but we shall return to this point later.

When one examines the integral for 0'(a), it has a very
similar form to that for %'(P) except that the action has
the opposite sign. This is a familiar problem in quantum
gravity that the action is not positive definite in the con-
formal modes. ' We shall make the usual ansatz that the
contour of integration of the conformal fluctuations about
a stationary path of the integral should be rotated into the
complex plane to give a well-defined result. This must

(a}

e-2/3 g nnAnLJ M UV'

(b}

m /4mH
P

d2

d 2

(16)
2'2

3mp 2 2

2 2 3mp
a —H 4' a %'(a) =E1Ii(a) .

The solutions (13) and (14) are indeed approximate solu-
tions of (16) provided that E is real, otherwise the ex-
ponents would contain a growing real part for large a
or P. Consequently, 1Ii must also be real as can be seen by
examination of the conserved currents of Eq. (16). We
therefore conclude that one must add together both
branches of the wave functions. These may be thought of
as corresponding to the expanding and contracting phases
of the Universe.

We can now compare our results with those of Hartle
and Hawking who considered the case A, =O. Although
they performed a path integration over the expansion rate
rather than the scale factor in order to avoid ambiguities,
their final result for %'(a) is the same as our Eq. (14).
Their wave function for P also resembles Eq. (13) when P
is small but does not display the tunneling features, as one
would expect in their model.

This suggests an alternative approach to finding the
vacuum state for more complicated potentials such as (2)
which avoids the difficulty of evaluating the path integral
(4). This is to integrate the Wheeler-DeWitt equation
directly using the path integral to provide the initial data
only. When the initial data is required on /=0 then the
Hartle-Hawking result (14) can be used. We shall perform
such an integration numerically in Sec. IV.

In order to find a better approximation to the wave
function we could integrate the quadratic fluctuations
around the saddle-point path. We can, however, derive
the same result by taking the JWKB approximation in Eq.
(16) which gives

C 1
(

im& Ha /4n im& Ha3/4m- .

Ha

q/(y)
2 (ei1 A, /2/3/3+ —iv X/2/3/3)

FICx. 4. The wave function is shown as a function of (a) P
and (b) a for the conformal theory.

for large a and P where c 1 -0.9X'/ (H /mI ) and
c2-0.6A, ' . We can therefore identify the factors mul-
tiplying the exponentials with the one-loop corrections to



29 WAVE FUNCTION OF THE INFLATIONARY UNIVERSE 1071

the path integrals. This result will be of use in Sec. III
when we try to derive an analytic approximation to the
quantum inflationary universe.

III. THE INFLATIONARY UNIVERSE

When the full potential (1) is used, we are no longer able
to decompose the wave function into a product because
the conformal invariance is lost. Nevertheless, there are
regions in P-a space where the coupling between P and a
is small because the logarithm varies only slowly com-
pared to the other terms in the potential. In these regions
the logarithm acts as an effective negative A, term and we
can be guided by our experience from Sec. II. We have
found that the dominant contribution to the path integral
comes from classical paths at the saddle points of the ac-
tion

2 2

SE —— 1 3mp , 1 3mp 2
—,2 -2a' —— a ——,(()

' ——,4
2 4m 2 4m

"1

—a V(a 'P) dry,

where the replacement a =ia has been made in V. Of the
analytic continuations which we have tried, only this one
in a gives consistent results.

We therefore get the equations
2

a,

@=a
I
I
I

p

/

/

@=alp
p

(() "=P—2a (5 ln
0 p

a"=a — a a '(P —a Pp )
3mp

(19)
FIG. 5. Saddle-point paths are shown for (a) small Pz and (b)

P~ near the minimum of the potential.

with the boundary conditions that P and a vanish as
g~ —ao. We will find approximate solutions when
H &2agp. The alternative case H ~2a(tp, which can lead
to inflation only when Pp&mp, will be considered in a
separate publication.

First of all, consider the paths to a point P with small
values of the coordinate Pp. In this case the logarithm
can be approximated by

I = —ln
0p'

H
(20)

A, =2a (I+—,
' ),

2~a'yp'
H =

3mp

(21)

Now let us turn to a general path which approaches the
minimum of the potential at P =aPp as shown in Fig. 5(b).
At first this path behaves as in the case above but then, at
some value a„of a, the path shoots across to oscillate
around P=aPp. In general there are several paths which
reach P and may therefore contribute to the wave func-

and the equations of motion (19) decouple. A typical path
in this region is shown in Fig. 5(a). As in Sec. II, the Eu-
clidean action for this path splits up into the sum of two
terms and the wave function can therefore be given by the
product of Eqs. (13) and (14) with

tion. We shall enumerate these by the number of times n

that they cross the line P=aPp. We need to calculate the
action of each of these paths which we shall do by divid-
ing up the motion into two parts.

First of all, let us analyze the oscillatory part of the
paths. This we may do by using the perturbed field

asap in the ene—rgy equation,

2 2
] 3mp 2 ] 3mpa' ——
2 4~ 2 4m

a ——,

which gives, up to order g,
] 3mp ] 3mpa' ——
2 4m 2 4m

+a V(a 'P)=0,

a =E(rl),

(22)

—,
' y' ——,

' l('+2a 'a'yp'lt'=E(g),
(23)

1 fpQ„Q cosfflH t,
8

a = —,'H a„(cosh' —1),
(24)

where the Higgs mass mH has been introduced,

where E (g) is slowly varying with respect to the P oscilla-
tions. We can therefore use adiabatic approximations
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ma=2ago ~ A„= c3 (Ha„) (35)

and the time t is given by

t t„—= f adg. (26)

Ha, =(Hap)'~ (28)

On the other hand, the action contains an imaginary part
for a„&a, and consequently such paths are exponentially
suppressed. These paths correspond to classical Fried-
mann models which recollapse before reaching the size ap.
For the remaining paths we can use (27) to obtain a simple
expression for a„,

—2/3

a„= 1+ n

n)
ap,

where

2
S/4

Amp
1/2

(30)

The dependence upon gp coming from 5 can be ignored
but there is another coming from the condition that the
amplitude of the oscillations be greater than fp. Thus,

1A & - apso.vg n
(31)

The calculations presented above lead to a wave func-
tion of the form

4= QA„e (32)

If the integral over fluctuations about the stationary-phase
paths is ignored, so that 2„=1, then the wave function is
very nearly zero because of the large variation in the
phases S„. We can, ho~ever, make use of the fact that S„
is large by averaging the probability

We are now able to evaluate a„ from these formulas by
using the fact that increasing n by 1 corresponds to in-
cluding an extra half oscillation of g. Thus,

Y/ p
mH f adq=nn. +5, (27)

In

where 5 is a phase which depends upon gp.
The motion (24) can now be substituted into the action

(18) together with the earlier stage where the approxima-
tion (20) can be used. When the total result is analytically
continued to imaginary values of a one finds that the
Lorenzian action S„ is wholly real for 0„&0, where

with c3 =c~cq. Using the expression (28) for a„gives

n

I
+

I
Av=c3'(Hap) 'g

p n)

8/3

(36)

where the upper limit n, (Ha—p)n~ follows from the
lower limit a, on a„(28). If, however, gp is too large to
satisfy inequality (31) at n =n, then the sum must be re-

duced accordingly.
Using the Euler-Maclaurin approximation we get

I
+

I Av = (Hap) n& ~
2

3C3'
1/3

11
(37)

mzS„— n)
(Hap ) (38)

shows that the irregularity exists on wavelengths w such
that

This is our main result for the probability distribution of
the size of the Universe. It is rather flat and does not lead
to an average size but scales IIap »n& are suppressed.
The Universe today has mI aI & 10 which would have a
small probability by (28) unless H was quite small. It is
more likely that the potential (1) is not sufficiently flat for
a prolonged period of inflation and a smaller quadratic
term Inust be used in a more realistic model.

The classical interpretation of the wave function is
quite clear. Values of the scale factor a &H ' are im-
probable, indicating that the Universe arises like a bubble.
Classical paths contributing to the path integral contain
an inflationary period prior to a =a„and those that con-
tribute most to the wave function come from values of n
around n, in which the scale factor inflates by an amount
n ~ . The part of the wave function around
represents a Friedmann universe with energy density in
the form of homogeneous scalar-field oscillations which
have the same equation of state as pressure-free dust.
From the width of this part of the wave function we can
read off the energy density as a function of the scale fac-
tor. Indeed, the semiclassical approximation becomes
very good from this point on. In a more realistic model,
however, these oscillations would decay into radiation as
in the usual inflationary universe.

Returning to Eq. (33) for the unaveraged probability,
one sees that the probability density is very irregular on
small scales. In fact, the order-of-magnitude approxima-
tion for S„,

2

gA„~—2 g A„A sin [(5„—5 )/2] (33)
n n~m

over some scale w for which A„ is nearly constant. Thus,

I

+
I

~v'= X~.
The one-loop term A„comes principally from fluctua-

tions about the initial section of the path up to a =a„,
/=a„Po where we know from the JWKB approximation
(17) that

W C E

FICr. 6. The difference scheme for the numerical integration
is given on the lattice shown here.
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FIG. 7. The wave function is plotted here for the conformal theory with A =0.12, A, =0.07.
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FIG. 8. The wave function is plotted here for A =0.2, a =0.1 using the fully inflationary potential.
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111p

3/2

(aHa) mp & ul (—2 —1 Ha
fthm p

1/2
—1Plp (39)

»d ~ dep~~ds upon the form of V(p). This equation
was solved on a lattice (Fig. 6) using a finite-difference
scheme,

which are all smaller than the Planck length. Presumably,
when the inhomogeneous modes are taken into account,
this leads to a foamy structure of spacetime.

It is interesting to note that the intrinsic nature of time
has not hindered us at all in interpreting wave function.
We can, however, co sider the scalar field as a clock
which is read by examining its correlations with the rest
of the Universe. During the Friedmann era around P=Po
the scale factor is closely correlated with the amplitude of
the oscillations which is, in turn, related to the energy
density of the scalar field. During the earlier era when the
wave function is nearly a product, these correlations
disappear altogether and the concept of time breaks down.

%yy —0'~ =('@~+0'g —%~ —0'g )/2h,

qi=p+c+(1 —p)('kE+%g )/2
(42)

=X — X —P +—P
2 2 ~ 4 2 A 4

2 2
(43)

with the parameter P chosen to give stability. For initial
data we assumed that the wave function starts out as a
direct product similar to Eq. (g) where %(x) is the lowest
energy eigenstate of the separated-x equation.

First of all, we solved for the simplified potential of
Sec. II,

IV. NUMERICAL RESULTS

In order to check that the wave function behaves as
predicted in Sec. III, we have solved Schrodinger s equa-
tion (3) numerically. After rescaling the variables, the
equation takes the form

+u2% =0,
where

1/2
3&ip

4m

8mH

3&ip

The choice P= —, in (42) is required for stability against
short-wavelength perturbations-, but long-wavelength per-
turbations can cause problems when co is large and posi-
tive. We avoided these by introducing an extra boundary
at a large value of x.

The wave function is plotted in Fig. 7 for A, =0.07 and
A=0. 12. The x axis is across the bottom and the y axis
runs up the left-hand side. As we expect, the wave func-
tion continues to have the form of a product. The region

lg

44

Y ~~X

Jp
l

JP

gJ

gpJ
vv

v
'4g

FIG. 9. The wave function is plotted here for A=0.175, n =0.25.
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near the y axis represents a situation of unbroken symme-
try from which the Universe tunnels to larger, broken-
symmetry values of x.

We next considered the full inflationary potential (2),

2 2
co =x +a x ln ———y +—y, (45)

+p 2 2

where c =a /A and y is a small constant chosen to
prevent the logarithm from diverging on the x and y axis.
The condition H &2ago of Sec. III becomes c& 1.

In Fig. 8 we have plotted 4 for A=0.2 and a =0.1 to
show what happens when c & 1. The Universe remains in
the symmetric state because of the large-effective-mass
term in the potential.

In Fig. 9 we have plotted 4 for A=0.175 and a =0.25.
The wave function is initially featureless and empty. At
larger values, the oscillations in the symmetric region near
the y axis give rise to waves which move across to the
right. These waves separate themselves from the sym-

metric vacuum to congregate near the line y =cx, corre-
sponding to our Friedmann universe with /=go. The re-
gion near the y axis resembles the A,P theory above and
the wave crests moving across correspond to the paths
contributing to the path integral of Sec. III. This brings
us to the end of the inflationary era and we fmd that the
agreement with our analytic discussion is good. The sub-
sequent evolution of the Universe follows essentially clas-
sical lines.
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