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Vacuum polarization of massive fields near rotating black holes
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The vacuum polarization of the massive scalar, spinor, and vector fields in Kerr spacetime is in-

vestigated. The explicit expression for the vacuum expectation value of the energy-momentum ten-

sor is obtained and its properties are discussed.

I. INTRODUCTION

Hawking' has shown that a black hole formed by col-
lapse spontaneously creates and emits particles as if it
were a hot body with a temperature proportional to the
surface gravity of the black hole. The action of the gravi-
tational field of a black hole on the virtual vacuum quanta
can provide them (and with some probability really pro-
vides) with the energy that is sufficient to make these
quanta real. A part of these quanta reaches infinity and
forms the Hawking radiation of the black hole. It is not,
however, the only result of the action of the gravitational
field on the vacuum. The states of those virtual vacuum
quanta which do not become real are also affected by the
gravitational field. This results in the rise of a nonzero
vacuum expectation value of the energy-momentum ten-
sor. It should be noted that the latter effect takes place
even in the case when the gravitational field is not strong
enough to create real particles. The change of the vacuum
expectation value of the local observables under the action
of the external field is known as vacuum polarization. Be-
cause of the well-known ambiguity of the particle defini-
tion in a strong gravitational field it is impossible in the
general case to separate the contributions of real and vir-
tual particles to the expectation value of the energy-
momentum tensor.

The investigation of the energy-momentum tensor of
quantum fields in a given spacetime background is the
natural first step in studying the problem of the self-
consistent quantum description of black-hole evaporation.
In the case of massless fields in two-dimensional space-
time the vacuum energy-momentum tensor is essentially
defined by the conformal anomalies and its properties
have been described in detail. In the four-dimensional
case the situation is much more complicated. Vacuum po-
larization of the massless scalar field in the Schwarzschild
metric has been investigated in Refs. 6—13. Candelas
succeeded in obtaining the explicit expression for (P )„„
at the event horizon. He also found some of the com-
ponents of ( T„)„„atthe horizon. Fawcett and Whiting
and Fawcett have obtained (P )„„and (T&„)„„in the
Schwarzschild spacetime by numerical calculations. The
results obtained by Page, ' who developed the approxima-

tion method for studying vacuum polarization in the con-
formally ultrastatic spacetimes, are in good agreement
with the numerical results. Another approach to the ap-
proximate calculation of vacuum polarization near the
event horizon can be found in Ref. 11. Much less is
known about vacuum polarization near rotating black
holes. The explicit expression for (P )„„atthe pole of
the event horizon was found in Ref. 12. Some results con-
cerning the generalization of Candelas's consideration to
the case of massless fields of higher spins in Kerr
geometry can be found in Ref. 13.

The problem of vacuum polarization of massive fields
in curved spacetime has some features which make it
differ from the case of vacuum polarization of massless
fields. The main difference lies in the fact that in the case
of a sufficiently massive field when the Compton length
A, =h /mc is much smaller than the characteristic radius L
of the spacetime curvature, the contributions of real parti-
cles and vacuum polarization to the energy-momentum
tensor can be separated. In this case the quasiclassical ap-
proximation can be used to define the notion of a parti-
cle. ' In the framework of this approach one can show
that the probability of particle creation is exponentially
small. As to vacuum polarization its contribution to
(T& (x))„„is local and is completely determined by the
spacetime geometry in the vicinity of the point x. The
part of ( T&„)„„which describes vacuum polarization can
be expanded in powers of (,A./L) . For this purpose one
can use the DeWitt series expansion' of the effective ac-
tion in powers of m . In Ref. 16 this approach was used
for studying (P )„„in the Kerr metric. The value of
( T„)„„for a massive scalar field in the Schwarzschild
geometry was obtained in our work. '

The aim of this paper is to investigate contributions of
massive scalar, spinor, and vector fields to vacuum polari-
zation in the gravitational field of a rotating black hole.
In Sec. II the general expression for the first nonvanishing
term of the 1/m expansion of the renormalized effective
action for scalar, spinor, and vector fields is obtained in
Ricci-flat (Rz ——0) spacetimes. The Newman-Penrose
approach is used in Sec. III to obtain ( T&„)„„in the vac-
uum type-D geometries. The properties of the explicit ex-
pression for (T&„)„„in Kerr spacetime obtained in Sec.
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II. THE EFFECTIVE ACTIQN

The natural way to attack the problem of vacuum po-
larization by the gravitational field in the case of massive
fields is to use the effective-action approach developed by
DCWitt. ' If @' is the mean value of a bosonic quantum
field P', @'=(P'), then the effective action W[C&] is a
functional such that the mean field 4' satisfies the equa-
tion

5W[N]
5e

This functional can be constructed as

(2.1)

W[@]= —.lnZ [J]—@~J;,
l

IV are discussed in Sec. V. It is shown in particular that
the effect of dragging the surrounding spacetime into ro-
tation by a rotating black hole causes not only the mass of
the black hole but also its angular momentum to be shift-
ed by vacuum polarization. The contributions of massive
fields to the shifts of the mass and the angular momentum
are found.

We use the sign conventions of Misner, Thorne, and
Wheeler' and Planck's units: A=c =6 = l.

momentum tensor

T""=2~g ~

'~ 5S/5g„„

can be written as

(Tp„) 2 5W
(2.8)

where m is the mass of the field P', cr(x,x') is the biscalar
of a geodetic interval,

A(x, x')=g 'i (x)D(x,x')g ' (x'),

Because of the presence of the second term in Eq. (2.7),
which is proportional to A and which describes the quan-
tum corrections, the quantity (TI'") does not vanish even
in the case when @'=0.

It should be emphasized that the Green's function 6'~ is
unambiguously defined only in the space with the
positive-definite metric. It means that the effective action
has a well-defined meaning in the Euclidean section of the
complex spacct1mc mctr1C. By us1ng thc Schw1ngcl"
DcWitt representation one can write the Green's function
in the space with the Riemannian metric as

r

dO'J(x, x') = exp —I s — a'J(x, x',s),
16~ o s 2s

(2.9)

Z[J]= f Dgexp —(S[P]+P~J,) (2.3)

D(x,x'):——det( —o.&„) is the Van Vleck —Morette deter-
minant, and

A' 51nZ[J]
i 5J;

(2.4)

and the source J; should be expressed as a function of 4'
with the aid of Eq. (2.4):

a'J(x, x';s) = g a„'J(x,x')s" .
n=0

(2.10)

The matrices a„'~(x,x') are defined by a chain of recursion
relations. ' Equation (2.9) allows one to obtain the follow-
ing expression for the Euclidean effective action
O' = ——Tr ln(G'J-

We use here DeWitt's condensed notation and S[P] is a
classical action. Differentiating (2.2) gives kg '" (2.11)

5W[N]
be

(2.5) W= lim z f, e ' g s "tr[ag(x, x')], (2.12)
]/I

When J;=O, Eq. (2.4) reduces to the definition of the
mean field and Eq. (2.5) shows that this mean field satis-
fies (2.1). Using Eqs. (2.2)—(2.5) we can write the equa-
tion for 8'in the form

where the ultraviolet divergence is regularized by the in-
troduction of a positive lower limit in the proper-time in-
tegral and tr means the trace over the matrix indices. As
a result we find

e' ~ ~= D exp i 5 + N'— 5W
g@t

In the one-loop approximation one has

~= mdiv + karen ~

—tr dx ~g ~

'"[f,a, (x,x)+f,a, (x,x)
32%2

+f2a2(x, x)],

(2.13)

(2.14)

W [@]=S[@]——Tr lnG'~,
2

where O'J is a Careen's function for the differential opera-
tor

I',J.=5 S [N]/5@'5W .

If the action S[P] describes a free quantum field P'
propagating in a given spacetime background with a
metric g„ then the mean value (T" ) of the energy-

fi l m lnl +I (C———1+—lnm ),
fz ——lnl —C—lnm

(2.16)

W„„=— g 2 „ f tra„(x,x) ~g ~

' dx, (2.15)
32m. „3(m )"

where

4

fo ———m l + — lnl + ( ——C —lnm )+—1
Nl

2 2 2 7
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C being Euler's constant. Schwinger's renormalization
prescription tells us that the renormalized effective action
is S;,„=8' —8'd; . 8'd;„can be absorbed into a classical
gravitational action of the form

Sgrgy f ~g~dx(Ap+AIR+ApR+A3Rp~R)

+iJ —Qijg ~„vv+ (2.20)

where Q;J is a local and invertible matrix and V„ is a co-
variant derivative with any connection acting on any field.
Only Eq. (2.18a) is of the form. In the spinor case one can
introduce a new spinor variable @" ' connected with

' by the relation
(2.17) (y(1/2) e@ (1/2) m C (1/2) (2.21)

(V'V, —gR —m ')e"'=O,
()"v,+m)e""'=0,

(2.18a)

(2.18b}

(2.18c}

in the spacetime of a rotating black hole. The correspond-
ing Kerr metric in Boyer-Lindquist coordinates is of the
form

d 2= — 1 —2Mr
d&2

4Mra . 2gdr d~x ' x""
2Mrar2+a2+ sin 8 sin 81$

X

In what follows we shall consider the Ricci-flat metrics so
that there is no ambiguity in (T"") connected with the
finite renormalization of the coupling constants A.2 and A, 3.

Substituting (2.15) in (2.8) gives the series expansion for
the normalized expectation value of the energy-mo-
mentum tensor in powers of the parameter e=(k/L),
where A, is the Compton length A/mc and L, is the charac-
teristic radius of the spacetime curvature.

We are interested in obtaining (T&') for scalar (s =0),
Dirac spinor (s = —, ), and vector (s =1) massive fields
satisfying the equations

so that Eq. (2.18a) takes the necessary form

(V'V, ,'R m'——)l—a ""'=O,
where I is the unit four-dimensional matrix. As to the
vector field the nondiagonal term V V~@~" in Eq. (2.18c)
is an obstacle to applying the Schwinger-DeWitt tech-
nique. The generalization of this technique which allows
one to overcome this difficulty was developed by Barvin-
sky and Vilkovisky. ' In our particular case the result can
be obtained in the following way. (The authors are great-
ful to Dr. Vilkovisky and Dr. Barvinsky for indicating
this possibility. ) One can verify that the operators D and

S,

A A A A A A
satisfy the relations D S=SD =SS and hence

(2.23)

(D S m) '=— —(m —S)(D —m )
m

(2.24)

Note that the operator F=D —S—m coincides with the
differential operator in Eq. (2.18c) so that omitting an
inessential constant we have for the effective action

dr 2+g dg2

lO'= —Tr lnF
2

4

2
=—[Trln(D —m ) —Trln(H —m )] . (2.25)

where h=r +a —2Mr and X=r +a cos 0. M and
J=aM are the mass and the angular momentum of a
black hole.

Before applying the described approach to this particu-
lar problem we are to make the following remarks. First
of all the Schwinger-DeWitt technique is directly applic-
able only to second-order operators I',J. with leading
derivatives of the form

This shows that the effective action for the massive vector
field is equal to the effective action for the operator
D rn which —is of the form (2.20) minus the effective ac-
tion for a scalar field (2.18a) with /=0.

The general expression for a3 [matrices for the opera-
tors of the form (2.20)] was obtained by Cxilkey. ' ' By
using his results one can write

CXs

288&(7!m. m

+p,RR p&sR ~rs)+ +O(m ), (2.26)

where the ellipsis denotes the omitted terms which do not contribute to ( T&„) in the Ricci-fiat (R„„=o)spacetime and

ao

CXs ' CX1/2 4
Po

Ps= P1/2 '= '

42 —252('
—21
—42

(2.27)

We show now that Eq. (2.26) allows further simplification. Using the Bianchi identities one can write

+4R ~pygR R ~ g +R~p R yg R ~g 2R gR ~pygR (2.28)
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After inserting this relation in Eq. (2.26) we conclude that
the term in the square brackets is a pure divergence and it
can be omitted. In the Ricci-flat metric the second term
on the right-hand side of Eq. (2.28) does not contribute to
(T~ ) and thus it is also inessential. To simplify the ex-
pression for 8'„„we take into account the relations be-
tween tensor invariants constructed from the Weyl tensor
Capy5. Let us denote

Ep ——Cppy5C, J)„——C„p 5C '~C,gy

v ver/ p 5 v veyg p 5J2„C„p——ysc C, g, J3„——C„pysc Cg,
J4v Cupr5C C, g J5„=Cvpy5C C

Jp ——J)p
——2J2p ——4J3p ——4J4p ——2J5p .

One can also verify that

Ip ——
4 I&p, J;p ——

4 J;&p .

(2.30)

(2.31)

These relations allow us to rewrite Eq. (2.26) in the fol-
lowing final form:

Using the symmetry properties of the Weyl tensor
C p 5

——0 and Capy5
——Cr5ap ——Ctap~iy5~ and the identity

C r5C,~C vp
——0 gives the following relations:

Jdx~g~'"(a, R pysR s'&R& p+ „p,RR—pysR py )+ +O(m ),
96&7!~I (2.32)

where

a, = —4., p, =.
216—1008('

144
—360

(2.33)
T2p ——

6 I.p' —
6 6I,I.,' (3.1)

The Bianchi identities and Eqs. (2.30) and (2.31) allow one
to rewrite the expression for T&z in the form

It should be remembered that the above consideration
has a well-defined meaning only for a space with the
positive-definite metric. In order to obtain the results in
physical spacetime one can use analytical continuation. In
the general case analytical continuation of (T& ) gives

Let us introduce the following complex quantities:

I+ —=c+ c+ py'= —'(c c»'+ic* c»')
I pr5 vpr5

(0;out.
i T" i

0;111)
T

(0;out
~

0;in)
(2.34)

J+v =C+ y5C+ ~gC+ vP
Ip

=
2 (Copy Cys''C, g"p+icqpyscys'&C, g p), (3.3)

In our case the Euclidean Kerr metric is described by Eq.
(2.19) ~here the transformation ~+v C+ C+apy5; v

I apr5'I

a =ib, t= —i~ (2.35) = —'(c . c py'"+ic' . c p»")
2 apr5 p apy5 p

where

1 ]
Capys= 2(capys+1capys), Capys= 2eappcrc ys

Capy5C* = —Capy5C, Capy5C =Capy5C*

is performed. The Euclidean Kerr metric is regular if ~ is
periodic with the period ~/2n. where x =(r+ r)/4Mr+-
and r+ M+(M +b ——)'~. In this particular case analyti-
cal continuation of the Euclidean effective action to physi-
cal spacetime creates the mean value

(T„„)=(~~T„.~~), (2.36)

where
~

M) is the Hartle-Hawking vacuum state.
It is worth noting that the differences between this

mean value and the mean values in the Boulware vacu-
um

~

B) and the Unruh vacuum
~

U) states are pro-
portional to the factor exp( —m/TaH). This difference
can be neglected everywhere except the exponentially nar-
row strip around the horizon.

III. (T„");„INVACCUMSPACETIMEOF TYPED

Functionally differentiating Eq. (2.32) with respect to
tv g&ves

( pv)s 2 &W

(T );,„= (a, T~&+/3, T& )+O(m 4),1

96g7hz. m

Then we have

T&„——Re(12'„+" 35&I+"—105„—J+), .

(3.4)

(3 5)

—1 0 0 0
e"eebI —9 b Ib — 0 0 0

0 0 1 0

(3.6)

the Weyl tensor Capy5 has only one essential component:

We restrict ourselves by considering vacuum type-D
background geometries. Let k& and I" be the principal
null vectors normalized by the condition l"k& ———1. In
the null complex tetrad

e,"=(k",I",m",m"),
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,' C-.„,k ii'(kyl' m—ym') . (3.7) 01 and 10

Denote by g the basis in a spinor space which is connect-
ed with e,"by the relations

e 1 =k ~AA 400 0' =aoo' ~

A A'

e~z=l"=aAA4i4 i
—=~iiA A'

=aAA400 i' —=aoi' ~

p, p A A'

A A'
e4™~aiAA4igo =~io' ~

(3.8)

~AA '~p 5A 5A '~ ~AA '~v +v
BB' B B' AA' (3.9)

We shall use the following standard Newman-Penrose no-
tation for the spin coefficients l,b,d Eaie——cd g„Vg b

where aAA are the van der Waerden symbols satisfying
the equations

P

T

& ~'b' c'd' ~ P y 6 r +
4abcd 4 ~ ~ aaa'~bb'Occ''add'CaPyb ~ (3.11)

is of the form /abed =6$5ia5b5c'5di, where f is given by
Eq. (3.7). Using this basis we find for the complex tensors
(3.3)

(3.10)

In type-D vacuum spacetime such a choice of a spinor
basis exists in which the following statements are valid
(i) The spin coefficients x, o, v, A, , and e are equal to zero,
and (ii) the Weyl spin g,b,d,

I+v 6y25v g+v 12y35v
(3.12)

Substituting these relations in Eq. (3.5) we finally obtain the following expression for the vacuum energy-momentum
tensor in the vacuum type-D spacetime:

Ti& ———24ReI35&(g ) ," 20.5&g— 12g —d„Qd P 72/ [ my—(k„l"+l&k )+pp(mmmm '+m&m")

pr(k„m "—+m„k ) pm(l„m'—+mal")][,
Tq~ ——8 Re[(@ ).~' —5p(@ ).,"] .

(3.13)

IV. VACUUM ENERGY-MOMENTUM TENSOR
IN KERR SPACETIME

and

In this section we obtain the explicit expression for the
vacuum energy-momentum tensor of massive fields in
Kerr spacetime. It is convenient to choose the null com-
plex tetrad e~~ in Kerr geometry which in the Boyer-
Lindquist coordinates is of the form

2 2r+a
1

a
7

Rather long but straightforward calculations give
2

10080m m r

yq' r+ Re(a,,y——",q+p, re),

~)t ——p —45+ 106 +8p
t 8 Mr 7M

X X

2X
(r +a, —b„O,a ),

1 lm""= — p I,a sin0, 0, 1,~2 ' ' 'sinO

1m"= — p ia sin8, 0, 1, ——
sin8

(4.1)
sit ——0,

2 2

'7jy= p
s 1

+
a X

p' —27+70—— +8p'
X X

(4.3)

The spin coefficients p, m, r, and p, which enter Eq. (3.13)
are

p = (r ia co—s8)—
2—07T=p V

ri„=p —27+36 —2 +8p7
r'+a' Mr, M

x
g 36 8 a sln0
1r lp X

~=~ /X,

p =pb /2X,
y = ia sin8/3/2, —

(4.2)
yie ——y„h,8

wig
——p 9—36 +70 +Sp8 8 r +a Mr 7M

X X X
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rzt ———Sp +p [12X+2(r +a )]g2

+p7 [2X —2Xr —(r +a )(X 4—r )],g3

[X—(
' ')]

aX

+p [X +2Xr +(r +a )(X—4r )],7M
g3

r +ar2„=—6p +Sp +p (X+2r ),y2

g . 8a sinO
w2„——8EP

X

(4.4)

+p (r +a )[X—(r +a )](—X+4r ),
aX

r]~———6p +p™[16X—2(r +a )]+2

shifts of the mass and the angular momentum of a black
hole are calculated.

We begin by considering vacuum polarization near a
nonrotating black hole. The dependences of the com-
ponents (Tt')', „(firm lines), (T,')'„„(dashed and dotted
lines), and (T e)'„„=(T~~)'„„(broke nlines) on the radius
are shown in Fig. 1. The other components of the
energy-momentum tensor for massive scalar, spinor, and
vector fields are equal to zero. The numerical calculations
show that the contribution of Ti& to (Tz);,„ is much
smaller than the contribution of Tzz. This explains why
after dividing by the factor P, the quantities ( T„");,„for
different spins are very similar. Because of this property,
which is also valid for a rotating black hole, we shall give
later only the plots of (T„)„„for the conformal (g= —,

'
)

scalar (s =0) field.
The vacuum energy density e'= —( T,');,„ is negative at

(and under) the event horizon for the scalar and spinor
fields and is positive for the vector field. The vacuum en-
ergy density e' vanishes at r=2.2M, achieves its max-

&28=+2r~ ~

g 8 r +a Mr 7M2 2

kg ——P 2 —8 2

X
+14 +p (2X—2r ),y2 ao&Q

9 S=O

where p = (r ia co——s8)
+a —2Mr,

r=r +a cos 0 dk=r 28 ~(o')+ ~ )p
r

cled
= cx)y2 ~ = ' —4

0=-
~ ~O~ ~ +~'~~ ~ ~+m ~

Po

Pt= Pin .= .
216—1008$

144
—360

(4.5)

1 ~ 0
TCV~N v

128
~&"a&S

8

2

S=1/2

3
(&)

One can verify that ~"; satisfies the conservation law
~,"&. ——0 and the following relations are valid at the event
horizon: 0

PVg)t &ttl~lt

»oma~o~o~q

t t
it +ir+ BH iP

;, —0,
BH

(4.6)
1 ~ 0 1 ~ 1 1 ~ 2 1 3

(b)
1 ~ 4 1 ~ 5 r/2M

where QnH al(r++a ) is the a——ngular velocity of the
black hole. Equations (4.6) are the consequence of the
regularity of ~;z in a regular map covering the event hor-
izon. For s =0 and a =0, Eqs. (4.3) and (4.4) coincide
with the result obtained by the different method in Ref.
17.

0

a
-168

a

i
-348

S=1

~ ~OW

(ot to &

e Y'

V. PROPERTIES OF THE VACUUM
ENERGY-MOMENTUM TENSOR

IN THE KERR METRIC

In this section the properties of (T„");,„ for massive
fields in the spacetime of a stationary black hole are dis-
cussed and the contribution of vacuum polarization to

1 ~ 0 1 4 1 ~ 5 r/2M

Flax. 1. The dependence of ( Tt');,„(firm lines), ( T„');,„
(dashed and dotted lines), and (T );,„e(broke linnes) on r/2M
for scalar {s=0), spinor (s =

z ), and vector (s =1) massive
fields in Schwarzschild spacetime.
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imum (for s =0 and s = —, ) or minimum (for s = 1) at
r=2. 5M, and tends to zero as Ar at large distances.
This energy density does not indicate any peculiarity near
r =r+ which might be connected with the conjectural
high concentration of real massive particles near the event
horizon discussed by Zel'dovich. The components
( Ts );,„=( T~~ );,„behave analogously while ( T,");,„has
no extremum outside the horizon. Comparing the plots
given in Fig. 1(a) with the plots for the components of the
vacuum energy-momentum tensor for the scalar massless
field near the black hole obtained by Fawcett shows that
they are qualitatively the same up to the common factor
M m /mp) ).

Because of vacuum polarization the mass M of a black
hole measured by a distant observer,

1 ~ p
z

V k(t)dsap ~

1
MgH ——— V gp~, ~ds p .

8~ sBH

This difference is equal to

AM':—M' —MgH ——— ( 2( Tp );..gP(, )

—( T' )'„„g(„)dX

96&(7!em M

224 —1008$
112
336

For the black hole with a «M calculations give

(5.2)

(5.3)

(a;P)
P(~)~ =~~ k(~)'

(5.1)

differs from the mass MBH determined as the surface in-
tegral over the horizon:

—1144+5292$
—716
1186

a
M2

(5.4)

Q, = 0.5&

cos 9

1 ~ 0

3 1 4 1 ~ 5

0 0

L LLLLX
p. 4

0LLXLLLLpgL L L L

cos 90 ~ 0
L L L L

LL p4L L L L L
L L L L TL L L L LL L L L L L L LL L L L X 1 0l I f

1 2 1 3 1 4 1 ~ 5

cos 80 ~ 0

0.2

L L L M pL X X L LL L 0 ~ 6

p 8~LLLLLXXXX~L
t

0 ~ 0 cos

g g ~ xV~V~ o.2
L L

L L L L 0
LLLL L L L L L X XTL X X L L L L

r r 1 p

1,p 1 ~ 1

(b)

1 ~ 3 1.4 1 ~ 5
l ~ 0 1 1

(b)

1.2 'l
~ 3 1 4 1 ~ 5

FIG. 2. The dependence of ~', "on r and 0 in Kerr spacetime.
(a) a/M =0.5~ (~t)max=48. 62~ (7t)min= —24. 62; (b) a/M =1.0~

( V~ )max 293& ( V~ )min 169o 63 ~

FICs. 3. The dependence of ~~
'~ on r and 0 in Kerr spacetime.

(a) a/M =0.5, (~~),„=80.19, (~~);„=—19.75; (b) a/M =1.0,
(~'lt ) 467 (~4') . 191
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J=
16

V 4(q)ds p,a p

JBH = V g(p)dsap ~

a p
16~ 'BH

(5.5)

where g~~)Bp ——8& and g&I
' ——0. Then the vacuum-polar-p (a;p)

ization contribution to the total angular momentum is

~J'=&' —&aH= J (Tp);,„g(p)dX . (5.6)

r)r

For a «M the calculation gives

aM
96&&7!777/( ~

204 —1008$
192

—396

Q-+0
M

(5.7)

For rotating black holes, besides the dependence of AM'
on a, the rotation leads also to the effect of
"(anti)screening" of the angular momentum of the black
hole. Define the angular momentum J of the black hole
measured by a distant observer and its proper angular
momentum JBH by the relations

This effect is a consequence of the existence of nonzero
fluxes of the energy density ( T~ )'„„around a black hole.
The angular velocity co of the observer for which this flux
vanishes coincides near the event horizon with the angular
velocity of the black hole: QBH ——a/(r++a ). At far dis-
tances the angular velocity co of such an observer is pro-
portional to Bardeen's angular velocity 0= —g,~/g~~..

(6—28$) /( —11+56$)
1

0 = 2aM/r

10
23

(5.8)

In the general case such a reference system which is
comoving with the vacuum-energy-density fluxes does not
necessarily exist for all values of r. In Figs. 2—7 the
dependences of ~' ' on the angles 0 and the radius r for
the massive scalar (g= —,

'
) field are shown for the values

0.5 and 1.0 of the parameter a/M. The maximal (r&)
and minimal (rz);„values of r&

' are given in the figure
captions.

(o) v

0, = 0.5+ ~ = 0.5H

COB t)

-2

0, 4.

0.6

gLLLL%XT
S I 1 0

.2 1.3 1 4 1 5

cos 8
pL L L L.

0

0LLLL LLLL L L L L LL L L 1 pf I

1 2 1 ~ 3 1 4. 1 ~ 5

~ (+3 v'

rt

cos 6

it&Xxir c-'
LLL 04,L

LL~ LLLLLLXL LL X L X 'L L L L X X L 1 pl I

cos 60.0

L LX
0 4

L p

po 8
1 ~ 0

1 ~ 0 1 ~ 1 1 ~ 2 1 3 1 4. 1 1 ~ 0 1 ~ 1 1.2 1.3 1 ~ 4 1 ~ 5

(b)

FICs. 4. The dependence of w'„'" on r and 0 in Kerr spacetime.
(a) a/M =0.5, (r,'),„=52.62, (~'„);„=—24. 62; (b) a/M =1.0,
(~„"),„=371,(v', );„——185.45.

(b)

FICx. 5. The dependence of ~g
' on r and 8 in Kerr spacetime.

(a) a/M =0.5, (~q),„=48.19, (~q);„=—19.75; (b) a/M=1. 0,
(~g),„=4.17, (~6));„=—3.09.
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a = 0.5~

O. = 0.5+

cos 8a
Q 0

0 ~ 2

& L L L L-~ 0-4
L

LL LLLtLLL&TL
I I

1.0 1.1 1.2 1.3 1.4 1.5

cos 9

1 ~ 3 1 4 1 ~ 5

0.0
L ~0.2LLM04L
L L L M 0.6L L

0 8

I 0

cos 90 ~ 0

L
L X L L X X LL L L L X L 0L

0 8LL
I

cos 9
LLL LL W Q ~ 4

ttt LtL LL

1 ~ 0 1 ~ 1 1 2 1 ~ 3 1 ~ 4

1.0 1 1 1 2 1.3 1 4 1 5 (b) rjr +

(b) x/z +

FIG. 6. The dependence of ~~ "/M on r and 0 in Kerr space-
time. (a) a/M =0.5~ (~y/M)max 29 86, (&p/M)min
a/M = 1.0, (w~/M), „=1S6, (w~/M);„= —35.49.

FIG. 7. The dependence of ~', ' M on r and 0 in Kerr space-
time. (a) a /M =0.5, (w,M),„=0, (w„M);„=—41.81; (b)
a/M = 1.0, (~,M),„=72.19, (v.,M);„=—345.07.

One can see that rotation of the black holes leads to the
variation of ( T„");,„with 8, so that the sign of ( T& )'„„
can change along the meridian.

For rotating black holes one can expect that the main
features of the behavior of (T„);,„which are connected
with the effect of dragging the surrounding spacetime into
rotation are also inherent in the massless case. Namely,
the massless fields must contribute to the energy-density
flux around the rotating black hole and to the shift of its
angular momentum. These contributions are larger by the
factor M m /mp~ than the contributions of the massive
fields. One can also expect that another important prop-
erty of vacuum polarization of massive fields, namely its
essential spin dependence, is valid in the case of massless
fields. It is interesting to note that there exists deep analo-
gy between gravitation and electromagnetism. In the
framework of this analogy gravitational interaction of
masses and angular momenta is analogous to electromag-
netic interaction of charges and magnetic rnornents. The
main difference between these two cases lies in an addi-
tional minus sign which is present in the gravitational

theory. Using this analogy we may speculate that the ob-
tained spin dependence of the shift of the angular momen-
tum of a black hole is analogous to the spin dependence of
the shift of the magnetic moment in quantum electro-
dynamics and that there exists the gravitational analog of
diamagnetism and paramagnetism.

It is interesting to note that the contribution of scalar
and spinor massive fields make the observable (at far dis-
tances) mass and angular momentum of the black hole
larger than its proper mass and angular momentum mea-
sured at the horizon. This effect can become important
for the existence and properties of elementary black holes
which have been discussed by Markov ' and by Hawk-
ing."
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