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What happens when an accelerating observer detects a Rindler particle
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The nature of the interaction between a quantum field and an accelerating particle detector is
analyzed from the point of view of an inertial observer. It is shown in detail for the simple case of a
two-level detector how absorption of a Rindler particle corresponds to emission of a Minkowski par-
ticle. Several apparently paradoxical aspects of this process related to causality and energy conser-
vation are discussed and resolved.

I. INTRODUCTION

It is by now well known that for a free quantum field in
its vacuum state in Minkowski spacetime, an observer
with uniform acceleration a will feel that he is bathed by a
thermal distribution of quanta of the field at temperature
T given by' kT =tria l2mc. In particular, an accelerating
particle detector will be excited by the quantum field. For
a simple particle detector consisting of a quantum-
mechanical system coupled linearly to the field this effect
has been investigated previously. ' The main purpose of
this paper is to investigate in detail the influence of such a
detector on the state of the quantum field, thereby en-
abling us to obtain an "inertial interpretation" of what the
accelerating observer would view as the absorption of a
quantum by the detector.

Qur investigation is motivated by the following con-
siderations. The primary concern is to examine the "reali-
ty" of acceleration radiation. From the inertial viewpoint,
the quantum field is in its vacuum state; no particles are
present. Nevertheless, an inertial observer must agree that
an accelerating particle detector will get excited. In some
sense, then, the acceleration radiation becomes "real" to
an inertial observer by virtue of its interaction with the
particle detector. Precisely how does an inertial observer
interpret the act of absorption of a Rindler particle' ?

What is the resultant state of the quantum field after such
an absorption has occurred?

As we shall show below, the inertial observer interprets
the absorption of a Rindler particle as the emission of a
Minkowski particle. However, this leads to the following
apparent paradoxes which also comprise part of the
motivation for our investigation. First, the Minkowski

particle has a substantial probability to be found in a re-
gion of spacetime noncausally related to the "Rindler
wedge" containing the accelerating particle detector. Con-
sequently, it might appear that the decision to turn on a
particle detector in one Rindler wedge would result in an
increase in the expected stress-energy in the other Rindler
wedge. Thus, we appear to have a mechanism for violat-
ing causality. As we shall see below, this difficulty is
resolved when higher-order processes are taken into ac-
count. Second, there is an apparent conflict between the
determinations by the inertial and accelerating observers
as to whether energy has been gained or lost by the quan-
tum field during the process of detection. According to
the inertial observer, when a particle is emitted the expect-
ed stress-energy tensor of the quantum field satisfies the
usual positive-energy condition, and thus the expected
"boost energy" of the field in a Rindler wedge must in-
crease. (Here the boost energy is defined by
E =f (T,b)b'dSb, where the integral is taken over a
Cauchy surface S for the Rindler wedge and b' is the
boost Killing field. ) However, according to the accelerat-
ing observer, a field quantum has been absorbed and hence
it would seem that the expected field energy as determined
by this observer (i.e., the expected boost energy) in his
Rindler wedge goes down. As we shall see in Sec. III, this
apparent discrepancy is resolved by the fact that, quite
generally, the absorption of a particle by a detector placed
in a thermal bath increases the energy of the quantum
field.

In Sec. II we shall review the demonstration that the
Minkowski vacuum state corresponds to a thermal state in
Rindler spacetime. Qur simple model of a particle detec-
tor will be given in Sec. III, and its behavior in a thermal
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bath will be studied. Finally, in Sec. IV, the behavior of
such a detector as an emitter when accelerating in Min-
kowski spacetime will be analyzed.

Although we shall consider here only quantum fields in
Minkowski spacetime, similar phenomena occur in
de Sitter spacetime and may be of significance for under-
standing the behavior of a quantum field interacting with
matter (or with itself) during an inflationary phase of ex-
pansion.

II. RINDLER DESCRIPTION
OF THE MINKOWSKI VACUUM

b'=a(xt +tx ), (2.1)

where a is a constant. Thus, b' is tirnelike in the two
Rindler wedges I and II of Fig. 1. In these regions, the
proper acceleration of an orbit of b' is

In this section, we shall briefly outline the derivation of
the well-known relation between the accelerating and iner-
tial descriptions of free quantum fields in flat spacetime. '

For definiteness, we shall treat the case of a real Klein-
Gordon scalar quantum field in four-dimensional Min-
kowski spacetime. However, the validity of our results for
other free fields will be manifest from the fact that we
shall not use any properties specific to the Klein-Gordon
field in our analysis. We shall employ units with fi=c = 1

throughout the paper and will use metric signature
+++ ~

In addition to the usual time-translation Killing vector
fields, Minkowski spacetime also possesses boost Killing
fields which are timelike in portions of the spacetime. In
terms of a global inertial coordinate system t,x,y, z, the
Killing field which generates a boost about the origin in
the x direction is

FIG. 1. A spacetime diagram of Minkowski spacetime. In
the "Rindler wedges" I and II, the boost Killing field b' is time-
like.

The equation satisfied by the Klein-Gordon field in
Minkowski spacetime is

( —m )4=0. (2.4)

The space of solutions to this equation has an inner prod-
uct defined on it by

& 0 0 & = —f, [4'~„A (d„4')A]—d~", (2.5)

where X is some three-dimensional Cauchy surface for the
spacetime and dS& is the surface element for that three-
surface. This inner product is nonpositive definite but be-
comes positive definite when restricted to an appropriate
subspace of solutions.

In the Minkowski prescription, the field operator is
given by

@=g [F.a~(F )+F*a~(F )] (2 6)

=V'ln V, (2.2)

A =(2'A, )' =(x t )
' =—a/V . (2.3)

Thus, a is just the acceleration of the orbit along which
V=1, i.e., along which Killing time agrees with proper
time.

The Rindler wedge I—viewed as a spacetime in its own
right —is globally hyperbolic and possesses the static,
everywhere-timelike Killing vector field O'. Hence, one
may apply the general procedures for defining a quantum
field theory in a static, globally hyperbolic spacetime to
this Rindler wedge. Similarly, Rindler wedge II also is a
static, globally hyperbolic spacetime. Most of the
remainder of this section is devoted to reviewing the rela-
tion between the description of the quantum field in re-
gions I and II obtained by this "Rindler quantization"
procedure to that originally obtained by the standard Min-
kowski quantization prescription for all of Minkowski
spacetime.

where V = b'b, =a (x —t ). Thus, th—e magnitude of
the proper acceleration is

(2.7)

a~(F, ) = &F;,C» . —
On the other hand, in the Rindler description, we have

g [ala+i(al )+aja~i(aj )] region I
J

g [P~az»(PJ )+gz'a„»(PJ )] region II .
J

(2.8)

where IF; I comprise an orthonormal (in the Klein-
Gordon inner product) basis of Minkowski positive-
frequency solutions of the Klein-Gordon equation and
a~(F~ ) and aM(F; ) are the corresponding annihilation and
creation operators for these states on the symmetric Pock
space constructed from the Hilbert space of Minkowski
positive-frequency solutions. Here "Minkowski positive
frequency" is defined by means of Fourier transforms
with respect to inertial time t, i.e., a time parameter de-
rived from an ordinary time-translation Killing field. The
Minkowski annihilation and creation operators can be ex-
pressed in terms of N by

a (F;)=&F;,@&,



WHAT HAPPENS WHEN AN ACCELERATING OBSERVER. . . 1049

Here I' denotes an arbitrary one-particle Minkowski state,
i.e., a positive-frequency (with respect to inertial time)
solution of the Klein-Gordon equation, and aM(E) is the
Minkowski annihilation operator associated with that
state. The quantity Pi+ denotes the one-particle Rindler
state in region I obtained by restricting the function I to
region I and then taking its Rindler positive-frequency
part, while aRI(pi ) is the corresponding Rindler annihila-
tion operator. Similarly pi denotes the (Rindler time)
negative-frequency part of E in region I and aRI(pi ') is
the creation operator of Pi *. The quantities for Rindler
wedge II are defined similarly.

The states of the quantum field can be characterized ei-
ther as Minkowski particle states or as Rindler particle
states. The relation between these two characterizations
follows directly from Eq. (2.9). To determine this relation
explicitly, we must explicitly find the Rindler-time
positive- and negative-frequency parts of a sufficiently
wide class of inertial-time positive-frequency solutions.

This task can be accomplished as follows. We intro-
duce null coordinates u, v by

u=t —x, (2.10)

v=t+x . (2.11)
In terms of the coordinate vector fields of this coordinate
system, the boost Killing field b' is given by

b'=a v
Bv

a

—u
Bu

a

(2.12)

Here Iaji is an orthonormal basis of Rindler positive-
frequency solutions in region I and aRI(aj ) and aRI(aJ )

are the corresponding annihilation and creation operators,
while IPJ I, aRII(PJ ), and aRII(PJ ) are the analogous quan-
tities for region II. Note, however, that the relevant Kil-
ling vector field is b', so we use "Rindler positive frequen-
cy" defined by Fourier transforms with respect to
"Rindler time" ~ (i.e., parameter along b') rather than
inertial time t.

By equating the two expressions (2.6) and (2.8) for @,
we obtain in the usual manner the Bogoliubov transforma-
tion relating the Rindler and Minkowski annihilation and
creation operators. We find

IIM (+) IMARI( (~'I ) +RI( Ii'I ) ++R II( (()II ) +RII(NII

(2.9)

classical evolution of a Klein-Gordon field, specification
of the value of the field on X does not suffice to uniquely
determine a solution. However, the only obvious types of
solutions which can fail to "register" on X are (superposi-
tions of) plane waves (in the massless case only) having
propagation vectors exactly in the negative x direction.
However, such solutions do not have appropriate asymp-
totic falloff properties at infinity. This suggests that a
solution which is well behaved at infinity is uniquely
determined by its value on X. In the massless case, this
idea can be formulated precisely and proven by examining
the conformal completion of Minkowski spacetime. In
conformally completed Minkowski spacetime, all the null
geodesic generators of X begin at a single point p of W
and end at a single point q of W+. Indeed, X comprises
the entire future light cone of p except for one null geo-
desic generator on W, and it comprises the past light
cone of q except for one generator on W+. Now, if we
take as a precise asymptotic falloff condition that the con-
formally weighted Klein-Gordon field be smooth every-
where on W and W+, then its value on these remaining
two generators will be determined from its value on X by
continuity. But data on the future light cone ofp and past
light cone of q do suffice to determine the field
throughout Minkowski spacetime. Thus, any solution of
the massless Klein-Gordon equation in Minkowski space-
time which is well behaved at null infinity is uniquely
characterized by its value on X. This proof breaks down
in the massive case since the conformally transformed
equation no longer is smooth on W and W+, but we shall
assume that asymptotically well-behaved solutions also are
determined by data on X in this case.

Now the solutions which are positive frequency with
respect to inertial time are precisely those whose data on
X are positive frequency with respect to u, whereas the
solutions which are positive frequency with respect to
Rindler time in region I are those whose value on the por-
tion of X with u &0 is positive frequency with respect to
~= —(1/a) ln

~

u
~

. Similarly the solutions which are pos-
itive frequency with respect to Rindler time in region II
are those whose value on the u & 0 portion of X are posi-
tive frequency with respect to ~=+(1/a)ln~ u ~. (The
change in sign of ~ for region II compensates for the fact
that b' is past-directed timelike there. )

Let Pi~ be a solution to the Klein-Gordon equation
which on X is given by

a= —au
Bu ain[u

~

which implies

r= ——1nfu
f

.1

a
(2.14)

It is well known that X is not a Cauchy surface for
Minkowski spacetime and that for the problem of the

Consider, now, the three-dimensional null plane X defined
by U =0 (see Fig. 1). On X, the boost Killing field b' is
normal to X and parallel to the null translational Killing
field (a/au)'. The relation between "boost time" ~ and
"inertial time" u on X is given by

a a a

(2.13)
a

P(y, z) e '"'=P(y, z) e'~~' "' "' u &0
0, u)0, (2.15)

where P(y, z) is an arbitrary function of y and z and co & 0.
Then Pi gives rise to a purely positive-frequency solution
(with respect to Rindler time) in region I. (Note that Pi
is not well behaved at u=0, does not go to zero as
u~ —oo, and consequently is not normalizable. Howev-
er, this is easily remedied by constructing wave packets in
the manner described in Ref. 6 and the reader should in-
terpret Pi„below as being any wave packet with frequen-
cies peaked sharply about co.) Similarly, we define P«on
X to be the complex conjugate of the "time reverse" of
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0, u&0
ya( z) —(im/a)inn u ()

(2.16)

so that P»~ gives rise to a purely positive-Rindler-
frequency solution in Rindler region II. The key observa-
tion needed to relate the inertial and Rindler notions of
positive-frequency solutions is that the function

(y +e mo/a—y+ )y(1 2ncu/—a))1/2 (2.17)

E2 (u) =F) ( —u)

also is purely positive frequency and hence

&M(+2 )=l&Z»(N» ) —e

(2.19)

(2.20)

The Minkowski vacuum
~

0~ ) satisfies
&~(F) )

l
oM) =uM(F2 )10~)=0. By applying Eqs.

(2.18) and (2.20) to ~OM) one obtains the following ex-
pression for

~
0~ ) as a Rindler state

~OM)= / Njy e "' ' '~n, ,l)s ~n, ,ll), (2.21)

where ¹~=(1—e ' ) . Here the product is taken
—2m'/a 1/2

over a complete set of Rindler modes j of the forms (2.15)
and (2.16) and

~
nJ, I) denotes the state with n~ particles in

mode (Pi„)J in region I, while
~
n~, ll) denotes the state of

n~ particles in mode (P»„)J m region II. Note that there
are very strong correlations between region I and region
II. If an observer in region I determines that n/ particles
in mode (Pi„)J are present, then with unit probability, an
observer in region II will find nj particles in mode (P»„)/.

By "tracing out" over the degrees of freedom associated
with Rindler region II, we obtain the density matrix p for
region I given by

on X is purely positive frequency with respect to u and
thus gives rise to a solution which is purely positive fre-
quency with respect to inertial time. ' (Note that al-
though this is strictly true only if Pi„and P»„are exact
eigenfunctions of 8/B~, it will also be approximately true
for functions which are normalizable wave packets of ~
whose Fourier transform is sharply peaked around co.)
Thus, by Eq. (2.9), for all P&„of the form (2.15), we have

&M(+1 )=l&~i(ki )—e "'&z»(4» )]/'(I —e '
(2.18)

Similarly, we find that the solution F2„defined on X by

as follows. Suppose an observer accelerates uniformly
with acceleration a in Minkowski spacetime. Then to
him, the structure of spacetime would appear to be "time
independent" and thus he would view himself as "stand-
ing still, " with the relevant "time translation" isometry
given by O'. If he were asked to formulate the quantum
theory of a Klein-Gordon scalar field, he would naturally
do so in terms of Eq. (2.8) for region I. What we have
shown al ove is that when t e field is in t e s~a~e

~
0~),

our accelerating observer would describe it as being in the
thermal state (2.22). We emphasize that Eq. (2.22) is ex-
actly a thermal density matrix for Rindler states. Any
particle detector used by the accelerating observer which
measures the state of the field in terms of Rindler parti-
cles will determine that there is a thermal distribution of
Rindler particles. However, this does not mean that a
detector will respond exactly the same way as it would if
placed in inertial motion in a (real) thermal bath of Min-
kowski particles. This is because the mode functions Pi„
for Rindler particles are different from the mode func-
tions for Minkowski particles. Another way of saying this
is that the properties of a box of thermal radiation in iner-
tial motion are measurably different frora those of a box
of thermal radiation in accelerating motion; for example,
the density distribution in the inertial box is uniform,
whereas the density distribution in the accelerating box
will vary with height because of the effective gravitational
field. In the case of a scalar field, it turns out that a
"monopole detector" cannot distinguish between the iner-
tial and accelerating thermal distributions. However, in
the case of an electromagnetic field, this difference can be
seen. We emphasize, however, that an accelerating ob-
server still sees an exactly thermal distribution of particles;
the only difference between the scalar and electromagnetic
cases is that in the electromagnetic case, an isoiropic,
point detector is sensitive to the fact that the mode func-
tions in the accelerating case are different from the mode
functions in the inertial case.

Finally, we note that Eqs. (2.18) and (2.20) can be in-
verted to express a+i(gi„) in terms of Minkowski annihila-
tion and creation operators. We obtain

(p ) [& (y )+e a~/a&t (F )]/—(1 &
2am/a)1/2—

(2.24)

This formula will be used in Sec. IV.

III. MODEL PARTICLE DETECTGR

(2.22)

kT =a/2~ . (2.23)

The physical interpretation of this result may be stated

This is precisely a thermal density matrix. Thus, we find
that the Minkowski vacuum corresponds to a thermal
state in each Rindler wedge at temperature

In this section we will introduce a simple model particle
detector, designed to detect particles of the quantum field

The model is essentially the "particle in a box" detec-
tor given previously' by one of us, but we shall simplify it
further by assuming that only two energy levels are
relevant and we also shall spell out more explicitly the
coupling which we take between the detector and field.

We will restrict attention here to the case of a static
spacetime with the detector "at rest, " i.e., following the
orbits of the static Killing field. However, our model will
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be applicable for any detector motion in any spacetime
provided only that the region of spacetime occupied by
the detector can be treated as approximately static. This
will be the case if the detector is sufficiently small and the
changes which it undergoes in curvature and acceleration
are slow compared with the proper frequency of the parti-
cles it seeks to detect.

%'e shall take our detector to be a two-level system,
with basis states denoted

I
t & and

I
l &. We take the free

Hamiltonian (with respect to the Killing time transla-
tions), HD, of the detector to be given by

Hg) ——QA~A . (3.1)

Here A ~ and A are the raising and lowering operators de-
fined by

A
I
»=A'I t&=0, (3.2a)

(3.2b)

(3.2c)

Thus,
I

&& is the ground state of HD (with zero energy)
and

I
t& is the excited state with energy Q. It is con-

venient to introduce the operator C by

C =[A,A] . (3.3)

Then —,(I+C) is the projection operator onto
I

t& and
—,(I—C) is the projection operator onto

I
& &.

where Hz is the free Klein-Crordon Hamiltonian of the 4&

field.
Before continuing, we will relate this detector to that

described previously by one of us. ' There, the detector
was taken to be a free particle in a rigid box. It was impli-
citly assumed that the coupling of the particle to the N
field was of the form

Ht e f 4(x)5——' '(x —Q)V' —g d3x, (3.6)

where Q is the position operator for the particle in the
box. (The particle was assumed to be nonrelativistic, so
that Q was defined. ) We expand 5' '(x —Q) in terms of
the energy eigenstates

I
E; & as

The coupling of the detector to the @ field is assumed
to be given by the interaction Hamiltonian

Hg e——(t) f C&(x)[f(x)A+/*(x)At]v' —g d3x . (3.4)

Here e(t) is the coupling constant, with explicit time
dependence introduced to enable us to "turn on" and
"turn off" the detector, f(x) is a smooth function which
vanishes outside the detector, and the integral is taken
over the static slice X at time t (H.ere we use x to denote
a spacetime point and x to denote a point on X.) Thus,
the total Hamiltonian of the field-detector system is

(3.5)

S"'(x—Q) = g «; I

&"'(x —Q) I EJ &
I
E; & &Ei

I

l,J

f 5"'(x q)1p;*(—q)y, (q)~ gd'q-
l,J

=pig( )y( ) IE;&&EJ I, (3.7)

where tp; is the position-space wave function associated with
I
E; &. Thus, we obt»n

H =By f Wx)g;'(x )g (x )~ g d'x (3.8)

In our case, we further simplify this model by restricting attention only to the i =0, 1 subspace and dropping the diagonal
terms

I
Eo & &Eo

I
and

I
Ei & & Ei

I
We obtain our model by writing A =

I
Eo & &Ei

I

and 8x ) =&o(x 4'~(x ) a"d ma"'"g
the coupling constant e(t) explicitly time dependent.

In the following we will use both the interaction and Heisenberg representations to examine the evolution of the detec-
tor and the field. Although these representations are of course equivalent, the imagery produced by calculations done in
these representations can be different and some questions are more easily answered in one than in the other.

In the Heisenberg representation, the states do not evolve while the operators do. The equations of motion for an ob-
servable 0 are

=i [H, O] . (3.9)

For the Hamiltonian of Eq. (3.5) this leads to the following equations of motion for @,A, A, and C:

(CI —m )N=e(t) f [P(x)A+/*(x)A ]v' —g d x,
iQA+iCe(t) f @—(t,x)f*(x)& gd x, —

dt

dt
=2i E( t) f [f(x )A g(x )A t]N(t, x )v' —g d x—.

To first order in e, the solutions to these equations are

(3.10)

(3.11)

(3.12)
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(3.14)

@(x)—@ (x)+ f Gz(x;t', x')e(t')[Mpe ' 'p(x')+ape' 'g'(x')]v' —g'd x'dt', (3.13)

A(t)=ape 'o'+Cpe ' ' e' 'e(t') f C&p(t', x')g*(x')v' —g'd x'dt',

C(t)=Cp+2i f e(t') f [Wpe ' 'p(x') —Mpe ' 'g*(x')]V' —g'd x'dt'. (3.15)

Here Grr is the retarded Green s function, &5p, Ap, and Cp are the solutions to the free (e=O) equations which are equal
to @,A, and C at times before the detector is turned on, and we have defined Mo ——Aoe' '. Note that Mo and Co are
constants.

In the interaction picture, on the other hand, the operators obey the free (e=O) field equations at all times. Thus if we
choose the time at which the Heisenberg and interaction pictures agree to be prior to when the detector is switched on,
the interaction picture observables will be just 4 p Ap and Cp. In the interaction picture, a state

i
s ) evolves via

i
s, t) = Texp ~ i f— e(t') f C&p(t', x')[g(x')A p(t')+p*(x')A p(t')]v' g'd—x'dt' .

i
s, —oo ), (3.16)

where T denotes time ordering. To first order in e we have

is, t) =
i
s, —oo ) i f— e(t') f @p(t',x')[Mpe ' 'g(x')+ape' 'g*(x')]v' g'—d x'dt' is, —oo ) . (3.17)

We will be interested in the case in which the detector is in its lowest state
i

), ) initially while the field initially is in a
state containing

i
n) particles in the mode X. Thus, the initial state is, —oo ) is in;l). We shall assume that e(t) van-

ishes for
i
t & T»Q ', and that it is roughly constant for

i
t

i
~T Hence. , the Fourier transform e(cp) will be con-

centrated near co=0 with width much less than Q. Using Eqs. (3.17) and (3.2) we find that the state of the system at
times after the detector is switched off (e=0) is

is, t&T)—= is„)
=

i
n;g) i f e' 'e(t')p—*(x')C&p(t', x')v' g'dt'd x—'

i
n;t) .

Now, we use the fact that for any test function f we have

@p(f):f f@pv —g d x =a(I —) —a (I +) .

(3.18)

(3.19)

Here a and a are the creation and annihilation operators for the free field No and I + and I are the positive- and
negative-frequency parts (with respect to the Killing time) of the retarded minus advanced solution I with source f,

I (x)= 2i f [Gz—(x;x') —G~(x;x') jf(x')V g'd x' . — (3.20)

This is most easily seen by writing

g(x)= 2i f Gg(x;x—')f(x')v' —g'd~x' .

Then we have ( —m )g = —2if and

(3.21)

f f@pv' gd"x= —f—( m)g4pv— gd x—
2

l

X. Thus we find

i.„)=in;~) —ivn (y,X) in —I;t) . (3.25)

In particular, the lowest-order probability of finding the
detector is the state

i
t ) is

f [gV'„@p—(V'~)C&p]dS", (3.22) 2
=n f e(t)e' 'f*(x)X(t,x)v' —g d x (3.26)

is ) =
i
n;J, ) i

i
T)Sa( —

)yi n) . (3.24)

However we have a (y) i
n ) =v n (y,X)

i
n —1) where

i
n —1) denotes the state with n —1 particles in the mode

where X is a Cauchy surface to the future of the support
of f. On this surface, g agrees with I, and, as I" is a solu-
tion of the free equation, we have

f fepv' gd'x =—(I*,ep) . (3.23)

By splitting I into positive- and negative-frequency parts
and using (2.7) we obtain (3.19).

We apply Eq. (3.19) to our case where f =e(t)e' 'g*(x ).
Since e(t) is essentially constant f will have negligible
positive-frequency part, so I + -O. Thus writing y= I'
we obtain

Thus, the excitation probability is just equal to the num-
ber of quanta present times a cross-section factor which
represents the overlap between the mode of interest and
the detector. Furthermore, according to Eq. (3.25), to
lowest order in e the detector will be excited if and only if
one quantum of the field has been absorbed. Thus, our
simple model does function properly as a particle detector.

We now examine the behavior of the detector-field sys-
tem when the field is initially in a thermal state. Since a
thermal bath consists of an incoherent superposition of n
particles in each mode of energy E—with probability pro-
portional to the Boltzmann factor e " [see Eq. (2.22)
above] —the behavior of the detector in a thermal bath fol-
lows immediately from its behavior in n-particle eigen-
states as calculated above. In particular, the excitation
probability in this case will just be given by [using (3.26))
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X,n

ti„ I &y» & I'

e
ti„&y 3 (3.27)

(3.28)

where T&„ is the stress-energy operator of the 0& field, p (s)
is the probability that the initial state was

I
s &, and P, (s)

is the detector excitation probability when the initial state
was

I
s &. In the case of an initial thermal bath, a direct

calculation yields

tp„(y)
1 —e-t'" &y, y&

' (3.29)

where & T„„&o denotes the expected stress-energy of a
thermal bath and tz„(y) is the classical stress-energy of
the mode y,

t„„(y)= ,' I v„y'v-„y ,' g„,(v—.y—*v"y+m'
I y I

') l+c.c.

(3.30)

Since too is positive, this shows that the expected field en-

ergy increases upon detection.
The reason for this behavior can be understood as fol-

lows. The initial state of the quantum field is not an
eigenstate of energy. The act of detection not only re-
moves a particle of energy Q from the field but it also per-
forms a (partial) measurement of the state of the field,
since the detector is most likely to be excited if a large
number of particles were initially present, as can be seen
from the factor of n appearing in Eq. (3.26). Thus, the
fact that the detector became excited weights the high-

where p(n, X„) is the probability that the state has n quan-
ta in the mode X„, co is the frequency with respect to the
Killing time, and g are a complete set of positive-co-
frequency states in the vicinity of the detector. (Since y is
positive frequency and is by assumption a state whose fre-
quency is very near co =A, the last line is a reasonable ap-
proximation. )

Nevertheless, the result of the interaction of the detec-
tor with the thermal bath is, at first sight, rather surpris-
ing. If the detector is found in its excited state, we found
above that a field quantum is absorbed and therefore one
might expect that the expected energy of the @ field will
have decreased by the energy 0 that the detector has ab-
sorbed. However, this obvious expectation is wrong. We
now shall show that when the detector is excited, the ex-
pected energy of the W field goes up.

Since ~ (I+Co) is the projection operator onto the
I
t &

state, the expected stress energy in the @ field in the case
where the detector is excited is given by

&p(~)&~„ I
—,(I+&o)~„—,'(I+C~)

I
~„&

particle-number states more heavily in the distribution
and indicates that a larger number of particles that origi-
nally expected were present initially. As a dramatic exam-
ple of this effect, suppose that the initial state of the field
were chosen to be

I
0 & +(1jv n )

I
n & with n large. Then

the initial expected energy is =E, where E is the energy of
a single quantum. However, if detection occurs, then the
expected field energy becomes (n —1)E»E. In the case
of a thermal bath the original probability of having n par-
ticles present in the mode y of energy 0 is proportional to
e "~ . Because of the factor of ~n in Eq. (3.25), if a
particle is detected, the probability of having n particles
present in that mode becomes proportional to
(n +1)e "~ . Thus, for a thermal distribution, the "par-
tial measurement" effect dominates the energy absorption.

At first sight, it might appear that the above mecha-
nism provides us with a way of extracting an infinite
amount of energy from a (finite) thermal bath, i.e., an or-
dinary box filled with a thermal distribution of quanta (so
that the initial expected field energy is finite). Namely, we
insert our detector into the bath and bring it out. If the
detector is unexcited, then according to Eq. (3.25) no
change has occurred in the state of the field. But if the
detector is excited, we have gained energy Q in the detec-
tor and increased the expected field energy in the box. We
then can remove the detector and de-excite it (thereby ex-
tracting energy 0) and repeat the process indefinitely.
(Although the distribution of field quanta no longer is
thermal, the expected field energy continues to increase
each time detection occurs. ) Thus, it appears that, with
unit probability, we can extract an arbitrarily large
amount of field energy from a system whose initial ex-
pected energy is finite.

The key to the resolution of this apparent paradox
arises from the fact that at each stage, the increase in the
expected field energy after detection is second order in the
coupling constant e. Thus, to be consistent, we must in-
clude all contributions to

I
s & of order e . To order e,

the detector may absorb a quantum, thereby jumping to
its excited state, and then emit a quantum thereby de-
exciting and leaving the field in the same state. The prob-
ability that this occurs can be calculated directly from Eq.
(3.16), but is obtained much more simply from conserva-
tion of probability: If n particles in mode y are present
we have, to second order in e, P, =n & y, y &, so to second
order the probability that the system ends up in the origi-
nal state

I
n;J, & must be (1 —n&y, y&). This means that

for a detector placed in a thermal bath, if no quanta are
detected, then the probability distribution for having n

particles in mode y becomes proportional to
e "~ (1 n&y, y &). Thus,—the "partial measurement" ef-
fect causes the expected field energy to decrease when no
detection occurs in just the right way to compensate for
the increase in expected field energy when detection
occurs, thereby yielding conservation of expected energy
for the total system. If we try to extract energy by repeat-
edly inserting our detector into a thermal bath, we are as
likely to have the net effect of decreasing the expected en-

ergy of the total system by frequently finding the detector
unexcited as we are to increase the total expected energy
by occasionally finding the detector to be excited.



1054 WILLIAM G. UNRUH AND ROBERT M. WALD 29

IV. RESPONSE OF THE FIELD
TO AN ACCELERATING PARTICLE DETECTOR

We are now ready to analyze the response of the field to
an accelerating particle detector in flat spacetime. The
response of the detector to the field when the field is in its
Minkowski vacuum state has been analyzed often before.
The result, that the detector responds as though immersed
in a thermal bath can be derived from our results in Secs.
II and III. A uniformly accelerating detector can be taken
to follow an orbit of one of the boost Killing fields. In
Sec. II we showed that if the initial state of the field was
the Minkowski vacuum

~
OM), then that initial state ex-

pressed in terms of Rindler particles is a thermal state
with temperature a/2m. . In Sec. III, Eq. (3.27), we calcu-
lated the response of a model detector to a thermal bath
(with respect to the particles defined in terms of the Kil-
ling field whose orbit the detector follows). We can apply
the results directly to the accelerated detector by setting
P=2m. /a. Our aim in this section is to provide a descrip-
tion of the effect the detector has on the field, especially
when the detector is found to be excited, after the interac-

I

tion is switched off. In addition we will raise and resolve
a number of apparent paradoxes.

First, we shall use the interaction representation and ex-
press the final state of the detector-field system in terms
of Minkowski particle states. As in Sec. II, we shall use t
to denote Minkowski time and ~ to denote Rindler time.
We choose the initial state of the field to be

~
0~ ) and the

initial state of the detector to be
~

l). Then the same
derivation as led to Eq. (3.24) yields that the state of the
system at late times (after the detector is turned offl is

)= IOM» —iaRI()') OM;» (4.1)

where y is the complex conjugate of the negative-
frequency part of the Rindler mode I defined by Eq.
(3.20) with f =e(r)e' 'f*. Thus, y is peaked sharply
about Rindler frequency co=A. But, at the end of Sec. II
we derived an expression for the Rindler annihilation
operator of such a mode in terms of Minkowski annihila-
tion and creation operators. Thus, using Eq. (2.24), we
obtain the following expression for the late-Minkowski-
time state:

~s )= ~OM, L) i(1—e— ') ' [ aM(F& n)+e 'aM(F2n)] ~OM;t)

=
~

OM t) i(1—e— ') ' e 'aM(F2n)
~

0 't) (4.2)

where F&n is given by Eq. (2.17) with P&z
——y and Fzn is

defined by Eq. (2.19). Thus, aM(F2n)
~
OM,'t) is the state

when the detector is excited and one Minkowksi field
quantum in mode F2~ is present. Note that both y and
F2~ are not normalized and, indeed, their amplitudes are
proportional to the coupling constant e.

Thus, Eq. (4.2) shows that in the inertial viewpoint, the
detection of a Rindler particle corresponds to emission of a
Minkowski particle in mode F2~. The inertial observer
might well interpret the transition made by the detector as
due to a radiation reaction effect produced by the emis-
sion of a particle by the "detector. " Note that in this
model, emission of a Minkowski particle occurs only
when the detector makes a transition, so this transition
cannot be interpreted as being caused by self-absorption of
Minkowski quanta that the detector previously emitted by
bremsstrahlung or other processes.

We now may resolve the apparent paradox regarding
energy which was raised in Sec. I. If the detector is excit-
ed, then the @ field is in the state with one Minkowski
particle in mode F2~ and its expected stress energy is

tz„(Fqn )/(, F2n, Fqn ) where t&„ is the classical stress ener-

gy given by Eq. (3.30). Thus, the emission of a Min-
kowski particle occurring when the detector is excited in-

creases the @ field energy everywhere. ' In particular,

using the definition of F2~ in terms of y, we find that the
expected change in T& in Rindler region I is

—2mn/a t (y )

(1 —2nn/a) (7, y)
(4.3)

This, of course, agrees with Eq. (3.29) with P=2m/a.
Note, however, how remarkably different are the inertial
and accelerating interpretations of why the expected boost
energy increases in Rindler wedge I. The inertial observer
simply says that field energy increases because a particle
was emitted. The accelerating observer says that the field
energy was actually decreased by absorption of a particle
but because a partial measurement was performed during
the absorption process, the net effect was to increase the
field energy.

Note that the Minkowski mode Fzn is, in fact, mostly
located in Rindler wedge II [see Eqs. (2.19) and (2.17)].
Since wedges I and II of Fig. 1 are noncausally related,
this might suggest that we can violate causality by using a
detector in region I to emit the particle F2n, whose influ-
ence then can be felt in region II. Is it possible to send a
signal from region I to region II in this manner?

The answer is, of course, no. This is most easily seen by
going to the Heisenberg representation. In the Heisenberg
representation, the field @ is given by

4 (x)=@0(x)+f Gz(x;~', x')e(r')[A (r')p(x')+g (r')g*(x')]g g'd~'d3x (4 4)

The key point to notice is that the field N is changed only
to the future of the region containing the switched on
(e&0) detector because of the retarded Green's function
Gz, in the expression for the field N. This means that the
expectation value of any operator which depends only on

the field @ smeared with test functions with support in re-
gion II of the Rindler spacetime will be completely in-
dependent of the detector and will depend only on the free
initial field No. In other words, if 0(@) is an operator
which depends only on 4&(x) with x in region II, then
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0(@)=0 (@p) and the expectation value of 0 will be un-
changed by the interaction of the field with the detector.
Since any observation of the field which is restricted to re-
gion II will be a measurement of such an operator, any
such observation will give results indistinguishable from
the vacuum. In particular if one places a particle detector
into region II to try to detect the particle in mode F2~,
one would either have to switch that detector on and off
while it was in region II, giving rise to detector excitations
from the switching process, or one would have to allow
the detector to remain on in the future Rindler wedge (re-
gion III in Fig. 1), in which case one could ascribe the ex-
citation of that detector to the causal influence of the ac-
celerated detector in region I.

Nevertheless, correlations do exist between the measure-
ments of the state of the detector and properties of the @
field in region II. In particular, if the detector is in its ex-
cited state, the expected energy density of @ in region II is
positive. From where does this correlation between the
detector and field in causally disconnected regions arise?
The answer is again most easily seen in the Heisenberg
representation. Given some operator 0(@) which again
depends only on the field 4& in region II, and some other
operator Q(A, A ) which depends on the dynamic vari-
ables of the detector, we find

(0~ &
I
Q(A A )«@') I0M'&&

=(OM,'t
I
Q(A, A )0(@p)

I
0~', l), (4.5)

so that again any such expectation value does not depend
on the changes induced in the field by the detector. How-
ever, from Eq. (3.14) we have to first order in e

A=Me ' '+Ce ' ' e' ~' * '+ ' —g'

Qd x'd w' .

(4.6)

The expectation value therefore can be written as

(0~, l
I Q (A,A )&(@')

I
0M,'1)

= (OM, l
I Q(Ap, Ap, @p)O(@p)

I
OM,'L), (4.7)

where the dependence of Q on @p is that due to Np(x)
with x in region I. However, in the vacuum state, the
field %0 is correlated even in causally disconnected regions
of spacetime. For example, we have for a massless field

state. Only when the outcomes of such measurements are
compared with the final state of the detector do interest-
ing correlations arise. However, the existence of such
correlations does not violate causality.

As noted above, in lowest order the excitation of the
detector is associated with a positive expected field energy
in region II. Therefore, failure of the detector to become
excited must be correlated with negative expected field en-
ergy in region II, since the total expected field energy in
region II must be that of the vacuum, i.e., zero. However,
this appears to contradict our expression (4.2) for Is ),
which shows that if the detector state is

I
J ), then the

field state is
I

OM ) and hence has vanishing expected ener-

gy in region II. The resolution of this apparent contradic-
tion is very similar to the "infinite-energy-extraction para-
dox" discussed at the end of the previous section. Again,
the increase in expected energy in region II when the
detector is excited is quadratic in e, so for consistency we
must keep all second-order contributions to ( Tpp). When
we do so, we find a second-order term in

I
s ) which is

of the form
I

g )(a'Ma "~
I

OM ) ) where a'~t and a "M are
creation operators for certain Minkowski modes of @. In
other words, there is a nonvanishing amplitude for the
detector to emit two Minkowski particles. The interfer-
ence term in T between this second-order term and the
zeroth-order term

I
OM, g ) gives rise to a negative expect-

ed field energy in region II which exactly cancels the posi-
tive contribution from the first-order term in

I
s ). This

cancellation will occur to all orders in e, a fact which is
obvious in the Heisenberg representation but not as easily
demonstrated in the interaction representation.

Thus, we have succeeded in providing an inertial inter-
pretation of what happens to an accelerating particle
detector in Minkowski spacetime and we have resolved
some apparent paradoxes regarding energy conservation
and causality. The inertial description of the process
which occurs when the detector becomes excited is simply
that it radiates a field quantuin. But our analysis suggests
a rather surprising viewpoint on this radiation process: it
seems as though the detector is excited by swallowing part
of the vacuum fluctuation of the field in the region of
spacetime containing the detector. This liberates the
correlated fluctuation in a noncausally related region of
the spacetime to become a real particle.

1(0
I

@p(x)4&p(x')+Np(x')Np(x)
I
0) o- —, (4.8)
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