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Glueball candidate t, (1440), anomalous Ward identities, and two-photon decays
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Anomalous Ward identities are given for the U(1) problem, showing that some recent papers have
neglected the large topological susceptibility coming from the pure Yang-Mills sector of QCD. A reanalysis
of the Ward identities is given, including the pseudoscalar glueball candidate t, (1440) with the pseudoscalar
nonet. It is shown that positivity of the topological susceptibility together with other constraints is suffi-
cient to narrow down the permitted range of pseudoscalar axial couplings. In particular the t, (1440) cou-
plings are consistent wtih those expected for a glueball with the decay t, yy probably immeasurably
small. Contrary to a recent claim, the results are not sensitive to the branching ratio for t, KKm, which

may be as large as 100%.

One of the most important successes of QCD has been
the possibility that it contains all the ingredients for solving
the U(1) problem. ' The anomalously large mass of the rl'

compared with the remaining eight members of the pseu-
doscalar nonet may be attributed to the existence of gluons,
their axial anomaly, and the consequent large topological
susceptibility in the underlying pure Yang-Mills sector. So
far the most general framework used for studying this prob-
lem has been that of meson-saturated anomalous Ward
identities, although some work has also been done using
the sum rules of the ITEP group. ' There are also several
so far unsuccessful attempts to derive the same results from
QCD on the lattice. "

The recent discovery of a tenth pseudoscalar meson, the
a(1440), ' has led several authors'3 '5 to study its impact on
the saturation of the anomalous Ward identities. Here we
intend to comment primarily on Refs. 14 and 15 since their
approach is closest to our own. First we show that these pa-

I

pers fail to take account of the large and important pure
Yang-Mills topological susceptibility; we then solve the
corrected set of saturated Ward identities, including the
a(1440), using an extension of the techniques developed in
Refs. 8 and 9; finally we present a few sample solutions in-
cluding predictions on the decay a ~ yy and comment on
the differences from and similarities to other work. Our ap-
proach also includes a constraint on the positivity of the to-
pological susceptibility which provides a strong restriction on
otherwise unknown parameters. In order to clarify the point
of disagreement with Refs. 14 and 15, we begin with a brief
resume of the steps in deriving the Ward identities.

The anomalous Ward identities for the chiral U(3) x U(3)
algebra may be obtained by considering axial-vector
current-current correlation functions at zero momentum.
The assumption that there are no zero-mass pseudoscalar
states coupling to gauge-invariant axial-vector currents leads
03, 8, 9

and
J
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with 6„'„the gluon field tensor.
Assuming these to be adequately saturated with the

lowest-lying pseudoscalar nonet and the ~(1440) leads in the
standard way, after elimination of the quark parameters ap-
pearing on the right-hand side of (la), to'p

m, Fp, =
3 (4m» F» m„~F„2)—(2a)

(m» F»2 m„F )—(2b)

m, Fp, (Fp, —A, ) =
3 (2m» F» +m F„2)

ma ~sa+Oa =

(2c)

The notation is that of Refs. 8 and 9, where the axial-
vector-current divergences have a soft (mfyqX, P) and
anomalous hard (GG) piece:

l

where the repeated index a is summed over a =q, q', l. .
The last equation follows from (lb) with j=8; but with
j=0 the naive form of saturation violates positivity of the
topological susceptibility

X, —= —i J d "x &0 ~
T [GG (x ) GG (0) ] ~0)

This is clearly positive' in the Euclidean region because it is
simply the average of the square of the topological density
(6 « v2 » in Crewther's notation 3). This failure of
positivity is remedied by introducing a Kogut-Susskind-type
ghost into non-gauge-invariant matrix elements in the
phenomenological-Lagrangian approach, while Witten4
identifies the extra term as a contact term representing the
topological susceptibility in the pure Yang-Mills sector aris-
ing from the need to carefully define the meaning of the
singular operator product in (3):

ma +Sa~a = 0 (2d) X/= Xg —m A
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The fifth Ward identity9 now follows from (lb) with j= 0:

y, = m, Au(Foa Aa) (5)

thus yielding a value ' for the Yang-Mills susceptibility
which is large, of order m F

XYM=m 'F, W

Although (2a) and (2d) are precisely Eqs. (2.5) and (2.8)
of Ref. 1S, their other Ward identities must be obtained
from linear combinations of (2): Their Eq. (2.6) follows
from (2a) + J2(2b) + J2(2d); but (2.7), which comes
from (2a) + 2W2(2b) + 2 (2c) —2J2 (2d), should read

3m„F =m, (Fs, + J2FO, ) —2m, A, +2m, FO,A,

(7)

The first two terms on the right are present in (2.7); but the
third [identified in (6) as the large quantity 2x~vM] is absent.
We are therefore forced to conclude that one of the Ward
identities used in Refs. 14 and 15 is in error by a very large
term of order 2m F . Thus, although their solutions do

satisfy Eqs. (2a), (2b), and (2d), they violate (2c) by a fac-
tor of about 5. It should be noted that a related error ap-
pears in Ref. 6 as already noted in Refs. 7 and 8; the au-
thors of Ref. 7 seem to have included the contact term
correctly there but have omitted it in their more recent
work. ' In general, authors using the equivalent
phenomenological-Lagrangian technique have correctly in-
cluded the contact term by means of a "ghost. "

We now turn to a brief discussion of our numerical solu-
tions, which will be presented in greater detail elsewhere.
First a summary of the methodology, which differs consid-
erably from Ref. 1S. In all there are nine unknown parame-
ters: The axial-vector couplings Fs„Fo, and topological
charges A, for a =g, q', and ~; but there are only four
Ward identities (2) with the fifth, Eq. (6), serving to deter-
mine the unknown X,"M. Additional constraints come from
the two ratios of measured' ' P y (q, q', ~) widths in the
usual way, 9 and two sum rules for the
widths, two of which are measured. ' In principle this gives
three equations, although it is hard to be confident of the
2y sum rules because of the large off-mass-shell extrapola-
tions involved. In practice we have therefore taken all three
2y widths as output, allowing the q and q' widths to deviate
from experimental values by amounts considered reasonable
if the extrapolations off mass shell are smooth. We will dis-
cuss this rather ticklish problem in more detail elsewhere.
A final constraint which turned out to be quite powerfu1 in
restricting the difference between Fo, and A, is the positivity
of the topological susceptibility' X, given by Eq. (5). In ad-
dition, our search for solutions imposed near SU(3) sym-
metry on the axial-vector couplings of g and q'.

An extension of the solution technique used previously in
Refs. 8 and 9 made it possible to search efficiently through
a wide range of parameter space and rapidly delineate quite
a narro~ region of physically reasonable solutions. A few of
these are shown in Table I together with a comparison solu-
tion presented earlier without a(1440). We note in passing
that the no-glueball solution presented in the table of Ref.

TABLE I. Solutions to anomalous Ward identities. All axial-vector couplings are measured in units of
F~=93 MeV. We use F&=1.12; m~=3.54, m =3.93, m, =6.86, and m, =10.32 in units of m +.

'll

No a(1440)' A D
Experimental

value

Fs~
Fs
Fs,
Fo~
F
Fo.
A~
A

A,
A, /A „
A, /A 4

I'„» (keV)r, , (keV)

I, 2q (keV)
x, '
x YM

C

0.97
—0.35

0.38
1.18

1.01
0.91

0.49
3.1

1.35
57.5

1.01
—0.13
—0.20

0.14
0.91

0.50
0.87
0.70

0.44
0.8
1.59

0.36 (0.32)
6.1 (8.1)
1.05 (0.02)
0

55.2

0.99
—0.13
—0.22

0.20
0.91

0.50
0.90
0.72

0.40
0.8
1.80

0.36 (0.32)
6.3 (7.9)
o.45 (0.&0)
0.6

55.2

1.01
—0.13
—0.20

0.33
0.90

0.65
0.99
0.79

0.51
0.8
1.57

0.32
5.7

0.22
1.36

73.6

1.02
—0.11
—0.20

0.10
0.96

0.50
0.85
0.77

0.90
0.9
1.73

0.33 (0.32)
5.7 (6.1)
1.3 {0.70)
0

59.5

O.8 +O.1'
1 76+, 044c

(1.25 + 0.31)
0.32+ 0.05'
5.3 + 1.6'

& 10 keVf

' This is solution D of Ref. 9.
From measurements of P y(q, g'), Ref. 17.' From measurements (Ref. 12) of the product 1& ~,B(I. EXm) assuming B(c EEm) =—100%; the

figure in parentheses assumes a branching ratio of 50%.
d In most cases these are input values. The widths in parentheses correspond to the input I „2~=0.32
keV, the experimental value (Ref. 17).' Reference 17.

Quoted in Ref. 15.
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15 does not solve the Ward identities (2), with (2c) and
(2d) particularly badly violated. Solutions A and D are
probably the best overall, with the ratio A,/A„=0.8 and

0.9, respectively; 8 and C show that vlaues of X, &0 lead to
progressively. larger SU(3) breaking in Fc„. The near equali-
ty of Fp, and A, in all our solutions is imposed by the posi-
tivity of X,: the more they differ the smaller is X„with a
maximum value of 1.36.

We end with a few observations:
(i) The solutions presented are in fact difficult to improve

upon, because outside the region F8, =——0.2, Fp,:—0 5

either the susceptibility X& goes negative, or the output
width I, 2y differs greatly from its experimental value,

or SU(3) is badly violated, especially by the axial-vector
coupling Fp„.

(ii) Inclusion of i (1440) greatly improves the overall
quality of the solutions compared with those leaving it out,
particularly with regard to the 2y widths and SU(3) sym-
metry in F, and Fp„. Of course this may simply be due to

the magnifying effect of the large t, (1440) mass squared in
the Ward identities, but our experience of searching for
solutions suggests otherwise.

(iii) The ratio A, /A, is directly related to the width for

ay only determined if we assume we know the branch-
ing ratio of the detected mode ~ EEm. All the experi-
mental evidence suggests that this branching ratio is near
100'k 2 but the authors of Ref. 15 found no solutions with
a value & 30%. We find no such difficulty, and are able to
obtain solutions for a wide range of branching ratios, includ-
ing 1000/o.

(iv) The output width for a 2y always turns out to be
small, usually immeasurably so; but there are viable solu-
tions with values as high as 5 or even 10 keV, although they
are less attractive for one reason or another. This is largely
due to the octet sum rule for the 2y widths ~here the near
saturation by q and q' contributions, the non-negligible size
of Fc„and the large a(1440) mass all conspire to force a
small a 2y width.

(v) Perhaps the most interesting observation is that
Fs, -= —0.2 is small compared to Fp =+0.5: this is cer-
tainly consistent with an SU(3)-singlet glueball i(1440);
moreover, the 1/N, expansion does indeed give a

suppressed glueball axial-vector coupling, FaG —1/ JN, . So
far this appears to be the firmest evidence for a glueba11,
meager though it is.

(vi) A surprising feature of our solutions is that small
values of the topological susceptibility X, are favored, with a
large pure Yang-Mills (no quarks or qq mesons) susceptibili-
ty x,vM. This provides a nice challenge for QCD: The
underlying Yang-Mills structure should give a large suscepti-
bility; but the introduction of quarks into the theory ought
to give rise to large cancellations. This property, originally
noted by Kitten, " could also furnish not only a difficult test
of pure Yang-Mills on the lattice, but also a sensitive check
on the treatment of fermions on the lattice and the compli-
cated relationship between chiral-symmetry breaking and to-
pology. "

I would like to thank Rod Crewther for enlightening
correspondence concerning the topological susceptibility.
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