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Note on the yy contribution to m0~ e+e and g ~ p, +p,
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%e review what is known on how the electromagnetic form factor for m e+e and g~ p, +p,

should behave, and show that a recent proposal which claims to resolve the discrepancy between theory
and experiment for m ~ e+e is actually equivalent to assuming a form factor quite contrary to its

known properties.

The rare decays mo e+e and q p,
+

p, have recently
been studied with renewed interest, both theoretically'~ and
experimentally. The two-photon contribution to these de-
cays is in general given by'
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with q, r, k, and q —k as the four-momenta of the pseudo-
scalar meson P, the outgoing lepton I, and the two inter-
mediate photons, respectively. The form factor
Fp(si, s2', mp ) is normalized to unity at st = s2 =0.

In an early calculation, Dre117 noted that the integral in
Eq. (2) is divergent if Fp= 1 for all si and s2. To obtain a
convergent result, he used a dispersion relation in mp and
assumed Fp to be a step function with an ad hoc cutoff, i.e.,
Fp(0, 0;mp ) =1 for mp2( A' and zero otherwise. Unfor-
tunately, the physical significance of such a model is not at
a11 clear. In any case, more information on FI has since be-
come available, and three properties are now reasonably
well established.

(a) The form factor with only one photon off the mass
shell, Fp(s, 0;mp'), should have a resonant structure in the
timelike region in accordance with vector-meson-dominance
predictions.

(b) For large s, the unambiguous quantum-
chromodynamics (QCD) predictions is Fp(s, 0;mp ) cps

(c) For large k', the form factor Fp(k, (q —k);mp')
should behave as k

Given these constraints on the form factor, it is clear that
the integral in Eq. (2) is now convergent. Moreover, these
constraints are stringent enough that the predictions for B~
defined in Eq. (1) become more or less unique. Recently,
two specific form factors satisfying these constraints were
independently proposed:

ImR(t)= m
ln

-p f(t),
2p 1+p (5)

where p=(1 —4mi2/r)'2. For the on-shell amplitude for
m ~ e+e, no intermediate state other than the 2y state
can contribute to the imaginary part, to this order in n and
to all orders in the strong interaction. By using the Cutko-
sky rules one then finds from Eq. (2) f( m„')
= F„(0,0;m„2) = 1, due to the normalization of Fp.

The idea of Ref. 4 is to use Eq. (5) in a once-subtracted
dispersion relation to calculate the real part of R. The first
crucial assumption of that calculation (and a reason why it is
unrealistic) is to make f(r) =1 for all r. To see why this

where Q =
2 (st+s2 —

2
mp'), in Ref. 2. Although these

two form factors are quite different, the resulting predic-
tions for Bp are very similar, namely, B"(e+e )
=0.6x10 ' and B"(p,+p, ) =1.2x10 5. The latter is
consistent with the most recent experimental result of
(1.66 +0.54) x10 ', whereas the former is considerably
lower than the recently reported value' of (1.8
+0.6) x10 '. This has led us to conclude that either the

m decay has other exotic contributions, ' or perhaps, more
likely, that a future measurement with smaller errors will

come down in value. [It may be useful to point out that a
previous measurement'0 of q ~ p, +ii, obtained (5.9
+ 2.2) x 10 ', a value much higher than the present

value. ']
On the other hand, it has been claimed in a recent paper4

that the measured no e+e rate can be obtained theoreti-
cally by using a once-subtracted dispersion relation and,
moreover, that those results are "form-factor-insensitive. "
In view of the above discussion, this appears very surprising
indeed. On closer examination, it will turn out, as we show
below, that this particular dispersion approach involves an
implicit choice of a very peculiar form factor which fulfills
none of the constraints (a) to (c) listed above. Hence it
should not be considered as a bona fide resolution of the ap-
parent discrepancy between theory and experiment.

The imaginary part of 8 in Eq. (2) can generally be writ-
ten
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may not be a good assumption, consider, for example,
P Vy decay, where V is a vector meson. Since V un-
doubtedly couples to y, the imaginary part of R in Eq. (5)
must get an additional contribution whenever t exceeds m~ .
This means that f(t) as a function of r is, in general, quite
complicated, and putting f( t) —= 1 is not necessarily a
reasonable choice. [A general discussion of this and the re-
lationship between calculating the integral in Eq. (2) directly
and using dispersion relations is in preparation. "] Putting
f(t) =1 unfortunately also makes the dispersion integral for
ReR (r) divergent, calling for one subtraction which leaves a
subtraction constant R(0) to be determined. In Ref. 4 this
R(0) is arbitrarily put equal to zero. This is the second
crucial assumption they make.

With f( t) —= 1, the once-subtracted dispersion relation
reads

Re[R(r)] —R(0) = — dr'
r'( r' r)—

where

(6)

With the choice of R(0) =0 as in Ref. 4, it is clear from
Eqs. (6) and (8) that calculating a once-subtracted disper-
sion relation for R is equivalent to calculating an unsub-
tracted dispersion relation for the integral in Eq. (8) .

Indeed, by doing so, we recover the results of Ref. 4.
Now we compare Eq. (8) with Eq. (2), and see at once

that it is equivalent to choosing a form factor

Nlp
4

Fp(k, (q —k);mp ) =
4qk — q k

which in terms of s~ and s2 becomes
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Unfortunately, this form factor is very unrealistic; it meets
none of the criteria (a) to (c) listed above. In particular, it
implies F ( pO;Smp ) = mp /(mp s)2, which behaves like
s 2 instead of s ' as predicted by QCD for large s, 8 and, in
addition, is not consistent with the experimental measure-
ments of this form factor through the single-Dalitz-pair de-

Working in the center-of-mass frame of the pseudoscalar
meson, and applying the mass-shell condition when using
the Cutkosky rules, one finds

Im[R (r) ] dk
t 2m " k (q —k) [(k —r) —rnl ]

=Im 8)

cays n o e+e y and q ~ p, +p, y. '2 (The data on
m e+e y are actually not very conclusive" because of
the extreme sensitivity of this result to the acceptance of the
experimental apparatus for small invariant mass of the
e+e pair and to the proper treatment of radiative correc-
tions. )

For the mo e+e decay one can see that of the two ar-
bitrary choices f( t) —= 1 and R (0) =0 made in Ref. 4, the
latter is the most questionable one. In fact, calculating
R (0) explicitly using, e.g. , the form factor Eq. (3) inserted
in Eq. (2), one finds R(0) = —22.2. This is indeed very
different from zero, since the relevant scale is set by
ImR(m„~) = —17.5. It is interesting to note that adding
this value of R (0) to the result in Ref. 4 would bring
essential agreement between their value for B and the
more standard one in Refs. 1 and 2. We finally remark that
the discussion in Ref. 4 concerning the smallness of addi-
tional contributions from vector-meson intermediate states
is not complete, since it does not treat their possible effect
on the subtraction constant R(0). In many models, this
contribution can be explicitly calculated, " and one finds a
typical behavior R (0) ——3 In(my/m, ).

In conclusion, we argue that the results of Ref. 4 are ob-
tained by assumptions with little physical motivation, and
whatever the cause of discrepancy between theory and ex-
periment for m e+e, it is not resolved by their treat-
ment.

Note added in proof. In the reply of Tupper and Samuel, '4

the weak and electromagnetic contributions to p l+I are
unfortunately not separated. In this Comment, we have
only treated the electromagnetic part, since the weak part is
known to be negligible' for nonstrange mesons. Therefore,
our R (q2) should be identified with

2 [K(q ) —K„„k(q ) ]
of Tupper and Samuel, or K(0) = 2R (0) +K„„k(0). The
essence of our criticism is just that they put
K (0) = K„„k(0) [Eq. (5) in Ref. 4], thereby enforcing
R(0) =0. Sample calculations for mo e+e (e.g. , Ref.
11) tend to give 2R(0) = —45; K„„k(0)=0.08.

As for the equivalence between taking the form factor in
our Eq. (10) and inserting it into Eq. (2) compared to taking
f( t) = 1, R (0) =0 and inserting that into a once-subtracted
dispersion relation, it is of course equivalence in the sense
that this gives two different integral representations of the
same analytic function of t [namely, the function in Eq. (6)
of Ref. 4].

One of us (L.B.) thanks L. Ametller and E. Masso for
many invaluable discussions. This work was supported in
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AM03-76SF00235.
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