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The magnetic monopole of charge g is given an intrinsic spin —and is bound to a spin-0 nucleus with a
2

repulsive core potential. Bound-state energies are calculated. Speculation regarding the existence of
magnetic-monopole spin resonance is examined.

In a paper by Sivers, ' it was pointed out that a spin-0
magnetic monopole can be bound to a naturally occurring
free nucleus with magnetic dipole moment. By introducing
an infinite repulsive core of nuclear radius r = rod'
(ro =31.5M~ ', where M~ is the proton mass), he is able to
calculate bound-state energies up to the 105-eV range.

We can look at the symmetric case of a spin-0 nucleus
binding to a magnetic monopole with electric dipole mo-
ment. We introduce the idea that a magnetic monopole
may have an intrinsic spin 2 and, hence, an electric dipole
moment. 2 We postulate the existence of magnetic-
monopole spin resnoance and derive a simple analytical ex-
pression for the absorption energy.

First, let us derive the electric dipole moment of a spin- —,

magnetic monopole. The electric dipole moment of a sys-
tem of magnetic charges is

III = x ' x J (x') d'x',

1
III = g gIX I x v I2c

For a single magnetic monopole of mass Mand charge g,

(3)

where

J (x) = gg, v, S(x —x;)
f

is the volume current density, gI are the magnitudes of the
magnetic charges, and v& are the velocities of the charges.
Substituting Eq. (2) into Eq. (1) gives

tional angular momentum S will give rise to an additional
electric moment

m=- g (L+ss) .
2Mc

(6)

For our case of a spin-
2 magnetic monopole in the field

of a nucleus of charge Ze and of nuclear spin 0, we have
the nonrelativistic, quantum-mechanical Hamiltonian of the
system as

0 " ' ——E+U( )
2p,

where p, is the reduced mass, A is the vector potential of
the monopole charge, and E is the electric field of the nu-
cleus. U(r) is an undetermined potential which is assumed
to be appreciable only at short distances.

Inserting Eq. (6) into Eq. (7), we have

8= 'P-Z'"' — g (L- E+SS.E)+U(.) . (8)
2p, 2Mc

We note that the interaction term S E was first considered
by Bauer. 4 The electric field of the nucleus is

rE=Ze-
r3

Substituting for E into Eq. (8), we obtain

IBspjn ' 5S p

g
2Mc

where 5 is a constant, which is characteristic of the state of
the monopole. ' Thus, the total electric moment of the mag-
netic monopole is then

2Mc
(4)

where L is the orbital angular momentum.
In addition to the orbital angular momentum L, consider

that the monopole has an intrinsic spin S of —,. The addi-

( p —ZeA)'
2p,

( p —ZeA)'
2p,

'g, (L r-+sS r-) + V(r)
2Mcr

'g, ss r +@(r),
2Mcr3
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since L ~ r =0. Now r"= r /r and for S=
2 to, where a. is

the Pauli spin operator, we have

TABLE I. Typical values of the binding energy, Eq. (16), for
spin-0 nuclei with infinite repulsive core and for spin- —magnetic

2

monopole.

(p —ZeA)' Zegg 8 a. ~ r"
+ U(+ r

We follow the mathematical treatment given by Sivers,
introduce the two possibilities for the vector potential A as

A, t =As" =0, Af'1 =g(1 c—ose)/sing

A„' =est" =0, A)2' = —g(cos8/sine)

(12)

(13)

where A ' is singular along the negative z axis and A is
singular along the entire z axis, and take the potential U(r)
as

Nucleus

4He
12(
160
28Si
40ca
56Fe
208pb

6
8

14
20
26
82

—1.02
—3.16
—4.28
—7.77

—11.43
—15.33
—54.84

Binding energy
(eV)

3.8 x104
2.4 N 104
2.2 x 104
1.8 N104
1.6 x 104
1.4 x 104
1.1 x 104

0&r &r0A /

U(r) =
0, r0A &r &~ (14)

U(r) is an infinite-repulsive-core potential of nuclear ra-
dius r0A

The solution of Schrodinger's equation with the Hamil-
tonian operator of Eq. (11) is given by Sivers, and we quote
his solution for our case (spin- —, monopole and spin-0 nu-

cleus). The angular eigenvalues are given by

mgp= —Z —+—
2 8 M+ my

where m~ is the mass of the nucleus. 6 The binding energy
of the monopole-nucleus system is given by

spin down in an actual spin-resonance experiment.
We recall that the spin S of a magnetic monopole gives

rise to a spin contribution m„;„ to the electric moment and
that its interaction Hamiltonian is

gQ
~spin =

2Mc

4Mc

By applying an oscillating electric field in addition to a static
field, we could induce a spin pointing up to flip pointing
down. We choose an electric field

E = $1 coso) t x + S0z
1 1

, „,(p+ —,) .
2pr0 A

(16) and the interaction Hamiltonian is then

Sivers has shown that the binding energies exist only for
p ( —4. We have calculated binding energies for our case,
and the results are tabulated in Table I.

1n Table I, we have chosen the magnetic g factor 8=2
and the monopole mass M=100M~ in order to estimate
typical binding energies. ~ The energies are of the order 104
eV. This is a factor 10 less than the highest value reported
by Sivers (for spin- —, nucleus and spin-0 monopole). We

note that the p ( —
4 condition for bound states is satis-

fied. If bound states exist and if the magnetic monopole
has a spin S= 2to-, then an additional effect may be ob-

served: namely, the probability of a spin up flipping to a
I

Hspi~ = (@otr~ N1 cos )t ax)g5k (19)

%'e may write

I'p(t) &
=e * Ital(t) & (21)

Substituting this into Eq. (20) and multiplying on the left by—!40ftF /2
e ', we obtain

where a =(a.„,a„,a, ) are the Pauli spin matrices.
Letting the Hamiltonian (19) operate on a spin state

l+(t)), we have

ih = — (O'Oo., + ig't cos~t a„)l%'(t)
& . (20).g die(t)) gnat

,.die(t) &

dt

—lcoto /2 jcofo /2a, —cutcoscot(e * a„e ' ) ly(t)& (22)

where

Q)0 g0 and @pi
—g 12Mc 4Mc

The second term in Eq. (22) may be expressed as

—lollo' /2 loifo /2 1cosset(e ' a.„e ' ) =a.„/2+ 2 (cr„cos2cut+a„sin2cot)

Introducing this into Eq. (22) and solving the equation, we find
r 1

Ital(t)& =e '
2

i

" sin2~t+ ' (cos2cot —1) l@(0))4' 4GJ
(23)
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The last two terms in the exponent produce high-frequency
wiggles in

~ P(t) & and they may be neglected for our pur-
pose.

We let

Finally, the probability of a spin flip at time t is

&(r) [ 2 1(x~l+(r) &
~'

where

CO
—Q)0 CO~

~s ~x (24) At
Sin

A
(30)

0 = [(Qi —Qlp) +QJ& ]

Then

(q (r) &
cloth/2~y(0)&

If the initial spin state is

1
ly(0)&=lx&&= 0

(25)

(26)

Equation (30) has a maximum probability 1 when on res-
onance, cu = coo, and when 0 r = k7r (k = odd integer). In
the process of the spin flipping, an energy taboo is absorbed
from the oscillating electric field and is given by

(31)

then

~ y( r) & e —/ntL/2~ x

and Eq. (21) becomes

~
qf( r) & e z e

—/ot)L/2( x (28)

0
~x2& =

1

state is

(x2(+(r)& =(x,[e ' e '""'~x,
&

e
—Ihlt/2 (x ~

e
—lntL/2~ x

= —/e '~''sin (x2~x[x&&
At
2

= Ie- '"'" sin At
A 2

(29)

The probability amplitude for inducing a spin flip to the

We dare to present our speculation that the magnetic
monopole may be detected in a spin-resonance-type experi-
ment. This idea must be considered in the evaluation of
monopole searches. In our treatment of monopole spin,
we assumed that the spin 8 satisfies properties of the Pauli
spin operator w, this assumption may not be valid. ' The
correct identification of S is given by Osborn.

In summary, we have shown that if magnetic monopoles
exist, they can be bound to nuclei with repulsive-core po-
tentials. The inclusion of monopole spin adds to this bind-
ing. The bound-state energies are of a magnitude which
makes extracting magnetic monopoles difficult with present
techniques. Even though detecting free magnetic mono-
poles may be difficult, we suggest that it could be possible
to detect monopoles by measuring the spin absorption ener-
gy, Eq. (31). The result of such a measurement is the ex-
perimental verification of monopole spin and a way for
determining the magnetic g factor, provided the monopole
mass is known.
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