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The magnetic monopole of charge g is given an intrinsic spin % and is bound to a spin-0 nucleus with a

repulsive core potential.
magnetic-monopole spin resonance is examined.

In a paper by Sivers,! it was pointed out that a spin-0
magnetic monopole can be bound to a naturally occurring
free nucleus with magnetic dipole moment. By introducing
an infinite repulsive core of nuclear radius r=ry4'?
(ro=31.5M,~!, where M, is the proton mass), he is able to
calculate bound-state energies up to the 105-eV range.

We can look at the symmetric case of a spin-0 nucleus
binding to a magnetic monopole with electric dipole mo-
ment. We introduce the idea that a magnetic monopole
may have an intrinsic spin 1 and, hence, an electric dipole

2
moment.2 We postulate the existence of magnetic-
monopole spin resnoance and derive a simple analytical ex-
pression for the absorption energy.

First, let us derive the electric dipole moment of a spin-%

magnetic monopole. The electric dipole moment of a sys-
tem of magnetic charges is

__l_ =T ' 3.7
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where
T(x)=3gv8(X—%) ()
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is the volume current density, g; are the magnitudes of the
magnetic charges, and V,; are the velocities of the charges.
Substituting Eq. (2) into Eq. (1) gives
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For a single magnetic monopole of mass M and charge g,
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where L is the orbital angular momentum.
In addition to the orbital angular momentum L, consider
that the monopole has an intrinsic spin S of ;— The addi-
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Bound-state energies are calculated. Speculation regarding the existence of

tional angular momentum S will give rise to an additional
electric moment

ﬁ’ispin = 7;%:85 B (5)
where 8 is a constant, which is characteristic of the state of
the monopole.?> Thus, the total electric moment of the mag-
netic monopole is then

=_ & (7 =
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For our case of a spin-;— magnetic monopole in the field
of a nucleus of charge Ze and of nuclear spin 0, we have
the nonrelativistic, quantum-mechanical Hamiltonian of the
system as

(P —ZeA)?
2u
where u is the reduced mass, A is the vector potential of
the monopole charge, and E is the electric field of the nu-
cleus. U(r) is an undetermined potential which is assumed
to be appreciable only at short distances.

Inserting Eq. (6) into Eq. (7), we have

_(F—2eR)? g (v .7 . T.F
H » 2MC(L E+8S-E)+U(r) . (8

We note that the interaction term S -E was first considered
by Bauer.* The electric field of the nucleus is

H= -m-E+U(r) , @)

E=2Ze . ©9)
r

Substituting for E into Eq. (8), we obtain
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since L+ F=0. Now 7= F'/r and for §=%ﬁ&‘, where & is
the Pauli spin operator, we have

(P—ZeA)?  Zegh 55 :F
- - +
H o aMe 7 Uu(r)

We follow the mathematical treatment given by S_i‘vers,
introduce the two possibilities for the vector potential A as

AV =440 =0, 4P =g(1—cose)/sing , 12)
AP =4 =0, A = —g(cosh/sing) , (13)

where AV is singular along the negative z axis and A® is
singular along the entire z axis, and take the potential U(r)
as

an

, 0<r<rgd’
U(r)=[°° T (14)

0, red*<r<o .

U(r) is an infinite-repulsive-core potential® of nuclear ra-
dius roA'”.

The solution of Schrdédinger’s equation with the Hamil-
tonian operator of Eq. (11) is given by Sivers, and we quote
his solution for our case (spin--%— monopole and spin-0 nu-
cleus). The angular eigenvalues are given by
1 .8
—-—42
2 8
where my is the mass of the nucleus.® The binding energy
of the monopole-nucleus system is given by
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Sivers has shown that the binding energies exist only for

B< — %. We have calculated binding energies for our case,

and the results are tabulated in Table I.
In Table I, we have chosen the magnetic g factor §=2
and the monopole mass M =100M, in order to estimate
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TABLE 1. Typical values of the binding energy, Eq. (16), for
spin-0 nuclei with infinite repulsive core and for spin-; magnetic
monopole.

Binding energy

Nucleus VA B (eV)

‘He 2 -1.02 3.8x104
2c 6 -3.16 2.4x10*
160 8 —4.28 2.2x10*
285 14 -1.77 1.8 x10*
40Ca 20 —11.43 1.6 x10*
S6Fe 26 —-15.33 1.4x10*
208pp 82 —54.84 1.1x10%

spin down in an actual spin-resonance experiment.

We recall that the spin S of a magnetic monopole gives
rise to a spin contribution Mgy, to the electric moment and
that its interaction Hamiltonian is

d = =
Hspin'_‘ —E%S'E

-8 .
aMc ? ’
By applying an oscillating electric field in addition to a static
field, we could induce a spin pointing up to flip pointing
down. We choose an electric field

an

E=& coswt X +&,5 , (18)
and the interaction Hamiltonian is then
St
Hagin=— 7‘%( &0, + & coswt ay) (19)

where & = (oy, 0y, o) are the Pauli spin matrices.
Letting the Hamiltonian (19) operate on a spin state
| ®(¢)), we have

typical binding energies.” The energies are of the order 10* xd |w(s)) _ _ gdn +
eV. This is a factor 10 less than the highest value reported ! dt 4Mc (o0 + Eicoswt o) [ W(D)) . (20)
by Sivers (for spin-%1 nucleus and spin-0 monopole). We  Wwe may write
note that the 8 < — 7 condition for bound states is satis- ioto /2
V()= z t .
fied. If bound states exist and if the magnetic monopole Iw(D)=e (D) @
has a spin S=%ﬁ &, then an additional effect may be ob- Sul,)stituting this into Eq. (20) and multiplying on the left by
served: namely, the probability of a spin up flipping to a @7z , we obtain
]
.d‘ lbtgtt) ) - [[ w ; (O ]0’; - COSwt(e—imta'z/2a_xelwt0'z/2) | l{l( t) > ) (22)
where
- 8% -85
wqo 2MC$O and wi 4MC$1 .
The second term in Eq. (22) may be expressed as
cosmt(e_'mw‘/zo-xemm’n) =0,/2 +%( 0xC0s2wt + oy sin2wt)
Introducing this into Eq. (22) and solving the equation, we find
[g(2)) =e~" el o, D19x |, 219x 2wt + 292 (cos2wr—1) |w(0)) 23)
2 2 4o 4
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The last two terms in the exponent produce high-frequency
wiggles in |¢(¢)) and they may be neglected for our pur-

pose.
We let
h=2;_“’0(,,_%¢x , 24
where
Q=[(w—wp)?+w?? . 25)
Then
[w(e)) =e!®M2|y(0)) . 26)

If the initial spin state is

1
|¢(0)>=|x1>=[0] ,

then

[W(1)) =e~ 102 x;) @7
and Eq. (21) becomes

[w(2)) =™ 1000 x,) (28)

The probability amplitude for inducing a spin flip to the

1) = m

state is
iwte_[2 _
OGIW(0) = (x| 7 e~ 100M2) )
=102 (x,| e =102 x )
= —ie~"sin0L |\ x)

= ie"""/z% sin% . 29)
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Finally, the probability of a spin flip at time ¢is

P(t)1—2=1 (x| ¥(2))|?

2
)’

7

sin—g—t (30)

Equation (30) has a maximum probability 1 when on res-
onance, w=wp, and when Qr=km (k=o0dd integer). In
the process of the spin flipping, an energy %w, is absorbed
from the oscillating electric field and is given by

— 8o
E 2Mc$0 . (&3))

We dare to present our speculation that the magnetic
monopole may be detected in a spin-resonance-type experi-
ment. This idea must be considered in the evaluation of
monopole searches.®® In our treatment of monopole spin,
we assumed that the spin S satisfies properties of the Pauli
spin operator & this assumption may not be valid.!° The
correct identification of S is given by Osborn.?

In summary, we have shown that if magnetic monopoles
exist, they can be bound to nuclei with repulsive-core po-
tentials. The inclusion of monopole spin adds to this bind-
ing. The bound-state energies are of a magnitude which
makes extracting magnetic monopoles difficult with present
techniques. Even though detecting free magnetic mono-
poles may be difficult, we suggest that it could be possible
to detect monopoles by measuring the spin absorption ener-
gy, Eq. (31). The result of such a measurement is the ex-
perimental verification of monopole spin and a way for
determining the magnetic g factor, provided the monopole
mass is known.
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