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Instanton chains with multimonopole limits: Lax pairs for non-axially-symmetric cases
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A formalism is proposed for constructing sequences of instantons which give, in a simple
scaling limit, separable multimonopole solutions. For this purpose essentially static tech-
niques are adapted to the construction of finite-action solutions through a trick already used
before for the axially symmetric case. For going beyond axial symmetry appropriate Lax
pairs are constructed. Then, in the framework of Zakharov et al. for purely solitonic solu-
tions, pole equations are solved and a suitable seed solution 1(t~o~ obtained. The restriction to
axial symmetry in this framework is presented. The corresponding results in the monopole
limit are shown to emerge trivially from those for instantons.

I. INTRODUCTION

Self-dual multimonopoles (corresponding to the
Prasad-Sommerfield-Bogomolny limit) can be con-
structed trivially from instantons. The truth of this
statement was demonstrated, for the axially sym-
metric case, in Ref. 1 [referred to hereafter as (I)].
Here I present a part of the results needed to estab-
lish it for the general case. The statement is also, to
a certain extent, unjust. It is so because, in order to
display exp/icitly the sequences ("chains") of instan-
tons which yield the static multimonopole solutions
in the infinite-action limit, I am profiting from the
hindsight provided by certain methods recently used
to construct multimonopole solutions. Let me add,
however, that the monopole solutions, beyond indi-
cating a general direction, do not automatically pro-
vide the prescriptions necessary for our generaliza-
tion. At each step, crucial new ingredients have to
be invented and the most obvious generalizations
usually do not work. This is not surprising, since
the monopole limit cannot contain the full informa-
tion for- the general case of which it is a limit. But
once our formalism for instantons (possessing its
own intrinsic interest even without direct reference
to monopoles) is there, the monopoles indeed emerge
trivially as a limit. (In the static limit A, can be re-
placed by the Higgs scalar N. The term monopole
will be used throughout in this, familiar, sense. )

In (I) the source of inspiration was the technique
of Forgacs, Horvath, and Palla (FHP) who used
Harrison-Neugebauer-type transformations (H-N) to
construct nonlinear superpositions of monopoles. '

To go beyond axial symmetry I am generalizing
here, in a very particular fashion, the use FHP

made ' of the technique of Zakharov et al. to
construct separable multimonopole solutions. This
technique is summarized in Appendix A and I will
indicate in the concluding remarks what has been
achieved for our case and what remains to be done.
There are other remarkable approaches to the con-
struction of multimonopole solutions. ' Here I
will be concerned only with the approach through
Lax pairs.

One point should be made clear immediately. A
Lax-type linear pair in a time-dependent follllalism
has already been used for instantons by FHP. ' But
this is not suitable for my purpose. In order to get
the particular sequences of instantons which yield
directly the monopoles I adapt the static formalism
[Harrison-type transformations in (I) and monopole
Lax pairs here] for the finite-action case. I have ex-
plained the trick in several previous papers including
(I). I present here again the essential features.

Starting with the flat Euclidean metric in the
canonical spherical coordinates,

ds =dt +dr +r (d8 +sin Odg )

the coordinate transformation

(t + ir) = tan[ —,(~+ ip) ]

gives

ds = (coshp +cos1 )

)& [dv +dp +sinh p(dt9 +sin Odg )] . (1.3)

(The overall factor will play no role in our problem
due to the conformal properties of the gauge fields. )
Now the domain
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—oo &t & oo, 0&r& oo

corresponds to

—77 & T & 7r, 0(p ( oo

(1.4) (4a )ds—:ds'

=dt' +dr' +r' (d9 +sin Bdpz)

Since the "time" r has a finite domain (2m. ), it is
possible to construct r-static (r-independent) solu-
tions of finite action. Again let

t =ctr, r'=ap

and let

(1.6)

Then

(1.7)

where —co & t' & ao, 0(r' & oo, and (apart from the
primes to avoid confusion) one has again (1.1),
which is thus linked in two different ways to (1.3).
These elementary considerations furnish the key to
instanton sequences leading to monopoles in the
simplest possible fashion. With correctly chosen r
static solutions as starting points one has the follow-
ing picture:

finite-action (t -dependent) instantons
1'

[coordinate transfoi relation( 1.2) ]

finite-action w-static self-dual solutions

[rescaling(1. 6)]
t-static self-dual monopoles of finite energy

z = , (p+i r), z = ——,(p —ir);
(1.8)

Thus monopoles are linked up with instantons in
a most direct fashion. But this is not my only aim.
The classes of instantons that can be rendered r stat-
ic should be studied for their many intrinsically in-
teresting properties even without reference to mono-
poles. See, for example, in Refs. 15 and 16, the
study of Green's functions and quantum fluctuation
deterirIinants for the simplest one-chain. It was also
pointed out in (I) that our technique permits, for the
first time, the explicit construction of instantons
outside the 't Hooft-Jackiw-Nohl-Rebbi class. I will
come back in Sec. VI to this aspect of the n-chain
for n &2.

So using our technique we study interesting struc-
tures and properties, in the space of instanton solu
tions, for their own sake and capture effortlessly, "en
passant, " the whole self dual monopole se-ctor as a
limit.

In this paper I consider throughout the SU(2)
gauge group and all matrices are 2&&2. (Many as-
pects of the forinalism can however be directly gen-
eralized to higher-dimensional groups. )

The context in which the Lax pairs are introduced
is explained in detail in Appendix B. Here it is suf-
ficient to mention the following facts. Starting from
(1.2) I define (as in Sec. V of Ref. 17 and Sec. IV of
Ref. 18)

The self-duality constraints now can be given as a
single nonlinear matrix equation (Appendix B)

sinh p(G, G '),-+(1+yy) (GyG ')-=0, (1 9)

since now

ds2=(sinhp) 2dz dz+(1+yy) dy dy . (1.10)

The r-static case (8,=8,=Bz) is the one of main in-
terest. The appropriate Lax pairs are presented in
the following section.

II. r-STATIC LAX PAIRS FOR INSTANTONS

The following nonlinear matrix equation is to be
solved, in teriiis of the coordinates (1.8)

sinh p(G&G ')z+(1+yy) (G~G ')„-=0 . (2.1)

I introduce the following system, linear in the ma-
trix P:

sinhpD ~ g—:[sinhpB& —A(1+yy )8„
—(coshp+yA)ABp]@

y =tan —e'&, y =tan —e
2 '

2 =sinhp(G~G ')P (2.2)
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(1+yy )D2$ = [A sinhpi)&+ (1+yy )B

+(A coshp —y)AB~]g

=(1+yy)(G~G ')P . (2.3)

B+()M) =—

it is found that

pe —y
+

1+pe +—I'y
(2.9)

One has

[D),D2] =0
and the consistency condition

(2.4)
[sinhpB —(M(1+yy)Q ]B+(p,) = ~ Ip

e -+~(1+yy—)

(1+pe -'~y)'

(2.10)

[Di DP]g Di(GyG g) DP(GpG f) 0
(2.5)

can be shown to imply (2.1).
In the formalism of Refs. 7 and 8 (see Appendix

A) one looks for solutions of the form

g= I++« pk) '—&k II'(o) (2.6)

where the poles pk and the matrices Rk do not de-
Pend on the sPectral Parameter A and It(p) is a
known solution obtained for a suitably simple
G =G(o). The poles must satisfy the equations (Ap-
pendix A)

&Ip = sinhpp —)M(1+yy ))M

+ (coshp+y)M }(M

(2.7)

[p sinhpB&+ ( 1+yy )Q„]B+(p )

Hence

B+(p)=c+ or B ((M)=c (2.12)

where c+,c are constants, are solutions. Moreover
one can now solve the pole equations generally by
setting

H(B+(p),B ()u, ))=0 (2.13)

DIB+(A) =0

D2B+ (A) =0
(2.14}

(2.15)

where H is an arbitrary (but "nice") function of the
arguments B+. Corresponding to the operators Di 2

of (2.2) and (2.3) one has

~2@=@sinhp)LI +(1+yy)II,
—()u coshp —y )p

Defining

(2.8)

An interesting combination is

Thus

(2.16)

I (A)=[sinhp(1+yy)] '[yA —yA '+(1—yy)coshp]

= (»nhp) [»n~ —,(Ae ~ —A e '~)+ cos8 coshp]

(2.17)

(2.18)

The significance of I ()M) and I (A) will be better un
derstood under restriction to axial symmetry (see
Sec. III). In order to construct g(p) one must first
choose a suitable G(o). In (I) the seed solution was

3
A, =a, Ap=AO=Ay=0

h ap
Ae)' —y

Ae I' —y

g(p) =diag(e, e )

where

(2.20)

—a/2

W(B (A+),B (A) )

(2.21)
where a is a constant. Such a zeroth step can also
be utilized for the present, more general case. This
means taking

and

W(B+ (0),B (o})= 1 (2.22)

G(o) ——diag(e I', e )') (2.19) so that

Substituting this in (2.2) and (2.3) one can show that P(p)( A =0)=G(p) (2.23)
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at a generic point. Simple examples are

W= 1, W= [B (A)B+ '(A)] (2.24)

confusion. These results can easily be verified in-
dependently. )

The self-duality constraint is
The last choice gives

1+Ac)'y
e =e~

1+Ac ~y

—a/2
sinh p(G&G ')z+ (sinO) '(sinO GeG ')&——0

(3.1)

The limiting form of h as p~0 is of interest in the
monopole limit (Sec. IV). For a =1, for example,
one has

sinhp D& f= [sinhp B~—ABe

—(coshp —A cotO)Aa, ]y

h =a p ——,ln
Ae)' —y =sinhp( 6~G ')g

DqP = [A sinhp c)&+Be

(3.2)

=a — +O(p )
A —y

(2.26)

The construction of the matrices Rk of (2.6) is
described in detail in Appendix A. Finally this gives

+(A coshp+cotO)Aa, y
=(GeG ')g (3.3)

G =f(A=Q) (2.27)
[D(,(sinODz)] =0 (3.4)

III. RESTRICTION TO AXIAL SYMMETRY [D&,(sinODz)]/=0 (3.5)

Although our principal aim in this paper is in go-
ing beyond axial symmetry, the special features aris-
ing under this restriction are also of interest. The
basic equations can be derived from those of Sec.II
by redefining A and p (Ae'~~A, pe'~~p) which
permits a consistent elimination of the derivative B~.
The pole equations now admit only one-parameter
family of solutions. To display such special features
and also for comparing with the method of (I) the
main results are given in an explicitly axially sym-
metric foiirx. (This involves some other redefini-
tions, such as that of Dz. But this should cause no

I

p=(sinhc sinO) '[(coshc sinhp —sinhc coshp cosO)

leads to (3.1). The pole equations are now

sinhp pz ppe+ (co—shp —p cotO)p =0

p sinhp pp+ pg (p coshp+—cotO))L(, =0
(3 6)

(3.7)

The general solution can be shown to be given in
terms of y which played a crucial role in (I) [Eqs.
(3.29)—(3.36) of (I)] and is

y= tan '[sinhc sinO(coshc sinhp

—sinhc coshp sinO) ']
(3.8)

c being a constant [y=y(c)]. The general solution is

+[(coshc sinhp —sinhc coshpcosO) +(sinhc sinO) ]'~
J

—tan(y/2) for upper sign,
cot(y/2) for lower sign

(3.9)

(3.10)

This corresponds to

r(&)—= (sinhp)-'[ —,
'

sinO(& —&-')

+coshp cosO]
I ()u, ) =cothc, a constant

Setting again

(3.12)

annihilated by D) z of this section and instead of
(2.13) one has now a general solution

=cothc, a constant (3.1 1)
G(())

——diag(e )', e ~) (3.13)
This should be compared to (2.18). As a conse-
quence of the restriction 8&=0, instead of B+(A)
only the combination I (A) (with Ae'~ —+A) is now

one now obtains

g(0) ——diag(e", e ")



INSTANTON CHAINS %'ITH MULTIMONOPOLE LIMITS: LAX. . . 993

where

Ae~ —tan8/2
e =e~

Ae t' —tan8/2
~(r(A)),

(3.14)

yields (4.1). The pole equations are now

rp, p—(1+yy)p„+-(1+3p)p=o,
pr p„+( 1+yy )p —(p —y )p =0

(4.5)

(4.6)

with P(I (0))=1. This should be compared to
(2.21). Choosing, for example,

' —a/2

~(r(A)) =
r(A)+1

(Ae ~—tan8/2)(Ae~+ cot8/2)
(Ae~ —tan8/2)(Ae ~+cot8/2)

( ) P 3'—
1+yp

r( p)=[r(1 +yy)] '[(yp yp —')
+(1—yy)]

(4.7)

(4 g)

(3.15)

one obtains the forrri analogous to (2.25). Setting
W= 1 and letting p~O, one has now corresponding
to (2.26)

(4.9)

It can be shown that

=fr(1+yy)l '(p —y)(p '+y)
=r '[sin8 —,(pe'& —p 'e '~) +cos8] . (4.10)

H(r(p), B(p))=0, (4.11)
h =a —p tan —A —tan—

2 +o(p )

(3.16)

This will lead, in the monopole limit, to the corre-
sponding axially symmetric result.

IV. THE MONOPOLE LIMIT

As explained in the Introduction, this limit is ob-
tained very simply by setting p=a 'r and lettinga~ ao (with correspondingly Az~aA„, A, ~aA, ).
In (I) this limit led to axially symmetric monopoles
in the "spherical R gauge, " in which only this pas-
sage becomes direct. Here I obtain the Lax pairs for
separable monopoles in the same formalism. As in
(I) the following results should be compared
throughout with the corresponding ones of FHP. '

Since the limiting procedure is trivial, I briefly
present the main results and point out some special
features arising in this limit.

The self-duality constraint is (Appendix B)

DiB (A) =O=DpB (A)

Di I (A) =O=D2I (A)

Setting

G~o~
——diag(e", e ')

(4.12)

(4.13)

(4.14)

one has

P~o) ——diag(e", e ")

with

h = ry(A y) '+—F(l (A—),B(A))

(4.15)

(4.16)

such that F(A=O) =0. The limiting form of (2.25),
namely,

where H is an arbitrary (nice) function, solves the
pole equations. To zeroth order in p, B+(p) of (2.9)
coincide and give the r-independent B(p) of (4.7).
The other argument of H is provided by the limiting
form (rescaled) of the combination (2.16). Corre-
sponding to (4.2) and (4.3) one has

r2(G„G '), +(1+yy) (G~G ')„-=0

rD, P=[rd, A(1+yy)B- ——(1+yA)AB&]g

(4.1) h =r(1+yA)
corresponds to

F=I '(A)

(4.17)

(4.18)

=r(G„G ')Q (4.2)

(1+yy )D2tt =[«dr+(1+yy )dy—+« y)Adt lf—whereas F=0 corresponds to (2.26). The restriction
to axial symmetry gives the following situation. The
self-duality constraint is

=(1+yy)(G, G ')P,
when D

&
and Dq commute and

(4.3)

(4.4)

r (G„G ')„+(sin8) '(sin8GeG ')&——0

For the Lax pair,

(4.19)
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rD, Q = [—r a„—A as —( 1 —A cot8)Aa ]g
=r(G, G ')g

D2$:—[Ar a„+ae-p (A+ cot8)Aa~]g

=(GgG ')4

the consistency condition

[D(,(sin8D2)]/=0

gives back (4.19).The pole equations

rp„—ppe+(1 —p cot8)p=O

prp, +pa (p+—cot8)p =0

(4.20)

(4.21)

(4.22)

(4.23)

(4.24)

the results of Secs. II and III tend to unity. For
such reasons no evident rules can be given for the in-
verse passage (monopoles~instantons).

V. z-DEPENDENT FORMALISM

Although the r-static case seems to be of particu-
lar interest, other aspects should not necessarily be
ignored. For completeness, the main features of the
~-dependent case are presented briefly in this sec-
tion. Qne has the self-duality constraint (1.9),

sinh p(G, G '), +(1+yy) (GzG ') =0, (5.1)

where

now have the following one-parameter family of
solutions, with a constant c, namely,

p=(c sin8) '[(r —c cos8)

p=& +z ag =ap —la~ a —=ap+la~ (5.2)

The pair (2.2) and (2.3) can be modified quite simply
to

R cos(co 8)=r ——c cos8

R sin(co —8)=c sin8

co —8
and cot

(4.27)

(4.28)

for the upper and the lower signs, respectively. This
should be compared to (3.10). In (I), (co—8) played
a crucial role in the construction of monopoles [Eqs.
(2.19)—(2.23) of (I)]. Here, as was to be expected
after (3.10), (co —8) reappears in the poles. For

G(0~ ——diag(e", e ")

one has now

q(, )
—diag(e", e -"),

where

(4.30)

+(r 2rc cos—8+c )'~ ] . (4.25)

This corresponds to

I (p) =r '[sin8 —,(p —p ')+cos8]=c . (4.26)

Defining co and R through

sinhp D( p—:[sinhp a, —A(1+yy )a

—( coshp+y A )Aaz] f
= sinhp(G&G ')P

(1+yy)D, q= [A sin~ a, +(1+yy)a,

+(A coshp —y)Aap]p

=(1+yy)(G~G ')g .

D(,Dz commute and

[D(»2]4=0
leads back to (5.1). B+, defined in Sec. II as

B+(A)= (Ae +-~—y )(1+Ae +-~y)

= (Ae +—'—ye+')(e+'+ Ae —+'y )

still satisfies

DiB+(A) =O=D~B+(A)

But now one can also define the pair

P&(A):(Ae' ye ')(Ae '——ye')—
=e (Ae~ —y )(Ae ~—y )

(5.3)

(5.4)

(5.5)

(5.6)

(5.7)

(5.8)
h =r 1 —Acot—

2

with

F(l (0))=0

+F(r(A)), (4.31)
p2(A) =(yAe'+e ')(yAe '+e')

2'(Ae('y + 1)(Ae ~y + 1)

such that

(5.9)

corresponding to (4.17) one has

h =r 1+A tan— (4.32)

It will be noted that in the monopole limit, for ex-
ample, many nontrivial factors in various parts of

D(pj(A) =O=Dppj(A) (j=1,2)

Qne has however the relation

p((A)p2 '(A)=B+(A)B '(A)

=[I (A)+1][r(A)—1]

(5.10)

(5.11)
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where I (A) is defined by (2.16). The pole equations
are now

sinhpp, —p(1+yy)p +(coshp+yp)p. =0

p sinhp p, +(1+yy )py —(JM coshp —y )p =0
(5.12)

(5.13)

As compared to (2.13) H can now depend on three
independent combinations of P~, P2, 8+, and 8
In a symmetrical notation one can set

where

For the same G~o~ as in (2.19), i.e.,

G~o~ ——diag(e t', e ~)

one now has

/to~ ——diag(e", e ")

where

(5.14)

(5.15)

(5.16)

(5.17)

(Ae y)(Ae—t' y) 'P—(l3&(A), l32(A), 8+(A),8 (A)) (5.18)

along with (5.11) and ~ (A=O) =1. The results in
the scaling limit

(r,p) =(a 't, a 'r ), a~ ao (5.19)

can again be obtained very simply. This t-dependent
generalization of the results of Sec. IV is left as an
easy exerrise.

VI. REMARKS

In this paper for all the cases considered the fol-
lowing goals have been attained:

(1) construction of Lax pairs,
(2) solutions of the pole equations,
(3) construction of a suitable seed solution g~o~

suggested by the successful treatment of the axially
symmetric case in (I).

Hence solutions are now in principle available
(Appendix A) for an arbitrary number of poles. One
crucial step remains to be taken however —to fix the
criterion for a correct choice of poles, i.e., in Sec. II,
for example, selecting the correct explicit form of H
in (2.13). Only then [and fixing also the M' 's in
(2.28)] one can construct regular solutions with
desired asymptotic behaviors. I will try to carry out
this important part elsewhere.

Finally, I would like to collect together the
reasons for my particular choice of techniques for
constructing instanton chains both in (I) and, here,
in (II). This will involve some repetitions, which I
hope would be worthwhile Evidently .I am trying to
do much more than merely to reproduce monopole
solutions in yet another way. The two chain of (I)-
gives, for the first time so far as I know, explicitly
(though in unfamiliar coordinates and gauge) a par-
ticular class of non 't Hooft instantons -(presumably a
subclass of class 2 of Atiyah and Ward) for an infin-
ite range ofindex. That it is non-'t Hooft is assured

I

by the fact that in the scaling limit it leads to a
monopole of charge 2, which is in class 2 of Atiyah
and Ward. '9 The general structure of the axially
symmetric n-chain, leading to a monopole of charge
n, can be written down as a straightforward general-
ization. As emphasized in Sec. I, such instanton
chains should be studied for their many other in-
teresting properties apart from the fact that they
yield monopoles trivially as limits. (I, of course, do
not imply that monopoles are trivial, but that there
is practically no labor involved in extracting them at
the end. ) In Ref. 16, after a study of fluctuation
determinants and explicit corrections to dilute-gas
approximations for the one-chain, the desirability of
exploring a hierarchy of chains related to limiting
multimonopole configurations was pointed out. In
(I) and (II) this program is being carried out. As ex-
plained before at length, the key technique that
makes this feasible is the use of a static formalism
for finite-action solutions through the use of a
periodic time r as an interinediate step. Now among
all the approaches to multimonopole constructions,
the FHP ones turned out to be the most directly
adaptable to my purpose. [It is important to note,
however that, as explained in (I) and here in Appen-
dix B, the spherical R gauge is necessary to start
with. The relation with the standard R gauge is
even difficult to make explicit. ] This is the essential
reason for selecting the FHP techniques as sources
of "hindsight, " as explained in Sec. I.

In (I) the H-¹ype transformations suitably
adapted yielded efficiently and directly explicit, real
gauge potentials. Here, I have chosen to work with
Lax pairs. Apart from the sources already quoted,
even in the context of instantons alone, there are in-
teresting studies of Lax pairs. Here I will brief-
ly point out the relation to the Belavin-Zakharov ap-
proach. 2 2' With the definitions (1.8), setting
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D, =Bz+iA, and so on and defining

Di =—(smhp) '[sinhpD, —A(1+yy )D

—(coshp+y A)AB~] (6.1)

D2 =(1+yy ) '[A sinhp D +(1+yy )D

+ (A coshp —y )AB&]

(p=z+z)

The condition

(6.2)

[Di,D2]=A [D,,D ] +—[D„Dz]+ A[si nhp(1 +yy)] 'Isinh2p[D„D~]+(1+yy ) [D~,D ]I
(6.3)

yields the self-duality constraints. Hence setting

(6.4)D~ /=0 (j = 1,2)

one has

e"=e i'~ X(A)

where

(Ae i' —y )(1+Ae i'y)

(Aei' —y )(1+Aei'y )

—a/4

=X(—A ) (6.6)

one has a Belavin-Zakharov-type formalism. Now
gauge transforirling A, and A to zero (which is pos-
sible, consistently with F, 0), (6.4) =can be shown
to lead back to (5.3) and (5.4). (For the "Cartesian
choice" this aspect is discussed in Refs. 22 and 23.)
Since Belavin and Zakharov's multiplicative ansatz
does not seem to be adapted to non-'t Hooft classes '

and since the two-monopole case has already been
studied ' in a Belinski-Zakharov-type formalism, I
directly generalized the latter, adapting it to our
gauge. Algebraic topological methods can be power-
ful in demonstrating completeness' or in ensuring
regularity. ' But since in them really explicit forms
for gauge potentials for higher monopole charges are
not obtained, the prospect of constructing explicitly
instanton chains, with infinite range of index, lead-
ing to monopoles (which is my aim) seems even
more remote. As indicated before, I have not com-
pleted my program in this paper. But an eventual
construction of the general two-chain [seven-
parameter generalization of the two-chain of (I)]
would already be quite interesting. It will not be
merely two monopoles or two instantons, but an in-
finite sequence of non-'t Hooft instantons yielding
the two-monopole solution as a by-product. ¹neof
the other methods, since they concentrate on mono
poles only, can achieue this.

Even in the context of Lax pairs my formalism
has special interesting features. In (2.21), choosing

(6.5)

t

Thus from (A29) and (A25) in the limit pt~ —pk
one finally obtains simply

(1+P kPl )+kl™iMi —~2 M2 ~

(&) (l) (&) (1) (6.7)

This can simplify determination of the M's, which
now must assure the vanishing of the right-hand
sides for these critical points. Comparing with the
FHP formalism, ' where (in their notations)

h =z —Ay+F(y, A, )

(y—=yA. —y/A, —z)
(6.8)

1one gets a comparable feature by choosing F = —,y.
But then

Z 1

h = ———,(Ay+y/A, )
2 2

(6.9)

is singular for X=O.
Indeed, throughout my formalism (thanks to ratios

such as B+ ) A=0 is not a danger point. So one does
not get involved at this stage in complicated con-
straints to ensure regularity at A=0, which is the fi-
nal value to be retained to obtain G from g. Such
constraints, even for two-monopoles, relate two
parameters through an elliptic integral in the FHP
forrI|alism ' which reproduces closely similar4, 5

features in the Ward-Corrigan-Croddard formal-
ism. 9" (The relation between the spectral parame-
ter A in the Lax pairs and Ward's g is discussed, for
example, in Ref. 22.) Full consequences of such
features of our formalism and the way certain con-
straints arise in our ease, to ensure a finite action
will not be discussed here.

I conclude with a piece of somewhat belated wis-
dom. Strictly speaking, it should not have been
necessary at all to construct the multimonopoles (in
the PS limit) separately, though the formalisms pro-
posed to this end are admirable in many respects.
Exploring special hierarchies, with various fascinat-
ing properties, in the space of instantons mul-
timonopoles could have been obtained, among other
interesting results, as by-products. I am trying to
show, profiting from the hindsight provided by the
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monopole solutions, one of the ways in which this
can yet be realized.

APPENDIX A

The essential steps of the method of Zakharov
et al. are given below. For the reader's conveni-
ence they are adapted to the specific context of Sec.
II of this paper. The matrix equations to be solved
are

and the matrices Rk are free of A, as is evidently G.

g(o) is supposed to be so constructed that it has no
singularity as A~)Mk. The fact that the pole struc-
ture is explicit in the ansatz is exploited systemati-
cally and proves powerful enough a constraint to
lead to a general solution. Substituting (A4) in (Al)
and (A2) double poles appear on the left only.
Hence their residues must vanish. This leads to the
pole equations to be satisfied by the pk's for each k:

sinhp D(f—= [sinhp Bz—A( 1+yy )()-

—(coshp+y A)AB~]g

=sinhp(G&G ')P (Al)

[sinhp Bz—)M(1+yy)B-+(coshp+yp)])Lb =0

[)M sinhp Bz+ (1+yy )B» —(coshp p —y )])M =0
(A5)

(A6)
(1+yy )D2$ = [A sinhp Bz+ (1+yy )B

+(A coshp —y-)Aa, ]y
= (1+yy )(G» G ')g

with the boundary condition

(A2)

These are solved in Sec. II and leads to (2.13). The
consequences of these equations will be exploited re-
peatedly.

Now one proceeds to construct the Rk's as fol-
lows. From (Al), (A2), and (A4)

P(A=0) =G (A3)

Suppose that a particular solution g(0) for G =G(o)
has been found (examples are given in Sec. II). Then
for the "purely solitonic" case one assumes

X P(0) = ~ +g Rk(A Pk ) 4(0) (A4)
k

where I and Rk are matrices like G and f (in our
case 2X2, I being the unit matrix). The poles pk

D)X =(GpG )X—X(G(o)pG(o) ')

DzX = (G» G ')X —X( G(o)»G(o) )

Using the Hermiticity of G and the relation

sinhp D, ( —A ') = (1+yy )A 'D2(A)

one obtains the important constraint

X(&)=GX ( —& )G(0)

This may be seen as follows. From (A7)

(A10)

sinhpD((G 'XG(()))= —A(1+yy)(G~ 'XG(())+G 'XG(
) )

=&( 1 +yy )[(G G~)(G XG(()) ) (G XG(()) )(G(Q) G( )
—)] (Al 1)

Now after A~ —A ' and taking successively the
inverse and adjoint of both sides one uses (A9). This
shows that the right-hand side of (A10) satisfies
(A8) and similarly also (A7). For solutions satisfy-
ing (A10) a pole pk of X(A) is seen to correspond to
a pole at A= —pk

' (=vk say) of X '(A). These
poles have to be different from those of X for the in-
verse to exist. This is a constraint imposed by
(A10). Finally it turns out that for

X(A)X '(A) =I (A14)

implies through the vanishing of the residue as
A —+pk, for each k,

RkX '()Mk)=0 .

Hence denoting

(A15)

I

Qne need not construct explicitly the Sk's. It suf-
fices to note that

X(&)=&+g Rk(& —)Uk) (A12)
(Rk)~b =n, mb

(k) (k) (A16)

one has the structure

X '(A) =I+g Sk(A —vk )
and rewriting (A7) and (A8) as

(A18)
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(D)X)X +X(G(p)&G(p) )& =GpG

(D2X)X +X(G(0)yG(0) )X =Gy G

(A20)

[pk»nhI0 ~ +(1+yy)&, ]p(pk )

=(1+yy)(G~G ')g(pk)

Hence

~b (B+(pk )» (pk ))p(0)b (pk )

(A24)

[sinhI0 ()&—pk(1+yy )B-]m,' '+ sin+ mb

+ (G(0)pG(0) )b&
—1

[pk sinhp8 +(1+yy)B ]m,' '+(1+yy)mb

)& (G(p)3 G(()) )b, ——0—1

(A21)

(A22)

Again taking account of the pole equations one has

[sinhp l) —pk(1+yy )d ]g(pk )

=sinh)o(GpG ')g(pk)

the right-hand sides are independent of A. The resi-
dues of the double poles on the left vanish due to the
pole equations. Equating to zero the residues of the
simple poles one obtains

G =X(A)G(p)X ( —A ') (A26)

Equating to zero the residues of the poles
(k = 1, . . . , J) for J poles, say,

J
Rk G(p) I —g (pk '+pi ) 'RI ——0, (A27)

l=l

(A25)

where the arbitrary functions M(k) [of B+ defined in
(2.9)] should eventually be so chosen as to be corn
patible with the sought for regularity and asymptot-
ic properties.

To determine the n'"'s one starts from

J
'pk m G(o) I

—g[(1+pkPI) m, G(o) dmd ]nb
(k) -1 (k) (k) —(I) (I)

1=1
(A28)

Defining the J&&Jmatrix

(I) (k)+kl ( +P kpl ) d G(0)dcmc (A29)

I

let a change of coordinates be introduced such that
in ternis of the new coordinates (z,z,y,y ) one has

and using G(p),d
——G(p)d, one obtains in terllls of the

inverse matrix X
rib'=(& ')Ik(Pk 'G(o)b rTI. ) ~ (A30)

Now one has (Rk ),b ——n,'"'mb ' and hence p(A) with
a suitable choice of the pk's from the solutions
(2.13). Finally

ds =g~d~d —+g —dyd— (B2)

1

z = —,(x3 +ixp),
1

y = —,(xi+ix2),

1z = —,(x3 —ixp)
1

y = —,(xi —ix2)
(B3)

all other g&„'s vanishing. Two simple examples are
provided by the "standard choice"

G =i)'I(A=O) (A31)
and the "spherical choice"

G(()) ——diag(e~, —e )')

instead of (2.19).

(A32)

APPENDIX 8

Certain relevant features of different foi-lllulations

of the self-duality constraints are compared below
(see also Refs. 17 and 18). Starting with the flat Eu-
clidean metric

ds =dxp +dxi +dxz +dx3 (Bl)

More precisely one has to restore unimodularity
by further multiplying by a factor (detG) '~ . To
make detG positive for an odd number of poles one
can start with detG(p) ———1 such as by setting

z = —,(r +it), z = —,(r —it)

y =tan —e-'&, y-=tan —e-'&
2 '

2

Here t =xp, r, 8,$ are the usual spherical coordi-
nates and we will use in the following
ep)23 —1 —E'l ey. [When singularities (evidently re-
movable) are introduced by a choice, the behavior of
the gauge field solutions has to be checked in those
domains in telllls of coordinates well behaved there.
This sometimes provides crucial constraints. ]
Through (1.2) one obtains (1.8) which is a choice
particularly important for us. But the two familiar
examples given here will suffice to illustrate the
essential points. In teiills of any such choice, the
self-duality constraints can be shown to be
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(85)

g»F g—~Q +g&&F =0 (p —y z) (86)

Thus for (83) and (84), (86) becomes, respectively,

2' —A,p
(810)

F„+F =0 (87)

where p =y,z,P =y,z; A&
——

B&A, and so on. Now (85)
and (86) can be shown to lead to

re +(1+yy) F =0-

since in the latter case,

g -=4, g =4r (1+yy)

(88)

(89)

L I
—=g""(A,A,»—A,„A,„+g„g„)=0

L2 —=g""(A.g» —2$„A,„)=0

L2 =g»(A, g» 2$„A,—„)=-0 (p =y, z)

Defining the matrix

(811)

Whatever will be the choice for (y,y,z,z) the gauge
potentials A„are taken to be (with real A, and g, in
general, complex) it can be shown that

(812)

g""(G„G ') =A,
JM

(A,LI+gL2) (2A,JLI+g Lz —A,zL2)

—L, 2 —(AL I +gL2)
(813)

Hence the system (811) can be replaced by the single
matrix equation

A, =r 'sinhr sin8
(819)

g""(G„G ')„=0 (814)

For different choices of the coordinates (y,y,z,z) one
has different equations for G. This evident fact is
emphasized for its consequences. For example, (83)
leads to

of (816) gives the unit-charge PS monopole. Corre-
sponding to the "standard choice" the foriiialism of
FHPz' leads, in our notations, to

(G,G '), +(GyG ')„-=0

and (84) to

r2(G, G '),-+(1+yy) (GyG ')-=0
The fact that

(815)

(816)

A, =(r sin8)F

g —g —(x3 coshx3 —r slnhx3 cotllx3 )F

where

A, =e", /=0=/ (817)

is a solution of (816) [though not of (815)] was used
in (I) to construct a "seed solution" without break-
ing spherical symmetry. This choice replaced

F =r(sinhr ) '+r coshx3 cothr

x 3 sinhx 3 (x 3 —r cos8 ) (820)

In the complex gauge foi-ixialism of Prasad' one ob-
tains, in our notations,

A, =e ', /=0=/ (818) X=e r ' sinhr
used for (815) (Refs. 2—5). Certain consequences of
the choice of (816) which reduces to "Ernst-type"
(not exactly Ernst) equations for axial symmetry
were discussed in detail in (I). Here I recapitulate
only the simplest result for comparison. It was
shown in (I) that. the solution

g=e e'&(r sin8) '(cos8sinhr+coshr)

g=e 'e'~(r sin8) '(cos8sinhr —coshr)

(821)

which are then gauge transfornIed to give real solu-
tions. '
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Comparing (819) with (820) and (821) it is evi-
dent that a choice different from the standard one
can be of interest for special purposes. But the main
interest of (84), from my point of view, is that (816)
is the limit, in the sense (1.6), of (1.10). This is what

perinits the trivial extraction of self-dual monopoles
from special classes of finite-action instantons. Oth-
er possible interesting choices and the precise con-
nection between the 6 matrices for such different
choices should be studied.
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