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Following a preceding paper, we reexamine the interaction of magnetic monopoles (dyons) with
Dirac particles. For an infinitely heavy SU(2) dyon with one isodoublet fermion, we show that the
vacuum angle in the original theory may be incorporated as a boundary condition in an effective
one-particle Hamiltonian, which allows us to determine the charge distribution and the fermionic
structure of the stable dyons. The resulting boundary conditions turn out to be Abelian and charge
conserving, in contrast to that of previous authors. In particular, the dyon degree of freedom is
essentially frozen, and there is no charge-exchange scattering off the dyon. With a Dirac mass term
for the fermion, we also find that the ground state is twofold degenerate, owing to a spontaneous
breakdown of fermion-number conjugation. For a Higgs mass, we find that the conjugation symme-

try is unbroken, as in the original analysis of Jackiw and Rebbi. However, because of the changed
boundary condition, the characteristic zero mode ceases to exist, and the ground state is nondegen-
erate with zero fermion number.

I. INTRODUCTION

In a previous paper' (referred to as I), we have reexam-
ined the problem of a Dirac particle in a fixed Abelian
monopole field. It was found that the system admitted the
existence of 8 vacua: For massless fermions chiral sym-
metry was spontaneously broken, whereas for massive fer-
mions the monopole exhibited the Witten effect, and
became a dyon. In particular, the resulting charge was
essentially given by the g invariant of Atiyah, Patodi, and
Singer. Furthermore, the chiral symmetry breaking for
the massless case and the Witten effect for the massive
case were related by an analog of Levinson's theorem.

However, the paper left open several problems, one of
which was the relation between Abelian and non-Abelian
monopoles with respect to the vacuum angle. For the
Abelian monopole 0 entered the problem as a boundary
condition at the origin (the location of the monopole),
whereas for the non-Abelian monopole ' it enters as a
coupling constant in the Lagrangian, a manner which
at first sight seems to be quite distinct.

In this paper, we will show that the actual situation is
otherwise. In Sec. II, we take a simple example to illus-
trate how a coupling constant may wind up as a boundary
condition. Section III then gives a brief review of the
properties of the Dirac equation for a fixed non-Abelian
monopole field. ' ' We proceed to the coupled fermion-

monopole system in Sec. IV, which comprises the main
part of this paper. Following previous authors, ' ' ' we
consider a model Hamiltonian, which retains only the
lowest partial wave for the fermions. The Hamiltonian is
solved by a variational calculation in the case where the
dyon mass is much greater than that of the fermion. In
particular, we are able to determine the charge distribution
and the fermionic structure of the stable dyons in that
limit. We find that the result is quite different from what
one would naively expect on the basis of the Dirac equa-
tion in Sec. III. In particular, the effective boundary con-
dition at the dyon core turns out to be charge conserving,
in contrast to that of previous authors. " ' The reason
for the discrepancy turns out to be quite simple ': The
large Coulomb energy associated with the dyon core in-

validates the usual semiclassical approximation. This
point is further discussed in Sec. V, where we also discuss
the relation between our results and the previous work on
the monopole-fermion system. '

II. A SIMPLE EXAMPLE

As in I, let us consider a Dirac particle in a fixed Abeli-

an monopole field. This time, however, we also include

the Coulomb self-energy. A suitable Hamiltonian would

be

1~= —,
' f dx+ (x,t)ae(x, t)+-,' f dx(IIV)t(x, t)%(x, t)+ —,

' f dxdyjo(x, t) jo(y, ),
4m. x —y

where

(2.1)

j&(x,t) =(e/2)[TI(x, t),1&'Il(x,t)],
I=a m. +iMPe

m = —iP —eA.

(2.2)

(2.3)

(2.4)

(We have suppressed spinorial indices. ) At first sight, it is not clear how a boundary condition could enter the problem;
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A as it stands is already Hermitian, without any boundary condition on H. Furthermore, the angle 0 also seems to be
without effect, since it may be rotated away by a chiral rotation

%(x,t)~e ' %(x,t)

without affecting the canonical anticommutation relations

[%(x,t), % (y, t)[ =5(x —y)l, IV(x, t), %(y, t)] = I+t(x, t),+t(y, t)] =0 .

(2.5)

(2.6)

However, the results of I indicate that transformations such as (2.5) actually may take us from one Hilbert space to
another. In other words, the physical content of A is not completely determined unless we also specify which represen-
tation of the canonical anticommutation relation to use.

To do that on a rigorous basis of course would be very difficult; however, if we restrict ourselves to Fock representa-
tions and formulate the question as which is the best basis to expand the field operator 4 in, an approximation pro-
cedure immediately suggests itself: We simply apply the (Hartree-Fock) variational principle.

A straightforward way to proceed would be to take the Hartree-Fock Hamiltonian as

A H„[AO]= —,
' f dx +t(x, t)H+(x, t)+ —,

' f dx(H%') (x, t)W(x, t)+ f dxAO(x)jo(x, t)+ —,
' f dxAO(x)MO(x)

(2.7)

and to determine the potential Ap through must be supplemented by the boundary condition

(2.8)

where
~
OH„) is the ground state of A HF[AO].

Although the solution of (2.8) is intractable analytically,
it is not hard to guess its qualitative features. We may as-
sume that Ap is spherically symmetric, otherwise rotation-
al symmetry would suffer spontaneous breakdown. There-
fore the one-particle wave function may be decomposed
into partial waves. We may also assume that Ap is regular
at the origin, corresponding to an extended charge distri-
bution. According to I however, that means that a boun-
dary condition at the origin must be imposed for the
lowest partial wave so that A HF[AO] possesses a decent
vacuum. Therefore, we must also vary with respect to the
boundary conditions; that is how they may enter the prob-
lem.

In fact, for the purpose of illustration, let us take the
trial Hamiltonian to be simply

A 0
———,

' f dx'P (x, t)a v~r(x, t)

+ —,
' f dx(a m~)t(x, t)%(x, t) . (2.9)

Again, if A p is to have a decent vacuum, the wave equa-
tion for the lowest partial wave

(2.11)

i sin kr+—
4

cos kr+—
(E =k &0),

(2.12)

iFoy&/2
Uq (r) =e

—i sin kr+—
4

cos kr+—
4

(E = —k (0),

The solutions of (2.10) and (2.11) are given by

a m. rb~(Q}=E rlj (0}X(r) X(r)
r r

(2.10) and we may expand the field operator 4' as

1 00

%(x,t) = g dk[bz e '"'u& (r)rtj. (0)+d& e'"'U& (r)g~ (0)]+(higher j ) .
m

(2.13)

By virtue of the boundary condition (2.11), b& and d& also obey the canonical anticommutation relations, and deter-
mine the trial vacuum through

bq„ i
to ) =dq„ i

to ) =0 .

Using (2.12), it is not hard to show that

(to
~

A
~
to) = —Mcos(co —8) +(to- independent terms) .2j+1 ~ dk

2~ o k

(The only thing we need to know about the higher partial

(2.14)

(2.15)
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waves is that they are chirality conserving. ) Hence, the
vacuum energy is minimized when 6=8. Needless to say,
A o is a crude approximation to A; nevertheless, we hope
we have made our point. Different 0's lead to different
Hilbert spaces; so do different boundary conditions.

where U is an arbitrary 2&&2 unitary matrix. (The i is
conventional. ) We also define the associated Pauli ma-
trices t 1 t2 t3 corresponding to the action of pr„p72 'r3 011

7; in particular, t3 corresponds to the charge.
In terms of the solutions of the Abelian equation

r

III. THE DIRAC EQUATION
IN A FIXED EXTERNAL FIELD

di—y, +PM X(r) =EX(r),
dT

(3.9)

I.et us now consider a Dirac particle in a non-Abelian
monopole field, where the field is taken to be external and
fixed. The solution of the corresponding Dirac equation
has been discussed by many authors' '; hence we shall
review only the salient features. (Our conventions are
summarized in the Appendix. )

We first take the case of an isospinor fermion in a point
SU(2) monopole field. Then the system is essentially
Abelian and we may immediately carry over our results
from the Abelian case. In particular, the radial equation
for the lowest partial wave reads

coskr +i (E/k)sinkr
E " =

i —(M/k)sinkr

i (M/k)sinkr
E coskr i (E—/k)sinkr

the solutions of (3.1) may be expressed as

R+ (0)XE '(r)+L+ (0)X E '(r)

R (0)X z ' (r) ~L (0)X E '"(r)

(3.10)

(3.11)

HoX(r) =EX(r), (3.1) (k2+M2)1/2 (3 12)

dHo= iy3r3 —+pM . (3.2)

Again, it is necessary to impose a boundary condition at
r =0; Hermiticity requires

() (X(1) ~ X(2)) (yg~(1) X(2))
Using the formula

E = —(k +M )' (3 13)

R+(0)XP'(r)+L+(0)XE (r)

R (0)X E
' (r)+L (0)X E '"(r)

=l'X"' (0)y3r3X' '(0) . (3.3)

X+(r), I 0
X(r) X ( )

y 73 0

R+(r) 1 p
X+(r)=

(3.4)

We may then introduce the eigenvectors of y5$3,

(3.5)

(After second quantization, this would translate into the
conservation of fermion-number current j„=%y&%. )

It is convenient to work in a representation in which
both y5 and ~3 are diagonal:

(Xe,Xe ) = i
X e~(0)(E —PM)Xe(0)

i

—5(E E')—
i X E(0)—y3XE'(0)

we find that the solutions will be orthonormal,

(u/, v, u(, v ) =(Ukv, uk v) =775(k —k'),

(ukv~vk'v)=0 ~

if we take X+ (0) to be the eigenvectors of U

UX~'(0)=e 'X+'(0) (i =1,2)

with length k /[2E (E —M sin8; )]'/ .
If cosO; &0, there are also bound states

(3.14)

(3.15)

(3.16)

R

so that (3.3) reads

X(l)t(p)X(2)(p) X(l)t(p)X(2)(0)

(3.6)

(3.7)

Bv'(r) =Bv'(0)e

E =M sin8;, (~; =M
~
cos8;

~

UX"(0)=e 'X"(0), X" (0)X"(0)=)(; .

(3.17)

The desired boundary condition is therefore

X+(0)=iUX (0), (3.8)

Together, u, v, and 8 form a complete set.
As in I, we may calculate the properties of the Dirac

sea. The (one-dimensional) charge density is given by

M(t3 );sin8; K K

27/ ~M ()r M )
/ K+M cos8;v(r)= (3.18)

where

( t3 ) ' —X+ (0)t3X'+'(0)/X'+' (0)X+'(0)

Hence the total charge is

(3.19)

2

g, (U) = —g (t3),8, /4~

with the convention

(3.20)
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/8; f
(m. .

Similarly, the energy density is given by

M sin8;
Too(r) = g 5(r)

i=1 2

(3.21) J(r) 1 1
-eQD

er Ie2 4~7

H(r) mw

er e

(3.30)

(3.31)

K(r) —1
A)'(r ) =e„ix) )er

~,( )
„J(r)

er

(3.23)

(3.24)

where r =
~

x ~, x; =x;/r, and the space index i and the
SU(2) index a both run from 1 to 3. (Warning: Sign er-
rors and inconsistent positioning of spacetime indices are
frequent in the literature. } There is also an isovector
Higgs field of the form

M cos8; (z~ M2)'»
e

—2K''

ir M K+M cose;

(3.22)

We note that the total energy may be finite if
cosO&+cos02 ——0, ' in contrast with the Abelian case.

We now turn to the Dirac equation in the field of an ex-
tended non-Abelian monopole (dyon). Again, we restrict
ourselves to the case of an SU(2) gauge field with one iso-
spinor fermion.

In the static gauge, the Julia-Zee solution takes the
form

where the approach to the asymptotic form is exponential.
The constant QD has an obvious physical meaning; it is
the electric charge of the dyon. The meaning of the oth-
er constant I is not so obvious; here we shall only remark
that it is positive and of order rp/e

The radial equation for the lowest partial wave (J=O}
now reads

H+ — X(r)=Eg{r),&3 J(r)
2 7

d K(r)H = i y5—r3 +PM —y~r2dr 7

(3.32)

(3.33)

(3.34)

Therefore, it is quite tempting to conclude that

Unlike the case of the point monopole, the boundary con-
dition at the origin is automatically determined, owing to
the 1/r singularity of K(r)/r. The regular solution van-
ishes at the origin, whereas the irregular solutions fail to
be square integrable there.

The behavior of the regular solution is such that

R+(ro) 0 1 L+(r )O

L (ro) 1 0 R (ro) +

]( )
H(r)

er
(3.25} U = —it) (3.35)

r H"=2HK + (H mii r H), —
2 (3.26)

r K"=K(K 1)+K{H J—), —
where m~ is the mass acquired by the vector bosons
through the Higgs-Kibble mechanism, and A, is the self-
coupling of the scalar {().

The solution of (3.26) is not known analytically except
in the Prasad-Sommerfield limit 9 (A~O, e, ms fixed):

J =sinhy(mii r cothm ii r —1),
K = rn ~7/sinhm ~7,
H =coshy(mii r cothmii r —1) .

(3.27)

The qualitative features however are similar for the gen-
eral case except for M in particular, the length scale is set
by ro ——rn~ ', and the behavior as rp~0 is required to be

J(r) =O(r ), K(7)=1+0(7 ),

IJ (7)=0(7'),
(3.28)

The functions J,K,H satisfy the coupled differential
equations

7 J"=2JK

IV. THE COUPLED FERMION-MONOPOLE SYSTEM

We now treat the monopole (dyon} as a dynamical ob-
ject, instead of as a fixed field configuration. To this end,
it is convenient at first to go to the Ao ——0 gauge, where in
matrix notation

Ao (x, t)=GAO(x) —G +—GG =0,
2 e

(4.1)

l 6
2 e

(4.2)

is the correct boundary condition to use in the limit
ro~0. Since (3.35) is charge violating, one may also ex-
pect such processes such as charge emission and charge-
exchange scattering. ' '

The conclusion also seems to be justified on the basis of
the semiclassical approximation&i, 2o. The back reaction of
the fermions is of higher order in the loop expansion.

Unfortunately, the argument turns out to have a
loophole. As we shall see in the next section, effects
which are formally of order e are actually of magnitude
e m~, and in a sense dominate when m~ —+ oo. As a re-
sult, the effective boundary condition turns out to be
charge conserving, in contrast with (3.35)

G =exp —r xg ( r)qp( t)
2E(7)

er
(3.29)

with

so that the solution has finite energy. Gn the other hand,
fOr 7~ oo, (4.3)
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+(r)=—I J(r) ~l (r~ce) .
Qn

'2
(4 4) 1 , 0

'p+ — —
2 dr[X (r, t),g (r) , r2X—(r,t)] .

(The overdot indicates differentiation with respect to
time. ) Comparison with (3.30) gives

QD
——Iip =constant (4.5)

=—fdtj+ fdtjo (4.7)

identifying the constant I as the moment of inertia. It is
easy to check that (4.6) correctly reproduces the Witten
formula for the dyon charge in the absence of fermions

(4.8)

since the conjugate momentum

I9
p =Ijp+— (4.9)

can only take integer values.
To incorporate fermions, we simply add the action in-

tegral

f dt f dx 'P (x, t) i —a;2r—; —PM 0'(x, t), (4.10)

G ~ Gm. = —rV +ed (4.11)

Undoing the gauge transformation and keeping only the
J=O partial wave, we arrive at

Sz ——f dt f dr X (r, t) i HX—(r,t)—~ a
Bt

+~ f dt f dr[X (r, t), , r3g(r)X(r, t)], (—4.12)

where H is defined in (3.31).
The conjugate momentum is now given by

p =Ij + + —,
' f dt f dr[Xt(r, t), —,'r3g(r)X(r, t)]

2&

so the gauge transformation G is periodic in time at
00 ~

Quantization of the dyon degree of freedom consists
in taking y as a dynamical variable with period 2~. The
procedure should be valid to all orders in the semiclassical
expansion if M&0; we shall take it to be valid even
beyond the semiclassical scheme.

If we ignore all other degrees of freedom, the gauge
field part of the action

—,
' f dt f dx[E (x, t)E~'(x, t) —8 (x, t)8 (x, t)]

f dt f dx E,'(x, t)8 (x, t) (4.6)
Sm

reduces to that of a free rotator

(4.16)

Evidently, p~ commutes with A, and is a constant of
motion. Since isodoublet fermions are present, p+ can
take half-integer values and 0 is defined only modulo m..
(One may equally say that p+ takes integer values and 8 is
defined modulo 2m as before. )

Rewriting (4.13) as

=Ij +—, f dr[X (r, t),g (r) , r3'X(—r, t)]
2m.

(4.17)

we find that it is just a statement of charge conservation
The first term is the charge of the dyon, whereas the
second term is the charge of the fermion.

The physical meaning of the Hamiltonian is equally
simple. A ~ is equal to

2 2 2

(Iy) = (4.18)
2I 2I 2ro

and represents the Coulomb energy of the core. A F is the
energy of the fermions in the magnetic part of the dyon
field. Equation (4.18) also confirms the remark in the pre-
vious section: A ~ is formally of order e, however, in ac-
tual magnitude, it is of order e m~.

To put these remarks on a more quantitative basis, we

apply a Hartree-Fock procedure as in Sec. II. Since our
system is one dimensional, we may even contemplate a
search for the best Fock basis, i.e., we expand the field
operator 7 in terms of an arbitrary complete set

X(r)=—f "k[bkuk(r)+dkuk(")]
1

(4.19)

(uk, uk )=(uk, uk )=vr5(k —k'), (uk, uk )=0, (4.20)

f dk[uk(r)uk(r')+uk(r)uk(r')] =5(r —r')I,

(4.21)

+ Trg r3P g r3P
1 +

2I
(4.22)

w~ere

and minimize (A ) with respect to variations 5uk, 5uk
under the constraints (4.20) and (4.21). (We have
suppressed possible bound states for notational simplicity. )

Actually, it is not hard to see that the solution wi11 not
be uniquely determined; separate unitary transforrnations
on {uk I and {uk I do not lead to different Fock representa-
tions. This may also be directly verified; in a condensed
notation

2
1 n 0

(,~)=TrHP + ——-,'
Try r, (P P+)——-—

2I 2 2m

and the Hamiltonian is '

(4.14)~=~F+A c,
~p ——

2 f dr X (r, t)HX(r, t)+ —,
' f dr(HX)t(r, t)X(r, t),

(4.15)

P = dk QkQk, P = dk VkVk
1

The constraints

(P+)'=P+, (P )2=P , P++P =1---(4.23)
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(4.25)

Hence,

5&A &
= Tr(P—H„P+5Q+P+H„P 5Q ), (426)

=H ——— + ,
' Trg—r,(P+ P —}g—r,I 2 2m

gr5(P P)g—r, ,
1 +

2I
(4.27)

may be satisfied by taking the variations to be of the form

5P+= 5P—=P+5QP +P-5QtP+ .

take a more simple-minded approach. Since we are in-
terested in the limit m~~ oo, we may as well take our tri-
al basis to be the eigenfunctions of the point Hamiltonian
Ho under the various boundary conditions (3.8). Unfor-
tunately however, that will mean that we shall encounter
ultraviolet divergences. In accordance with the fact that
we have dropped all the massive excitations of the gauge
fields and the Higgs fields, we shall impose a cutoff
A & m~ for the fermions as well. It is important that the
cutoff may be implemented in a basis-independent
manner; at least formally, that may be accomplished by
the replacement

which gives

P H„P+=P +HscP =0
or

[H„,P+]=[H„,P ]=0 (4.29)

X(r, t)~&X(r, t)H,

H =e —,
' f dr X (rt)HOX(r, t)

+ H. c. E, (A—'+M—')'"

(4.31)

(4.32)

[H„,P+ P]=0,—(P+ P) =1—, (4.30)

since the diagonal elements of P+ —P are directly relat-
ed to the charge density, and are expected to have no 5-
function singularities.

However, the equations are still formidable, so we shall
I

which may be regarded as a condition of self-consistency.
For actual computations, it is convenient to rewrite

(4.24) and (4.29) as

where 8 is the step function and Eo is a constant indepen-
dent of U.

There is one more difference between this case and that
of Sec. II.

Owing to the 1/r singularity in H, substitution of
2

X(r)=—g f dk[bk'Uuk'U(r)+dk'U ukU(r)] (4.33)
i=1

into A wi11 make sense only if

ttkU (0)Y5r2+k'U(0) ukU (0)Y5r2uk'U(0) ukU (0)Y5 2uk'U(0) ukU ( )Y5 2t(k'U(0)
(i)f (j) (i)f (j) (i)f (j) (i)f (j)

Otherwise, the coefficients of terms such as bkbk will be divergent even with an ultraviolet cutoff.
In terms of the boundary conditions, (4.34) requires

U t1+t1U =0
which further implies that either

81———02——+m/2, U =+it1

(4.34)

(4.35)

(4.36)

or

01+82——+m, U&+i t1 (4.37)

must hold.
Having disposed of the prdiminaries, we may now proceed to evaluate & U

I

A
I

U&, where
I

U & is our trial ground
state:

bkU I
U&="kU

I
U&=0

The contribution of A F is

oo A ~ 1 2

&U IA F I
U&= ——g f dr f dk IE I

uk'U(r)uk'U(r) —g f "K—(r) f dkuk'U(r)Y5r2uk'U(r) .
i=1 i=1

(4.38)

(4.39)

Apart from the U-independent constant

Eo= —f, «f, dkIEI (4.40)

the first term is finite and of order M; this is essentially a
consequence of (3.22) and (4.35). On the other hand, from
(3.12) and (3.13) we find

(,)t (,.) k I
E

I
stn8;+M

ukU (r)Y5r2ukU(r) =—
I
E

I I
E

I
+M sin8;

&t, &;sin2kr .

(4.41)

I

Hence the second term is of order
r

77l gr m.A
2

Incosh g &t) &;sin8;,
7T mgf -

1

(4.42)

where we have used the Prasad-Sommerfield solution
(3.27) for explicit evaluation.

For the boundary condition (4.36)
2

g &t, &;sin8;=+2, U=+it, (4.43)
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whereas for (4.37)
2

g &t, &;sin8; =0 . (4.44)

Therefore, in the absence of the Coulomb term A c, the
energy is minimized for the charge-violating boundary
(3.35) as expected.

Let us now consider the effect of A c. The decomposi-
tion

g, = —,
' f dr[X (r), ,'r3g(—r)J(l)] :g,:+—&U

I QF I
U&

(4.45)

00 M
& U

I QF I
U& = f dr g (r) pU(r)+0 sin2Ar

0 Ar

=Qv(U)+0 ln
M

mdiv

mg M
(4.47)

and the first term of (4.46) to be
2

—Qv(U) +0 e Min
2I 2 2m M

(4.48}

where:: indicates normal ordering with respect to
I

U&.
We find from (3.12) and (3.13) that

gives

&U I~c I
U&= &U

I QF I
U&2I 2 2~

+ ~&UI:QF IU&

2
On the other hand, the second term gives

f dk dk'
I

(uk'U, /r3 k U )
Ig+I . . 0&k+k'&A
(4.49)

(4.46) We find

ukU(r)r3vk U(r) =ukU(0)r3vk U(0)cos(k +k')r —iukU(0)y5vk U(0}sin(k +k )r+0I M M (4.50)

—l
(ukU&r3Vk'U } ukU(0)1 5Vk'U(0} EE+ E'

(4.51}

and therefore

—l
(ukU&Er3Vk'U } ukU(0) Y—5Vk'U(0) E

1 k+k'+0 ln
mw m~

(4.52)
and

611———62 ———m/2,
0 1

U= i
1 0

—Qv(U}=0

(4.59)

The first term vanishes if and only if

r3Vk U(o) = +Vk U(o—}

or in terms of U,

(4.53) 01+82——+m, U =
i8)

i' & Qv=
e

—81+82
4m.

(4.60)

[U, t, ]=0.
In that case

(4.54)

(4.55)

To decide between these cases, we also need to take into
account the piece of the Coulomb energy given by (4.48).

We first consider the case when the total charge lies
within the range

otherwise

n 8—4( — (4
2 2m.

(4.61)

& U I:Q I
U&= tr[U, t, ][t„U ]ln

32 I
Then for (4.60), all the charge may be carried by the vac-
uum with

(4.56)

In particular, as noted by Besson, ' the semiclassical ex-
pansion leads to an infrared divergence as M~O.

From these results, we may rule out

8i —82 28, 8i+82——=+8',
I
8i I, I

82 I
(n',

and (4.48) becomes of order
2

e2M2 m w
ln

mg M

(4.62)

(4.63)

and

01———82——m/2, U =it(

8i+82 ——+n., [U,t3]~0,
since they have higher energies relative to

(4.57)

(4.58) 8
2I 2m

(4.64)

which is negligible. On the other hand, (4.59) will lead to
an extra Coulomb energy

2
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U= —it(,
(4.65)

since the dyon core must carry the charge.
Collecting all the pieces together and setting A =m ~,

we find

[Note that for (2a} and (2b) the zero-energy mode is com-
pletely occupied or unoccupied, because of the Coulomb
term Mc.l

The twofold degeneracy of the vacuum is a consequence
of the fact that

(m) = ln
4 I

U=+ie ', (A ) =0

P1~
lncosh+,

(4.66)

(U]~[ U) =(U'[~[U'),
U'=t, U't, ,

(4.73)

up to terms of order e m~. Hence the charge-conserving
boundary condition (4.66) is favored when

owing to the invariance of the Hamiltonian under
fermion-number conjugation

X~p2viX (4.74)
ln &O(l) .

4m
(4.67)

In particular, the condition is always met for m~~ op or
M~O, and we conclude that (4.66) is the correct effective
boundary condition in that limit.

Values of n and 8 other than (4.61) may also be treated,
provided we fill some positive-energy levels or empty some
negative-energy levels with respect to

~
U). A few occu-

pied or unoccupied levels will not make much of a differ-
ence in (4.65} and (4.66), and we again conclude that the
correct boundary condition is charge conserving in the
limit m~ ~ 00.

In this connection, an interesting point is whether the
relevant level is a bound state or a scattering state, since
the former corresponds to a stable dyon, whereas the lat-
tice corresponds to an unstable one. (We assume that
M&0.) Owing to the constraints (3.21) and (4.37), there
are no bound states if Oi ——Oq

——+~/2, whereas there is just
one if otherwise; working out the quantum numbers of
those states and taking into account the vacuum charge
Qr( U), we find that stable dyons can exist only for

The two vacua belong to two different Hilbert spaces as
m~~~, hence the symmetry is spontaneously broken.
On the other hand, the charge-violating boundary condi-
tion (3.35) is invariant under the conjugation symmetry, so
we may expect a phase transition as we vary the ratio
mg /M.

The existence of a broken symmetry poses some prob-
lems, one of which is the behavior of a system with a
monopole and an antimonopole. Since the system is ex-
pected to lie in the same sector as the vacuum, the conju-
gation symmetry should be restored, and it is not clear
how that may happen, although there seems to be nothing
wrong with that either. (A related problem is whether
there is a state which in some sense would interpolate be-
tween the two vacua for a single monopole. )

We may also note that the system has fractional charge
but integer fermion number. The latter is partly a matter
of definition; it is possible to define fermion number as

—,
' f dr[X (r),X(r)]j (4.75)

which amounts to the addition of the e number

(4.68) i+2 1+
2~ 2' (4.76)

F = f dr:X (r)X(r):

as well as the relevant boundary conditions:

i Ht3(1) n =0, ——&8&—,U=+ie, F=0,
2 2'

p(r)- —(M/2)sin8 (Mro «Mr «1)

(4.69)

%'e may record their charge distribution and their fermion
number

The definition (4.75) is more suitable as an order parame-
ter; however, we believe the assignment of (4.69)—(4.72) is
more expressive of the fermionic structure.

Evidently, it is also of interest to see what happens for
the case originally treated by Jackiw and Rebbi, " where
the fermion gets its mass from the Higgs field. As
shown in the Appendix, that is equivalent to changing
y5r2E(r)/r in H to r2E(r)/r, which changes (4 20) to.

t, U —U t, =o
——(M/4mr)'/ tan8e " (Mr »1) .

(2a) 8 nrem= —,—U =t3,2'
p(r) = —(M/2)e

(4.70)

(4.71a}

and (4.21) and (4.22) to

costi ———cos02 ——+ 1, U = +t2,
6'& = —2 U~+ t2

(4.78)

(4.79)

(2b) 8 nir= ——,—

p(r) = (M/2)e

(3) pg =1, 0(g( —or n = —1, ——((o,
2 '

2

(4.7 lb)

Again, we find that A c favors a charge-conserving
boundary condition over a nonconserving one, whereas
A ~ favors (4.78) over the others; in the limit mir~co,
A c dominates over A z as before, leading to the boun-
dary condition

U =+ie ', I' =+1,
p(r}-(M/2)sin8 (Mro «Mr «1)

~ singe —~
I
sine

I
r (4.72)

for

i Ht3U=e

1 n 0 1

4 2 2m. 4

(4.80)

(4.81)
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However, the difference between (4.37) and (4.79) turns
out to be quite significant for larger values of the total
charge. Comparing with (3.22), we find that with a Higgs
mass, the vacuum energy is logarithmically divergent; in
particular, cosO; &0 is favored over cosO; &0, by letting
the fermions carry some of the charge if necessary. How-
ever, since there are no bound states for cosO; & 0, we find
that stable dyons only exist within the range (4.81), in can-
trast with (4.54). Again, we may record their properties:

n=0, 7T i Ht3——&O& —,U=e, F=0,
2 2'

M sinO
p(r) —— InMr (Mrp ((Mr &(1)

1/2
M O zMtan —e " (Mr »1) .

4mr 2
(4.82)

We note that fermion-number conjugation for a Higgs
mass

X~p2&2X (4.83)

is unbroken throughout. In particular, for the charge-
violating boundary condition (4.78), there is one level with
exactly zero energy, as in the original analysis of Jackiw
and Rebbi. However, for the charge-conserving boundary
condition (4.80), there is no such level within the range
(4.81), and the ground state is nondegenerate with zero fer-
mion number.

Finally, as a consistency check on our calculation, let us
consider the induced vacuum current

For the charge-conserving boundary conditions (4.66) and
(4.80), jk vanishes, and we find that the spin-isospin struc-
ture of D„F„„andj„are the same.

This would not have been a cause for concern had the
loop expansion been valid; as apparent from (4.89) and
(4 90.), D&F&„ is of order 1/e, whereas j„ is of order e.
However, we have seen that the expansion is not valid in
the limit m~ —+Oo, so a mismatch in the indices is poten-
tially dangerous, and it is gratifying that our results have
passed this check.

V. DISCUSSION

We have shown that the coupled fermion-monopole
(dyon) system behaves quite differently from what one
would naively expect from the solution of the Dirac equa-
tion for a fixed-field configuration. For a heavy dyon, the
charge of the fermions and the charge of the dyon was
essentially conserved separately, and the system was Abeli-
an in character. Also, for a Dirac mass, fermion-number
conjugation was spontaneously broken, whereas for a
Higgs mass, there was no zero-mode degeneracy. The
reason for the discrepancy was quite simple: There is a
large Coulomb energy in the limit m@ ~ oo, if the charge
resides on the dyon.

This aspect, as well as the existence of a fermionic
structure has already been anticipated by Wilczek; the
difference is that our work is more specific and quantita-
tive. In particular, within our approximation, the quan-
tum nature of the dyon degree of freedom was seen to be
quite important. If the Coulomb energy is to be small

(4.84)

We find the contribution of the lowest partial wave to be

( I
QD'I &=o,

we must have

(5.1)

jo —— x,p(r),
4m.r

, x.xk & ,' [X'(r)—,rA(r)] &

Smr

QDI &=0 .
(4.85)

rather than just

&
I QD I

&=o

(5.2)

(5.3)

+,(& —"," )( —,
'

[X ( ),y X( )] &

S~r

+ p
e kl+I & [X (r) rsr2X(r)1&

S~r
(4.86)

and the dyon degree of freedom is essentially frozen for
the low-lying states.

Furthermore, (5.2) together with charge conservation
gives

for a Dirac mass, and

jo= zx p(r),
4~r

(4.87)

, x.xk & ,
' [X'(r»l—P(r)]&

Sm.r+,(5,„—x,x„)(—,
'

[X (r),r,X(r)] &

Sm.r

+ 2 ezklxr(,
'

[X (r),r2X(r)] &

S~r
(4.88)

for a Higgs mass.
On the other hand, we find from (3.23)—(3.25) that

(D~F~p) = — 3x (r J" 2JK ), —
er

(4.89)

(4.90)(DpF~k)'= —
3 e~kixI[r K" K(K 1)] . — —

er

n
QFI &= ——

2
(5.4)

which implies that the effective boundary condition must
be charge conserving. Compatibility with a finite energy
for the gauge field (3.28) then determines U to be (4.66)
and (4.80).

Evidently, the argument is quite general and may be ex-
pected to hold even if other degrees of freedom are taken
into account; also, there was a nontrivial consistency con-
dition which was satisfied as well. Since previous authors
have adopted the charge-violating boundary conditions
(4.65) and (4.78) in conflict with these considerations, 35 we
believe it is necessary to reassess their results. "

As for the work based on the one-particle equation with
the charge-violating boundary condition, we have already
argued that the results are not expected to be valid for the
low-lying states in the case m~ &&M. Actually, this point
is already implicit in the remark of Blaer, Christ, and
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Tang' that their results do not apply in the long-time lim-
it, i.e., for stable dyons.

The work of Rubakov' and Callan' is more subtle,
since they have gone beyond the one-particle approxima-
tion. While the authors use the charge-violating boundary
condition, they also include the Coulomb energy, and the
suggestion is that the original boundary condition is in ef-
fect wiped out. In particular, Callan has performed a clas-
sical analysis for a bosonized Hamiltonian in the limit
m~ &&M, and has found that there is strong coupling be-
tween the dyon degree of freedom and the Dirac sea; as a
result, all the electric charge was found with the fermions,
in agreement with our results.

Upon close inspection however, we find significant
difference. For a Dirac mass, Callan's boundary condi-
tions do not break fermion-number conjugation as ours do;
for a Higgs mass, they give a degeneracy for 8=0, which
we do not find. The discrepancy apparently stems from
the fact that the original boundary condition actually
remains intact in Callan's case. It follows from the struc-
ture (in his notation):

X„(r,t)=:exp iV n p(r, t) f d—sf(s, t) (5.5)

&I(r, t) =i:exp i Mn p(r, t) + f ds p(s, t) ". , (5.6)

that whatever the boundary condition for the boson fields,
one still has the charge-violating boundary condition

X„(0) X„(0)
~0 X((0) Xl(0) (5.7)

for the fermion fields.
To summarize, if we are to use a "microscopic" boun-

dary condition, we should include the Coulomb energy
from the beginning; on the other hand, if we are to use an
effective boundary condition, we should not use the
boson-fermion correspondence in the forms (5.5) and (5.6).

Evidently, an important question is what happens if
there exist two or more isodoublets, since that may be con-
sidered as the prototype of monopole-induced proton de-
cay, ' ' if we identify the charge Q as the sum of ordi-
nary electric charge and color hypercharge. Unfor-
tunately, the calculations of this paper do not furnish us
with a clear clue as to what to expect. The process

We hope to return to these issues in the near future, as
well as to give a systematic comparison between our ap-
proach and that of Rubakov and Callan. Although our
approach was successful in giving interesting information
such as (4.69)—(4.71) and (4.81), further improvements are
obviously necessary, even within the framework of the
truncated Hamiltonian, not to mention all the other de-
grees of freedom we have ignored; in particular, the esti-
mate (4.67) as it stands is quite unsatisfactory. Bosoniza-
tion ' should be useful in this regard, since much is
known about the (sing)2 model both classically and
quantum mechanically.

Note added. After the original version of this paper was
submitted, we received a paper by D'Hoker and Farhi, ' in
which a different approach to the point limit is suggested.
Their limiting procedure however ignores the dyon degree
of freedom, and as a consequence requires charge symme-
try breaking for the fermion mass term.

We have also received a paper by Kazama which criti-
cizes the use of charge-violating boundary conditions, ap-
parently however for different reasons than we do. There
have also appeared several papers which question the va-
lidity of the charge superselection rule in the presence of a
non-Abelian monopole, essential. ly because of the charge-
violating boundary condition. In our opinion, these papers
do not deal properly with the dyon degree of freedom y
and its associated Coulomb energy, and we cannot concur
with their contents. As evident from Eq. (4.13), the
canonical conjugate of y is essentially the global U(1)
charge, so a proper treatment is crucial in this respect.
Our calculation also supports the superselection rule in the
sense that there are no states with lower energy which
violate the superselection rule. It should be mentioned
however that so far there is no rigorous proof of the
charge superselection rule in the presence of a monopole.
I would like to thank Dr. D'Hoker and Professor Yoneya
for correspondence.
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APPENDIX

is certainly allowed as far as Q is concerned; on the other
hand, there are no positive indications that it should occur
either.

Also in our opinion, an equally important question is
whether or not there exists a significant back reaction of
the fermions on the magnetic part of the dyon field, since
the bulk of the mass of the dyon comes from its magnetic
energy. Although our results were negative, they certainly
cannot be regarded as conclusive proof: As evident from
(3.26}, the electric field and the magnetic field are highly
coupled for a non-Abelian dyon, and there is no reason a
priori that a more sophisticated analysis would not yield a
change in the magnetic structure and hence its mass as
well.

x„=(t,x), V„=(Blat, —V'), A„=(AO,A),
D~ V~ ieA~, F——p„V—~A'„VQ——~+ed' —AQ

(A I)

(Note the sign change of eA relative to the Abelian con-
vention of I.)

The Dirac equation reads as

a.m. +PM ——,
' r.x g(x)=EQ(x), (A2}

Our conventions are as follows: For spacetime indices,
we adopt the Feynman notation

bp =&obo —&ib
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where

i—V +—PA'= i—V ——,(FXx )
e . — i K(r) 1—
2 r

for (A7) and

R~+R ~+i (L*++L' ),
L++L ~+i(R++R' )

(A10)

The Hamiltonian commutes with the angular momentum for (A5), which reduce to
operator' '"

J = —/xx P+ —,o.+ ~ ~ .

On the other hand, fermion-number conjugation

4~)o2~2~A'*

{A4)

(A5}

d K(r) &s J(r)
i y—3v 3

—y5~2 +pM+ — X(r) =EX(r)
dr r 2 r

(A 1 1)

and
transforms a solution with energy E into a solution with

We split g into its chiral components and introduce
X~p2~~X* (A12)

(~R )ai ( r2)ij(WR )aj~ (~L }ai (+2)ij( PL }aj

(A6)

Following Ref. 11 and treating ~ as 2X2 matrices, we
find

K(r) 1—
i o —V~"R — (o Xx);MR o;2r

1 J(r)+— MR ( o"x ) —MML E~R, ——
2 r

after we introduce the new Pauli matrices (3.4).
For a Higgs mass, M in {A2) is replaced by

G(g"x)H(r)/2er where G is the Yukawa coupling. Since
H (r)/r is regular at both r=0 and r = ae, in contrast with
J(r)/r and K(r)/r, we may replace it by a constant. This
leads to the equation for the lowest partial wave,

d K(r) 'r3 J(r)—iy5~3 y5T2 pT3M+ X(r) EX(r)
dr r 2 r

K(r) 1—
i o VM'L+ (o Xx };MLo;2r

(A7)
with fermion-number conjugation

(A13)

+— ~L(o"x)—MMR EML . ——1 J(r)
2 r X~priX' . (A14)

For the lowest partial wave, we may take ~~ to be of the To make use of the solutions for a Dirac mass, it is con-
form venient to eliminate the v.3 in the mass term by the

transformation[(1+o"x)R+(r)+(1—o"x)R (r)]
4 mr

and similarly for Ml. The result is

i + —(R++R ) M(L++L )—
dr r

(A8) 1 —w3 1+F3+y'5 — X

which leads to the final form of the equation

(A15)

+— (R~+R )=E(R~+R ),1 J(r)
2 r

d K(r) &s J(r)
i y5r3 r—2 +pM—+— X(r)=EX(r)

2 r

i + (L++L ) M(R++R —)
dr r

(A9)

and fermion-number conjugation

(A16)

+— (L~+L ) =E(L++L )
1 J(r)
2 r

X~I 2t~X' (A17)
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