Nucleon-nucleon partial-wave analysis to 1 GeV

Richard A. Arndt and L. David Roper

Department of Physics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061

Ronald A. Bryan, Robert B. Clark, and Bruce J. VerWest* Department of Physics, Texas A&M University, College Station, Texas 77843

Peter Signell

Department of Physics, Michigan State University, East Lansing, Michigan 48823 (Received 9 August 1982; revised manuscript received 16 November 1982)

Comprehensive analyses of nucleon-nucleon elastic-scattering data below 1 GeV laboratory kinetic energy are presented. The data base from which an energy-dependent solution and 20 single-energy solutions are obtained consists of 5207 pp data below 1.2 GeV and 5283 np data below 1.1 GeV. The solutions are characterized by tightly constrained "resonancelike" structure in the ${}^{1}D_{2}$ and ${}^{3}F_{3}$ partial waves. No other partial waves exhibit such structure below 1 GeV; in particular, we see no isoscalar resonances. We describe how the full data base and solution files can be accessed through a computer interactive dial-in system [scattering analyses interactive dial-in (SAID)] at VPI&SU, which also exists at several institutions around the world and which can be transferred to any site with a suitable computer system. The SAID system can be used to modify solutions, plan experiments, and obtain any of the multitude of predictions which derive from our partial-wave analyses of the world data base.

I. INTRODUCTION

Since our last report¹ on nucleon-nucleon scattering analyses, we have been using a dial-in interactive computing facility [scattering analyses interactive dial-in (SAID)] to communicate our latest results to other investigators. The usage level of SAID has been high, sometimes involving more than ten dial-ins per day from off-campus users into the VPI&SU computers. Some of these regular users requested that we transfer SAID to their local computers, which we have now done for ten other sites with VAX computers in North America and Europe.

Despite the success of our interactive computer programs at communicating our analyses' results, it is now necessary to publish a comprehensive paper about our nucleon-nucleon analyses in order to list the data currently being used, expound on the current parametrization, and provide the details about our current solutions for those who are not able to use a computer terminal to study them.

Section II contains our latest parametrization for the amplitudes. In Sec. III, the data that have appeared since our last paper are discussed and data charts are shown. The results of the analyses, both single-energy and energy-dependent, are given in Sec. IV. The SAID facility is described in Sec. V.

II. PARAMETRIZATION OF THE AMPLITUDES

The amplitudes used in our analyses are related to those used by Bystricky *et al.*² and by Hoshizaki³ as indicated in Table I.

The relationships of these amplitudes to a number of other choices which have appeared in the literature are given by Bystricky.² The H's are expanded in partial

waves according to the formulas

$$H_{1} = \sum_{j} (2j+1)T_{j}P_{j} ,$$

$$H_{2} = \sum_{j} [(2j+1)T_{jj}F_{j} + D_{j} - G_{j}] ,$$

$$H_{3} = \sum_{j} [(2j+1)T_{jj}G_{j} + D_{j} - F_{j}] ,$$

$$H_{4} = \sum_{i} D_{j0}G_{j}S ,$$
(1)

and

$$H_5 = \sum_j D_{j+} P_j ,$$

where

$$P_j = P_j(z) =$$
 Legendre polynomial,
 $G_i = P_i^{(1)}(z)/j(j+1)$,

 $P_i^1(z) =$ associated Legendre function of order 1,

TABLE I. Amplitude relations. k = center-of-mass momentum, $z = \cos\theta$, $s = \sin\theta$, and $\theta = \text{center-of-mass}$ scattering angle.

		•••
	Bystricky	Hoshizaki
H's	(Ref. 2)	(Ref. 3)
$2H_1/k$	B-C	$A_h - M_h - 2G_h$
$2H_2/k$	B+C	$A_h - M_h + 2G_h$
$2H_3/k$	$Az + iE_s - D$	$(A_h + M_h)z + 2iC_hs + 2H_h$
$2H_4/k$	As - iEz	$(A_h + M_h)s - 2iC_hz$
$2H_5/k$	Az + iEs + D	$(A_h+M_h)z+2iC_hs-2H_h$

©1983 The American Physical Society

ARNDT, ROPER, BRYAN, CLARK, VERWEST, AND SIGNELL

$$\begin{split} F_{j} = & P_{j} - G_{j}z , \\ D_{j-} = & (j+1)T_{j-} + jT_{j+} - 2[j(j+1)]^{1/2}T_{j0} , \\ D_{j0} = & j(j+1)[T_{j-} - T_{j+}] + [j(j+1)]^{1/2}T_{j0} , \end{split}$$

and

$$D_{j^+} = jT_{j^-} + (j+1)T_{j^+} + 2[j(j+1)]^{1/2}T_{j0}$$

The partial-wave amplitudes are

 $T_i = \text{singlet}$

(e.g., ${}^{1}S_{0}, {}^{1}P_{1}, {}^{1}D_{2}, \ldots$),

 $T_{ii} =$ triplet uncoupled

(e.g., ${}^{3}P_{1}, {}^{3}D_{2}, \ldots$), and

$$T_{j^{-}}, T_{j0}, T_{j^{+}} =$$
triplet coupled

(e.g., ${}^{3}S_{1}, \epsilon_{1}, {}^{3}D_{1}, \ldots$).

One-pion exchange is included through partial-wave contributions to the unsearched waves for j < 11, and by adding a closed-form piece to the *H*'s for j > 10. All analyses use an unsearched value of 14.5 for G_{π}^2 , the pion-nucleon coupling constant.

The *H*'s also contain a direct Coulomb contribution (H_C) , given by the one-photon-exchange amplitudes of Lechanoine *et al.*⁴ In addition to this, the Coulomb phase ϕ changes the amplitudes for *pp* scattering. For ϕ we use the form which Breit⁵ has shown corrects for relativistic effects:

$$\phi = -\eta \ln(\frac{1}{2}\sin^2\theta) , \qquad (2)$$

where $\eta = \alpha c / V_L$, $\alpha =$ fine-structure constant, $\theta =$ centerof-mass scattering angle, and $V_L =$ velocity of incident nucleon in the laboratory frame. For pp scattering, the partial-wave summation includes only allowed (I = 1)states, namely,

$$\begin{array}{ll} T_{j} & (j \; \mathrm{even}), \; \; T_{jj} \; \; (j \; \mathrm{odd}) \; , \\ \\ T_{j\pm} & (j \; \mathrm{even}), \; \; T_{j0} \; \; (j \; \mathrm{even}) \; . \end{array}$$

In each member of the right-hand side of Eq. (1) these states are modified by a multiplicative factor of 2 and by a Coulomb "rotation" factor:

$$T_{j} \rightarrow 2T_{j} \exp(2i\phi_{j}) ,$$

$$T_{jj} \rightarrow 2T_{jj} \exp(2i\phi_{j}) ,$$

$$T_{j^{\pm}} \rightarrow 2T_{j^{\pm}} \exp(2i\phi_{j^{\pm}1}) ,$$

$$T_{j0} \rightarrow 2T_{j0} \exp(\phi_{j+1} + \phi_{j-1}) ,$$
(3)

where

$$\phi_j = \sum_{n=1}^j \tan^{-1}(\eta/n), \ \eta = \alpha c/V_L, \ \phi_0 = 0.$$

Normalization of the H's is such that

$$d\sigma/d\Omega = \left[\sum_{j=1}^{5} |H_i|^2 + |H_4|\right]/k^2$$

where k = center-of-mass momentum of either nucleon.

Scattering observables, including relativistic spin corrections, are as described by Bystricky.² Printouts and plots of these observables are available through the interactive dial-in system (SAID; see below) and, therefore, are not presented here.

There is a certain amount of charge splitting between the I = 1 waves used in pp and in np scattering. It is obtained in the energy-dependent combined (I = 1 and 0) analysis by multiplying the expansion bases used to obtain the T matrix by an appropriate barrier-penetration factor for pp observables.¹ The single-pion-exchange mass used for np (136.5 MeV) is also slightly different than the mass used for pp (135.04 MeV). The recipe is *ad hoc*, but does manage to give the necessary Coulomb suppression to low-energy pp phases.¹ The exact amount of charge splitting can be obtained by comparison of the I = 1 waves, listed in Table III for pp scattering, to the corresponding np entries from Table IV. The single-energy analyses were performed with the charge splitting fixed at the energydependent solution's values.

The phase parameters used for single-energy analyses were given a linear energy slope being taken from the energy-dependent solution. The slope parameters are especially important at higher energies where, because of paucity of the data, we were required to use very broad energy bins.

Phase parameters are as described by Arndt and Roper.⁶ For uncoupled waves, the S matrix is given by

$$S = \frac{1 - K_i + iK_r}{1 + K_i - iK_r} = \eta \exp(2i\delta_s) , \qquad (4)$$

where

$$K_r = \tan \delta, \quad K_i = \tan^2 \rho$$
,
 $\eta^2 = \frac{1 + K^2 - 2K_i}{1 + K^2 + 2K_i}$,
 $K^2 = K_r^2 + K_i^2$,

and

$$\delta = \frac{1}{2} \{ \tan^{-1} [K_r / (1 - K_i)] + \tan^{-1} [K_r / (1 + K_i)] \}$$

For elastic scattering $(\rho = 0)$, $\delta = \delta_s$ and $\eta = 1$. For spin-coupled waves S is expanded in a K matrix:

S = (1 + iK)/(1 - iK).

K (a 2×2 matrix) can be written as

(5)

 $K = \begin{bmatrix} K_{r_{-}} & K_{r_{0}} \\ K_{r_{0}} & K_{r_{+}} \end{bmatrix} + i \begin{bmatrix} \tan^{2}\rho_{-} & \tan\rho_{-} \tan\rho_{+} \cos\phi \\ \tan\rho_{-} \tan\rho_{+} \cos\phi & \tan^{2}\rho_{+} \end{bmatrix}.$

The real part of K (viz., K_r) is expanded in the usual Stapp⁷ parameters

NUCLEON-NUCLEON PARTIAL-WAVE ANALYSIS TO 1 GeV

$$K_{r_{\pm}} = \frac{\sin(\delta_{+} + \delta_{-}) \pm \cos(2\epsilon)\sin(\delta_{+} - \delta_{-})}{\cos(\delta_{+} + \delta_{-}) + \cos(2\epsilon)\cos(\delta_{+} - \delta_{-})} , \quad K_{r_{0}} = \frac{\sin 2\epsilon}{\cos(\delta_{+} + \delta_{-}) + \cos(2\epsilon)\cos(\delta_{+} - \delta_{-})} . \tag{6}$$

The diagonal elements of the S matrix are

$$S_{+} = [1 + d_{k} - i(K_{+} - K_{-})]/D_{k} , \quad S_{-} = [1 + d_{k} - i(K_{-} - K_{+})]/D_{k} , \quad (7)$$

and the off-diagonal elements are

$$S_0 = 2iK_0/D_k ,$$

where $D_k = 1 - d_k - i(K_+ + K_-)$ and $d_k = K_+ K_- + K_0^2$.

For elastic scattering ($\rho_{\pm}=0$), we get an elastic S matrix of the Stapp⁷ form:

$$S = \begin{bmatrix} \cos(2\epsilon) \exp(2i\delta_{-}) & i\sin(2\epsilon) \exp[i(\delta_{+}+\delta_{-})] \\ i\sin(2\epsilon) \exp[i(\delta_{+}+\delta_{-})] & \cos(2\epsilon) \exp(2i\delta_{+}) \end{bmatrix}$$

The representation in terms of phase shifts (δ) and coupling parameters (ϵ) that we use here is the same as the Stapp⁷ representation at low energies, but does not correspond to any previous representation when inelasticity occurs at higher energies. Other representations have been used that have flaws.⁶ In an age of computers, the exact representation used, as long as it does not violate the basic general principles, is immaterial if it is explicit and computer programs are available for using it (see Secs. IV and V). Analyses using the other representations are available on our dial-in computing system (see Sec. V). Also, we shall present tables below of the amplitudes for our solution, as well as tables for the δ 's, ϵ 's, and ρ 's of our representation. One can construct any representation from such tables.

The energy dependence for our parametrization is as described in our previous work.¹

III. THE DATA BASE

Figure 1 illustrates the kinematical (energy and angle) distribution of several common types of data used in these analyses. The data of Fig. 1 are displayed as "old" (pre-1978) and "new" (post-1977). The pre-1978 data were used in the last comprehensive analyses of nucleon-nucleon scattering below 500 MeV by the VPI&SU group.¹

In addition to the data displayed in Fig. 1, we used 58 total cross sections below 200 MeV, 60 polarized total cross sections ($\Delta \sigma_L, \Delta \sigma_T$), 473 data above 1000 MeV up to 1194 MeV. The dispersion-theory quantities of Grein and Kroll⁸ were also included as weakly constraining data. The following arbitrary errors were used, as indicated in the parentheses

pp quantities at 14 energies from 295 to 1181 MeV:

 σ_T (0.5), $\Delta \sigma_L$ (1), $\Delta \sigma_T$ (1), α (0.05),

 $\operatorname{Re} f_2(0.5), \operatorname{Re} f_3(0.5)$.

np quantities at 13 energies from 295 MeV to 1092 MeV:

$$\sigma_T$$
 (1), $\Delta \sigma_L$ (5), $\Delta \sigma_T$ (5), α (0.05),

$$\operatorname{Re} f_2$$
 (0.5), $\operatorname{Re} f_3$ (0.5)

The uncertainty units are mb for cross sections $(\sigma_T, \Delta \sigma_L, \Delta \sigma_T)$ and fm for amplitudes (Ref₂, Ref₃), and α is dimensionless. These 162 data were included more for reference than for the constraints they afforded. In fact, these quantities did not compare well with the partial-wave predictions above 600 MeV and for *np* quantities at all energies.

Figure 1 reveals an abundance of differential cross sections which are well distributed for pp [Fig. 1(a)], but which have a large gap for np [Fig. 1(d)] above 500 MeV and forward of 90°; in fact, most of the np differential cross-section data are charge-exchange back-angle data.

Polarization data are in fairly good supply for both pp [Fig. 1(b)] and np [Fig. 1(e)], although np polarization data above 800 MeV are quite skimpy. The distribution plots in Fig. 1 do not illustrate relative accuracy, and some of the older polarization data are rather imprecise.

The "other" spin observables are characterized by a fair amount of pp data [Fig. 1(c)], but a very skimpy assortment of np data [Fig. 1(f)] with essentially nothing above 700 MeV and a near void for angles forward of 70°.

The pp angular observables at angles θ greater than 90° are shown at 180° $-\theta$, for convenience.

Reaction cross sections in Fig. 2 are those of VerWest and Arndt⁹ obtained through a phenomenological parametrization of the isotopic reaction cross sections, the parameters of which were adjusted to fit the world data base of charge-channel reaction cross sections. The curves in the total cross-section plots are predictions of the energy-dependent solution SP82.

99

(8)

FIG. 1. Nucleon-nucleon scattering data base for 0-1000 MeV laboratory kinetic energy. These graphs are for the purpose of giving an indication of the density of data as a function of energy. The boxes indicate "old" data (pre-1978) and the N's indicate "new" data (post-1977). (a) Differential cross sections for pp. (b) Polarization for pp. (c) Other spin observables for pp. (d) Differential cross sections for np. (e) Polarization for np. (f) Other spin observables for np.

IV. RESULTS

In Table II, we summarize the data base, χ^2 , and the number of searched parameters for each solution. The energy-dependent solution is labeled SP82; the rest of the

solutions are "single-energy" solutions which are fitted to data within the specified range of energies. Single-energy solutions starting with C were obtained by searching both I=0 and I=1 partial waves (*pp* and *np* data); solutions starting with P were obtained by searching only I=1, al-

though the data base included np data as well as pp. In this case, unsearched partial-wave parameters and the energy slopes of the searched partial-wave parameters were taken from solution SP82.

There are several reasons for the high ratios of χ^2 to number of data for the higher energies in Table II: The higher-energy data have not been carefully pruned over a long period, as have the lower-energy data; and the linearenergy-dependence approximation may not be as valid over the energy ranges used at higher energies as it is at lower energies.

In Tables III and IV we list the partial-wave parameters derived from the energy-dependent solution SP82. Charge splitting between I = 1 (*pp*) and I = 1 (*np*) states can be

FIG. 1. (Continued.)

obtained by differencing Tables III and IV. In Table V are the np partial-wave parameters for the single-energy solutions, along with errors and the charge splitting used in these analyses.

For those who prefer a different representation of the partial waves than the one we use herein, we list the real and imaginary parts of the partial-wave amplitudes in Tables VI and VII.

The partial-wave parameters are plotted in Fig. 3 with the single-energy values superimposed on the energydependent curves. Argand diagrams for the ${}^{1}D_{2}$ and ${}^{3}F_{3}$ partial waves, for which there has been some controversy concerning NN resonances, 10,11 are given in Fig. 4. Figure 3 indicates that, generally, there is excellent agreement be-

		p	р	п	.p	
Solution	Range (MeV)	Data	χ^2	Data	χ^2	Parameters
SP82	0-1000	5207	9199	5283	9103	
C 10	8-17	137	127	93	86	6
C25	15-34	65	41	211	167	9
C50	36-63	157	158	282	308	11
C100	85-100	112	85	211	267	11
C150	125-174	229	189	252	313	17
C200	179-225	79	78	272	493	17
C300	285-350	315	333	505	631	22
C400	375-425	331	352	395	641	23
C450	425-473	286	343	338	485	23
C500	450-544	687	932	595	737	29
C550	510-590	700	812	420	417	32
C600	540-665	935	1102	840	1017	32
C650	590-709	710	893	734	859	34
C700	640760	677	855	598	730	34
C750	700-800	731	1570	404	764	36
C800	750-843	655	1434	341	775	37
C850	775-899	517	1115	313	493	37
P900	825-970	357	555	243	436	23
P950	875-1012	491	943	254	584	23
P999	925-1074	554	1172	317	900	23

TABLE II. Data base and fit information for energy-dependent (SP82) and single-energy solutions (C denotes combines I=0 and I=1 and P denotes I=1 only).

tween the energy-dependent and single-energy analyses, which validates our procedure of using energy slopes for the partial-wave parameters from the energy-dependent solution when doing single-energy analyses. We see no compelling evidence in Fig. 3 that the single-energy analyses are predicting structure which is not contained in the

FIG. 2. Total and inelastic pp and np cross sections from 200 to 1000 MeV. The curves are our energy-dependent (SP82) solution.

energy-dependent solution; the scatter in partial-wave parameters at higher energies in I = 0 states is, we feel, an indication of paucity in the *np* data base above 500 MeV. Some apparent systematic departures between the singleenergy analyses and the energy-dependent solution (e.g., ${}^{3}P_{0}$ between 400 and 600 MeV) might be construed as missing structure in the energy-dependent fit; however we regard this evidence as quite weak considering the large uncertainties in the phase parameters.

Comparison with other partial-wave analyses and with potential models may be obtained through SAID (see Sec. V). In particular, the solutions of Dubois *et al.*,¹² of Hashimoto *et al.*,¹³ and the potential model of Lacombe et al.¹⁴ are encoded on SAID and may be used thereby to compare to our solution. In Fig. 3, we plot the Dubois and Hashimoto solutions for I = 1 states, and Dubois solutions for I=0 states. The Hashimoto solutions for I=0states differs substantially from ours and are not plotted in Fig. 3. The imaginary parameter for spin-mixing states (ϕ) has not been plotted; it is zero for our solutions and it is about 90° for the Dubois and Hashimoto solutions as a consequence of the way in which they parametrize and then choose the "sixth" parameter to be arbitrarily set to zero. Our solution compares quite well with the Dubois et al. solution, but not quite so well with the Hashimoto et al. solution.

V. SCATTERING ANALYSES INTERACTIVE DIAL-IN (SAID)

For the last several years the Center for Analysis of Particle Scattering in the Department of Physics at VPI&SU has made available an interactive dial-in computing system to any interested user. This system is called "SAID" for "scattering analyses interaction dial-in." SAID enables a user to dial into the VPI&SU computing

,													
.0			D_2	91	4	I ₁	6	3	P_0	e,	P ₁		2
	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.14	0.0	-0.08	0.0	0.01	0.0
	0.0	0.04	0.0	0.00	0.0	0.00	0.0	1.60	0.0	-0.88	0.0	0.22	0.0
	0.0	0.16	0.0	0.00	0.0	0.00	0.0	3.74	0.0	-2.03	0.0	0.67	0.0
	0.0	0.33	0.0	0.01	0.0	0.00	0.0	5.70	0.0	-3.10	0.0	1.21	0.0
	0.0	0.51	0.0	0.02	0.0	0.00	0.0	7.36	0.0	-4.04	0.0	1.81	0.0
	0.0	0.70	0.0	0.04	0.0	0.00	0.0	8.73	0.0	-4.90	0.0	2.44	0.0
	0.0	1.70	0.0	0.15	0.0	0.02	0.0	12.32	0.0	-8.27	0.0	5.57	0.0
	0.0	2.71	0.0	0.29	0.0	0.06	0.0	12.66	0.0	-10.92	0.0	8.29	0.0
	0.0	3.68	0.0	0.43	0.0	0.10	0.0	11.39	0.0	-13.28	0.0	10.51	0.0
	0.0	4.60	0.0	0.56	0.0	0.15	0.0	9.26	0.0	-15.48	0.0	12.30	0.0
	0.0	5.45	0.0	0.70	0.0	0.20	0.0	6.68	0.0	-17.56	0.0	13.73	0.0
	0.0	6.25	0.0	0.84	0.0	0.25	0.0	3.87	0.0	- 19.54	0.0	14.86	0.0
	0.0	6.99	0.0	0.98	0.0	0.30	0.0	0.98	0.0	-21.42	0.0	15.76	0.0
	0.0	7.66	0.0	1.13	0.0	0.35	0.0	-1.91	0.0	-23.21	0.0	16.47	0.0
	0.0	8.28	0.0	1.27	0.0	0.41	0.0	-4.73	0.0	-24.91	0.0	17.02	0.0
	0.0	8.85	0.0	1.42	0.0	0.46	0.0	-7.45	0.0	-26.52	0.0	17.44	0.0
	0.0	9.37	0.8	1.57	0.0	0.52	0.0	- 10.03	0.0	-28.04	0.0	17.76	0.0
	0.3	9.86	2.3	1.71	0.0	0.58	0.0	-12.48	0.0	-29.49	0.5	17.99	0.0
	1.0	10.33	3.9	1.86	0.0	0.63	0.0	-14.78	0.0	-30.85	1.4	18.14	0.3
	2.4	10.81	5.5	2.01	0.0	0.69	0.0	-16.93	0.0	-32.14	2.7	18.24	0.4
	4.3	11.29	7.3	2.16	0.0	0.75	0.0	-18.93	0.8	-33.37	4.3	18.28	0.2
	8.2	12.18	11.3	2.46	0.2	0.87	0.0	-22.66	4.8	-35.80	8.5	18.23	0.7
	6.6	12.61	15.5	2.76	0.6	0.98	0.0	-26.74	10.1	- 38.49	12.8	18.06	2.7
	10.5	12.03	19.3	3.06	1.2	1.10	0.0	-31.85	14.7	-41.47	15.9	17.77	5.6
	11.1	10.38	21.9	3.35	2.1	1.21	0.0	- 37.64	18.4	44.39	17.9	17.29	9.0
	12.0	8.23	23.4	3.63	3.2	1.32	0.2	-43.53	21.7	-47.00	19.4	16.51	12.5
	13.1	6.09	24.1	3.90	4.3	1.43	0.3	-49.15	24.9	-49.31	20.7	15.36	15.8
	14.4	4.13	24.4	4.16	5.5	1.54	0.4	-54.31	28.1	-51.36	22.1	13.82	18.6
	15.8	2.32	24.7	4.40	6.7	1.65	0.5	-58.91	31.3	-53.21	23.5	11.93	21.1
	17.3	0.63	24.9	4.64	7.9	1.75	0.5	-62.91	34.4	-54.91	24.9	9.72	23.3
	18.8	-1.00	25.0	4.86	9.1	1.86	0.6	-66.36	37.5	-56.46	26.4	7.26	25.1
	20.4	-2.59	25.2	5.07	10.3	1.96	0.7	-69.30	40.3	-57.90	27.8	4.58	26.7
	22.0	-4.14	25.3	5.27	11.4	2.06	0.7	-71.79	43.1	59.24	29.2	1.74	28.1
	23.6	-5.68	25.5	5.46	12.6	2.15	0.8	-73.91	45.7	60.48	30.6	-1.21	29.4

TABLE III. pp energy-dependent-analysis phase parameters. For each partial wave the left-hand column is δ (or ϵ) and the right-hand column ρ (or ϕ) in degrees. These are the parameters defined by Eqs. (4)–(6). $T_{1,*}$ = laboratory kinetic energy in MeV.

	9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2	0.5	1.2	2.0	3.0	3.9	4.8	5.7	6.4	7.1	7.7	8.3
	Η _ε	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.02	0.04	0.07	0.10	0.14	0.18	0.23	0.29	0.34	0.40	0.47	0.54	0.61	0.68	0.83	0.98	1.15	1.31	1.48	1.65	1.82	1.98	2.15	2.32	2.49	2.65	2.81
	l 5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.6	1.7	3.3	5.3	7.3	9.0	10.3	11.2	11.9	12.5	12.9	13.2	13.5
	9 ⁶	-0.00	-0.00	-0.00	-0.00	-0.01	-0.02	-0.09	-0.20	-0.33	-0.47	-0.60	-0.74	-0.86	-0.99	-1.11	-1.22	-1.32	-1.42	-1.51	-1.59	-1.67	-1.82	-1.94	-2.03	-2.07	-1.98	-1.76	- 1.44	-1.10	-0.76	0.45	-0.17	0.09	0.32
	4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	9 ¹	0.00	0.00	0.00	0.00	0.00	0.00	0.03	0.07	0.12	0.19	0.25	0.31	0.37	0.43	0.48	0.53	0.57	0.61	0.64	0.66	0.68	0.70	0.70	0.69	0.65	09.0	0.54	0.47	0.39	0.30	0.20	0.10	-0.01	-0.12
		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
(E_4	-0.00	-0.00	-0.00	-0.01	-0.03	-0.05	-0.19	-0.36	-0.52	-0.67	-0.81	-0.92	-1.03	-1.12	-1.20	-1.27	-1.33	-1.38	-1.43	- 1.48	-1.51	-1.57	-1.62	-1.66	-1.68	-1.70	-1.72	-1.72	-1.73	-1.73	-1.73	-1.73	-1.72	-1.72
Continued.		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.7	1.4	2.3	3.2	4.1	5.0	5.8	6.7	7.5	8.4
LE III. ((3F_4	0.00	0.00	0.00	0.01	0.02	0.03	0.16	0.36	0.61	0.88	1.16	1.44	1.72	1.99	2.26	2.52	2.76	3.00	3.23	3.46	3.67	4.07	4.44	4.78	5.09	5.37	5.60	5.77	5.88	5.92	5.90	5.83	5.68	5.48
TAB		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.4	0.8	1.5	3.6	6.5	10.1	14.3	18.7	22.5	24.9	26.0	26.1	25.7	25.2	24.7	24.3
	${}^{3}F_{3}$	-0.00	-0.00	-0.03	-0.09	-0.16	-0.24	-0.77	-1.30	-1.77	-2.17	-2.50	-2.75	-2.93	-3.06	-3.14	-3.17	-3.16	-3.12	-3.05	-2.95	-2.83	-2.51	-2.01	-1.30	-0.56	-0.38	-1.55	4.14	-7.29	-10.12	-12.37	-14.11	-15.51	-16.69
	-	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.3	0.5	0.8	1.5	2.4	3.2	4.1	4.7	5.2	5.6	5.9	6.1	6.2	6.3	6.4	6.5
	${}^{3}F_{2}$	0.00	0.00	0.01	0.03	0.06	0.10	0.32	0.58	0.84	1.08	1.28	1.43	1.54	1.59	1.58	1.52	1.41	1.25	1.05	0.80	0.51	-0.19	-1.02	-1.96	-3.00	-4.14	-5.35	- 6.60	-7.89	-9.19	-10.49	-11.80	-13.10	
	2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	E	-0.00	-0.05	-0.20	0.40	-0.62	-0.84	-1.81	-2.49	-2.92	-3.17	-3.28	-3.30	-3.26	-3.16	-3.04	-2.89	-2.73	-2.55	-2.37	-2.18	-2.00	-1.63	-1.27	-0.95	-0.69	-0.53	-0.46	-0.48	-0.56	-0.69	-0.86	- 1.05	-1.25	-1.47
	$T_{ m lab}$	1	5	10	15	20	25	50	75	100	125	150	175	200	225	250	275	300	325	350	375	400	450	500	550	009	650	200	750	800	850	906	950	1000	1050

TABL]	E IV. <i>np</i> enerl rs defined by E	gy-dependent ds. (4)-(6).	t-analysis pha T _{lab} =laborato	se parameté ory kinetic e	ers. For eacl nergy in Me	h partial wa V.	ave the left-	hand colun	ın is δ (or ε) ε	nd the right-	hand column	ρ (or ϕ) in \dot{c}	legrees. These	are the
$T_{ m lab}$	S1	0	I ₁	D ₂	.9. 	4	⁹ <i>I</i> ₁			P_0	3	P_1		P_2
-	61.95	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.22	0.0	-0.13	0.0	0.02	0.0
5	63.23	0.0	0.05	0.0	0.00	0.0	0.00	0.0	1.97	0.0	- 1.09	0.0	0.28	0.0
10	59.35	0.0	0.19	0.0	0.00	0.0	0.00	0.0	4.34	0.0	-2.36	0.0	0.77	0.0
15	55.88	0.0	0.36	0.0	0.01	0.0	0.00	0.0	6.43	0.0	3.49	0.0	1.36	0.0
20	52.90	0.0	0.56	0.0	0.03	0.0	0.00	0.0	8.18	0.0	4.49	0.0	2.00	0.0
25	50.30	0.0	0.76	0.0	0.04	0.0	0.00	0.0	9.61	0.0	-5.38	0.0	2.66	0.0
50	40.38	0.0	1.80	0.0	0.16	0.0	0.02	0.0	13.29	0.0	-8.85	0.0	5.92	0.0
75	32.87	0.0	2.84	0.0	0.30	0.0	0.06	0.0	13.61	0.0	-11.54	0.0	8.73	0.0
100	26.40	0.0	3.83	0.0	0.44	0.0	0.10	0.0	12.28	0.0	-13.92	0.0	11.01	0.0
125	20.57	0.0	4.77	0.0	0.58	0.0	0.15	0.0	10.08	0.0	-16.13	0.0	12.85	0.0
150	15.26	0.0	5.65	0.0	0.72	0.0	0.20	0.0	7.42	0.0	-18.22	0.0	14.31	0.0
175	10.41	0.0	6.47	0.0	0.87	0.0	0.25	0.0	4.53	0.0	-20.21	0.0	15.47	0.0
200	5.99	0.0	7.22	0.0	1.01	0.0	0.31	0.0	1.55	0.0	-22.10	0.0	16.39	0.0
225	1.99	0.0	7.91	0.0	1.15	0.0	0.36	0.0	-1.43	0.0	-23.89	0.0	17.11	0.0
250	-1.63	0.0	8.54	0.0	1.30	0.0	0.42	0.0	-4.34	0.0	-25.59	0.0	17.68	0.0
275	-4.89	0.0	9.12	0.0	1.45	0.0	0.47	0.0	-7.14	0.0	-27.20	0.0	18.11	0.0
300	7.82	0.0	9.65	0.8	1.60	0.0	0.53	0.0	-9.81	0.0	-28.72	0.0	18.44	0.0
325	-10.46	0.3	10.15	2.4	1.75	0.0	0.59	0.0	-12.33	0.0	-30.17	0.5	18.67	0.0
350	-12.83	1.0	10.64	3.9	1.90	0.0	0.64	0.0	-14.70	0.0	-31.53	1.4	18.83	0.3
375		2.4	11.13	5.6	2.05	0.0	0.70	0.0	-16.91	0.0	-32.82	2.7	18.93	0.4
400	- 16.98	4.4	11.62	7.4	2.20	0.0	0.76	0.0		0.8	-34.05	4.4	18.98	0.3
450	-21.17	8.3	12.53	11.4	2.50	0.2	0.88	0.0	-22.81	4.8	36.47	8.7	18.94	0.7
500	-25.62	10.0	12.98	15.7	2.81	0.6	0.99	0.0	-26.99	10.2	-39.16	13.0	18.77	2.7
550	-29.82	10.6	12.39	19.5	3.10	1.2	1.11	0.0	-32.22	14.9	-42.15	16.1	18.48	5.7
009	-33.77	11.3	10.71	22.1	3.40	2.1	1.23	0.0	-38.10	18.6	-45.07	18.1	17.99	9.1
650	-37.56	12.1	8.52	23.6	3.68	3.2	1.34	0.2	-44.06	21.9	-47.68	19.6	17.20	12.7
700	-41.23	13.2	6.33	24.3	3.95	4.4	1.45	0.3	-49.72	25.1	-49.98	21.0	16.03	16.0
750	-44.76	14.5	4.33	24.7	4.22	5.5	1.56	0.4	-54.88	28.4	- 52.03	22.4	14.46	18.9
800	-48.14	16.0	2.48	24.9	4.47	6.7	1.67	0.5	-59.45	31.6	-53.87	23.8	12.52	21.4
850	-51.35	17.5	0.75	25.1	4.70	1.9	1.78	0.5	-63.43	34.8	55.55	25.3	10.25	23.6
906	-54.37	19.0	-0.91	25.3	4.93	9.1	1.88	0.6	-66.84	37.8	-57.10	26.7	7.72	25.4
950	-57.19	20.6	-2.53	25.4	5.14	10.3	1.98	0.7	- 69.74	40.7	-58.53	28.2	4.97	27.1
1000	-59.80	22.3	-4.13	25.6	5.35	11.5	2.08	0.7	-72.19	43.4	-59.85	29.6	2.05	28.5
1050	-62.21	23.9	-5.70	25.8	5.54	12.7	2.18	0.8	-74.28	46.0	-61.08	31.0	-0.99	29.7

÷

و	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2	0.5	1.2	2.0	3.0	3.9	4.8	5.7	6.5	7.1	7.8	8.4
H _c	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.02	0.04	0.07	0.10	0.14	0.19	0.23	0.29	0.35	0.41	0.47	0.54	0.61	0.68	0.83	0.99	1.15	1.32	1.48	1.65	1.82	1.99	2.16	2.33	2.50	2.67	2.83
I_5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.6	1.7	3.3	5.3	7.3	9.1	10.3	11.3	12.0	12.5	12.9	13.3	13.6
3 <i>I</i>	-0.00	-0.00	-00.00	-0.00	-0.01	-0.02	-0.09	-0.21	-0.34	-0.48	-0.62	-0.75	-0.89	-1.01	-1.13	-1.25	-1.35	-1.45	-1.55	-1.63	-1.72	-1.86	-1.99	-2.09	-2.13	-2.04	-1.82	-1.50	-1.16	-0.82	-0.51	-0.22	0.03	0.26
I ₄	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
³ F	0.00	0.00	0.00	0.00	0.00	0.00	0.03	0.07	0.13	0.19	0.25	0.32	0.38	0.44	0.50	0.55	0.59	0.63	0.66	0.68	0.70	0.73	0.73	0.72	0.69	0.64	0.58	0.51	0.43	0.34	0.25	0.15	0.04	-0.07
4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
E	-0.00	-0.00	-0.00	-0.01	-0.03	-0.05	-0.20	-0.38	-0.54	-0.70	-0.83	-0.95	-1.06	-1.15	-1.24	-1.31	-1.37	-1.43	-1.48	-1.52	-1.56	-1.63	-1.68	-1.71	-1.74	-1.76	-1.77	-1.78	-1.79	-1.79	-1.79	-1.79	-1.78	-1.78
3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.7	1.4	2.4	3.3	4.2	5.0	5.9	6.7	7.6	8.5
^{3}F	0.00	0.00	0.00	0.01	0.02	0.03	0.16	0.37	0.62	0.90	1.18	1.47	1.76	2.04	2.31	2.57	2.82	3.07	3.30	3.53	3.75	4.15	4.53	4.88	5.20	5.48	5.72	5.90	6.01	6.05	6.04	5.96	5.81	5.61
3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.4	0.8	1.5	3.6	6.5	10.2	14.4	18.8	22.6	25.1	26.2	26.3	26.0	25.5	24.9	24.5
3 <i>I</i>	-0.00	-0.01	-0.04	-0.09	-0.17	-0.26	-0.81	-1.36	-1.85	-2.26	-2.60	-2.86	-3.05	-3.19	-3.27	-3.31	-3.31	-3.27	-3.21	-3.11	-2.99	-2.67	-2.17	-1.46	-0.71	-0.53	-1.73	-4.38	- 7.58	-10.47	-12.76	- 14.54	-15.96	-17.16
2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.3	0.5	0.8	1.5	2.4	3.3	4.1	4.8	5.3	5.7	5.9	6.1	6.3	6.4	6.5	6.5
^{3}F	0.00	0.00	0.01	0.04	0.07	0.10	0.34	09.0	0.87	1.11	1.32	1.48	1.60	1.65	1.66	1.61	1.51	1.36	1.16	0.92	0.63	-0.05	-0.86	-1.80	-2.84	-3.97	-5.18	-6.44	-7.73	-9.04	-10.35	-11.67	-12.97	-14.27
7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
E	-0.00	-0.06	-0.23	-0.45	-0.68	-0.91	-1.93	-2.63	-3.08	-3.33	-3.45	-3.47	-3.42	-3.33	-3.20	-3.05	-2.88	-2.70	-2.52	-2.33	-2.14	-1.76	-1.40	-1.06	0.80	-0.63	-0.56	-0.57	-0.66	-0.79	-0.95	-1.14	-1.35	-1.56
$T_{ m lab}$	1	5	10	15	20	25	50	75	100	125	150	175	200	225	250	275	300	325	350	375	400	450	500	550	009	650	700	750	800	850	906	950	1000	1050

TABLE IV. (Continued.)

${}^{3}D_{2}$	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.3	0.5	1.4	2.7	4.3	5.8	7.3	8.4	9.3	10.0	10.5	10.9	11.3	11.5	11.7
	0.01	0.24	0.91	1.80	2.79	3.82	8.74	12.73	15.78	18.07	19.76	20.99	21.85	22.44	22.80	22.98	23.02	22.93	22.75	22.49	22.16	21.34	20.36	19.27	18.11	16.91	15.68	14.44	13.20	11.98	10.78	9.60	8.45	7.33
	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2	0.3	0.5	0.6	0.6	0.7	0.7	0.8	0.8	0.8	0.8	0.8	0.9
<i>D</i> ⁸	-0.00	-0.14	-0.53	-1.06	-1.67	-2.33	-5.67	-8.75	- 11.46	-13.84	-15.92	-17.76	-19.39	-20.85	-22.17	-23.36	-24.45	-25.45	-26.37	-27.23	-28.03	- 29.49	30.80	-31.98	-33.07	- 34.07	-35.01	-35.88	-36.70	-37.47	-38.20		- 39.54	-40.16
	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
E	0.14	0.94	1.28	1.22	1.07	0.95	0.84	1.21	1.76	2.36	2.95	3.49	3.97	4.37	4.72	5.00	5.22	5.40	5.53	5.62	5.68	5.70	5.64	5.51	5.33	5.12	4.89	4.65	4.40	4.14	3.89	3.64	3.40	3.17
1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.3	0.5	0.8	1.2	1.5	1.8	2.0	2.1	2.2	2.3	2.3	2.3	2.3	2.3	2.3
SE	147.71	118.08	102.76	93.55	86.92	81.68	64.23	52.64	43.71	36.47	30.44	25.29	20.83	16.89	13.36	10.18	7.27	4.59	2.11	-0.19	-2.35	-6.27	-9.75	-12.87	-15.67	-18.20	-20.49	-22.57	-24.47	-26.19	-27.77	-29.21	-30.54	-31.76
H ₅	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
I	-0.00	-0.00	-0.00	-0.01	-0.02	-0.03	-0.17	-0.32	-0.47	-0.58	-0.67	-0.75	-0.82	-0.90	-0.98	-1.08	-1.20	-1.33	- 1.49	-1.67	-1.86	-2.33	-2.87	-3.49	-4.18	-4.93	-5.74	-6.58	-7.46	-8.38	-9.31	-10.27	-11.23	-12.21
F_3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2	0.3	0.4	0.5	0.6	0.6	0.6	0.7	0.7	0.7	0.7	0.7	0.7
	-0.00	-0.01	-0.07	-0.18	-0.32	-0.47	-1.30	2.04	-2.66	-3.17	-3.60	-3.96	-4.26	-4.51	-4.72	-4.90	-5.04	-5.16	-5.25	-5.32	-5.38	-5.44	5.46	-5.43	-5.37	-5.28	-5.18	-5.05	-4.92	-4.77	-4.61	-4.45	-4.28	-4.11
	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.3	0.8	1.4	2.1	3.6	5.3	6.7	7.9	8.8	9.4	9.8	10.1	10.2	10.3	10.3	10.4	10.4
d ¹	-0.15	-1.10	-2.05	-2.72	-3.23	-3.66	-5.95	-8.92	-12.23	- 15.54	- 18.64	-21.44	-23.93	-26.11	-28.00	-29.64	-31.05	-32.27	-33.32	-34.23	-35.00	-36.22	-37.10	-37.70	-38.10	-38.32	-38.41	-38.39	- 38.28		-37.84	-37.54	-37.19	-36.81
$T_{ m lab}$	1	2	10	15	20	25	50	75	100	125	150	175	200	225	250	275	300	325	350	375	400	450	500	550	600	650	200	750	800	850	900	950	1000	1050

ARNDT, ROPER, BRYAN, CLARK, VERWEST, AND SIGNELL

TABLE IV. (Continued.)

	1																																	
ور	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
31	0.00	0.00	0.00	0.00	0.01	0.01	0.10	0.26	0.46	0.70	0.94	1.19	1.45	1.71	1.96	2.22	2.47	2.72	2.96	3.20	3.43	3.89	4.32	4.74	5.15	5.54	5.91	6.27	6.61	6.95	7.26	7.57	7.87	8.15
'I ₅	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.03	-0.07	-0.13	-0.21	-0.29	-0.38	-0.47	-0.57	-0.66	-0.75	-0.85	-0.94	-1.03	-1.12	-1.21	-1.39	-1.56	-1.72	-1.87	-2.02	-2.17	-2.31	-2.44	-2.57	-2.69	-2.81	-2.92	-3.03
	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Es	0.00	0.00	0.00	0.01	0.02	0.04	0.22	0.48	0.76	1.03	1.29	1.53	1.75	1.95	2.13	2.30	2.46	2.60	2.73	2.85	2.97	3.17	3.34	3.49	3.63	3.75	3.86	3.96	4.05	4.14	4.21	4.29	4.36	4.42
J ₅	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
30	-00.00	-0.00	-0.00	-0.00	-0.00	-0.01	-0.06	-0.13	-0.20	-0.27	-0.33	-0.38	-0.41	0.44	-0.45	-0.46	-0.45	-0.44	-0.42	-0.40	-0.37	-0.30	-0.22	-0.12	-0.02	0.09	0.20	0.31	0.42	0.53	0.64	0.76	0.86	0.97
4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3 ⁶	0.00	0.00	0.02	0.05	0.11	0.19	0.79	1.54	2.34	3.12	3.87	4.58	5.23	5.83	6.37	6.86	7.30	7.69	8.03	8.32	8.58	8.97	9.22	9.34	9.36	9.29	9.13	8.90	8.60	8.26	7.86	7.42	6.94	6.44
<u>г</u> 3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3	-0.00	-0.00	-0.00	-0.02	-0.03	-0.06	-0.28	-0.59	-0.94	-1.30	-1.66	-2.02	-2.37	-2.71	-3.04	-3.36	-3.67	-3.97	-4.26	-4.54	-4.81	-5.32	-5.80	-6.25	-6.67	-7.06	-7.43	-7.78	-8.11	-8.43	-8.72	-9.01	-9.27	-9.53
	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
E_3	0.00	0.01	0.09	0.22	0.40	0.60	1.71	2.75	3.64	4.39	5.02	5.56	6.02	6.41	6.76	7.06	7.32	7.56	7.77	7.95	8.12	8.41	8.64	8.84	00.6	9.14	9.26	9.36	9.45	9.52	9.58	9.64	9.69	9.73
03	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
e E	0.00	0.01	0.03	0.07	0.13	0.20	0.70	1.34	1.96	2.53	3.01	3.41	3.73	3.97	4.14	4.25	4.31	4.32	4.29	4.23	4.13	3.85	3.49	3.06	2.59	2.07	1.53	0.98	0.41	-0.17	-0.75	-1.33	-1.91	-2.48
$T_{ m lab}$	1	ŝ	10	15	20	25	50	75	100	125	150	175	200	225	250	275	300	325	350	375	400	450	500	550	009	650	700	750	800	850	900	950	1000	1050

<u>28</u>

TABLE IV. (Continued.)

NUCLEON-NUCLEON PARTIAL-WAVE ANALYSIS TO 1 GeV

State	δ	$\delta_{pp} - \delta_{np}$	State	δ	$\delta_{pp} - \delta_{np}$	ρ
	10.00 MeV	•		150.00 MeV	,	
³ P .	3 897+0 048	-0.595	$^{3}P_{2}$	14 585+0 097	-0 577	
^{1}P	-3.374 ± 1.076	-0.395	E_{2}	-2.993 ± 0.057	0.166	
3D	-3.374 ± 1.070 -2.319+0.021	-0.240	$\frac{L_2}{^{3}F_2}$	-2.003 ± 0.0000	0.043	
38	-2.319 ± 0.021 104 250+0 797	0.020	$1 \frac{1}{F_2}$	-2917 ± 0.100	0.000	
3η 3η	0.803 ± 0.034	0.029	$^{3}F_{2}$	-2.153 ± 0.143	0.000	
$^{3}p_{1}$	0.699 ± 0.034	-0.100	$^{3}D_{2}$	2.155 ± 0.145 2.265 ± 0.343	-0.253	
12	0.077±0.015	-0.100	E_{3}	4506 ± 0.186	0.054	
	25.00 MeV	V	$^{3}F_{4}$	1.055 ± 0.093	-0.028	
${}^{1}S_{0}$	51.005 ± 0.223	-2.341		200.00 MeV	7	
${}^{3}P_{0}$	8.964 ± 0.141	-0.881				
${}^{1}P_{1}$	-4.921 ± 0.429	-0.358	$^{1}S_{0}$	7.170 ± 0.431	-0.363	
${}^{3}P_{1}$	-5.307 ± 0.070	0.487	${}^{3}P_{0}$	0.260 ± 0.419	-0.571	
${}^{3}S_{1}$	82.192 ± 0.988	0.027	${}^{1}P_{1}$	-23.784 ± 0.803	0.227	
E_1	0.898 ± 0.482	-0.003	${}^{3}P_{1}$	-22.400 ± 0.216	0.674	
${}^{3}D_{1}$	-2.633 ± 0.030	0.002	${}^{3}S_{1}$	20.446 ± 0.645	0.853	
${}^{1}D_{2}$	0.778 ± 0.028	-0.061	E_1	4.224 ± 0.364	-0.145	
${}^{3}P_{2}$	2.606 ± 0.039	-0.217	$^{3}D_{1}$	-20.147 ± 0.592	0.001	
-			$^{1}D_{2}$	7.025 ± 0.132	-0.230	
	50.00 MeV	/	$^{3}D_{2}^{-}$	22.106 ± 0.538	0.023	
			$^{3}P_{2}^{-}$	15.914 ± 0.143	-0.625	
$^{1}S_{0}$	40.502 ± 0.134	-1.544	$\tilde{E_2}$	-3.156 ± 0.108	0.166	
${}^{3}P_{0}$	12.740 ± 0.236	-0.971	${}^{3}F_{2}$	1.629 ± 0.193	-0.059	
${}^{1}P_{1}$	-4.229 ± 0.571	-0.345	$^{1}F_{3}^{2}$	-4.179 ± 0.253	0.013	
$^{3}P_{1}$	-8.810 ± 0.070	0.581	${}^{3}F_{3}$	-2.723 ± 0.138	0.122	
³ S1	61.756+0.428	0.152	$^{3}D_{3}^{3}$	4.092 ± 0.383	-0.309	
E	0.701 ± 0.854	-0.019	E_{3}	6.249 ± 0.149	0.058	
${}^{3}D_{1}$	-6.613 ± 0.184	0.003	$^{3}F_{A}$	1.994 ± 0.106	-0.039	
$^{1}D_{2}$	1.741 ± 0.041	-0.102	•			
${}^{3}D_{2}$	10.200 ± 0.284	0.046		300.00 MeV	•	
${}^{3}P_{2}$	6.024 ± 0.049	-0.349				
$\tilde{E_2}$	-1.835 ± 0.051	0.119	${}^{1}S_{0}$	-6.167 ± 0.399	0.074	0.0 ± 0.0
-2			$^{3}P_{0}$	-9.484 ± 0.531	-0.229	0.0 ± 0.0
	100.00 Me	v	${}^{1}P_{1}$	-31.038 ± 0.788	0.454	0.0 ± 0.0
	100.00 Me	*	${}^{3}P_{1}$	-29.251 ± 0.267	0.680	1.890 ± 2.585
10	24 064+0 502	1 004	$^{3}S_{1}$	4.941±0.728	0.973	0.0 ± 0.0
3D	11.772 ± 1.408	- 1.000	E_1	6.578 ± 0.362	-0.180	0.0 ± 0.0
$1_{\mathbf{D}}$	10.906 ± 1.116	-0.091	${}^{3}D_{1}$	-24.859 ± 0.548	-0.018	0.0 ± 0.0
и 3 р	-10.900 ± 1.110	-0.132	$^{1}D_{2}$	9.612±0.121	-0.284	0.763 ± 0.0
3°C	-14.732 ± 0.274	0.040	$^{3}D_{2}^{2}$	23.160 ± 0.465	0.058	0.0 ±0.0
	0.723 ± 0.071	0.477	$^{3}P_{2}$	17.311 ± 0.215	-0.678	0.0 ± 0.0
³ Ω.	-12376 ± 0.360	-0.000	E_2	-2.301 ± 0.133	0.156	0.0 ± 0.0
$^{1}D_{1}$	4131 ± 0.131	0.000	${}^{3}F_{2}$	0.803 ± 0.180	-0.095	0.0 ± 0.0
J_2 3D_2	4.131 ± 0.131	-0.137	$^{1}F_{3}^{2}$	-5.877 ± 0.199	0.035	0.0 ± 0.0
J_{2}^{3}	10.879 ± 0.702	0.030	${}^{3}F_{3}$	-2.102 ± 0.222	0.149	0.0 ±0.0
Г2 Г	$3 120 \pm 0.117$	-0.497	$^{3}D_{3}$	3.007 ± 0.279	-0.392	0.0 ± 0.0
122	= 3.120±0.117	0.150	E_3	$7.580 {\pm} 0.164$	0.064	0.0 ±0.0
	150 00 Max	7	${}^{3}G_{3}$	-4.059 ± 0.283	-0.038	0.0 ±0.0
	150.00 Me	Y	${}^{1}G_{4}$	1.472 ± 0.079	-0.032	0.0 ±0.0
10	15 172 +0 460	0 657	$^{3}G_{A}$	7.485 ± 0.269	0.035	0.0 ±0.0
$^{3}P_{-}$	6.251 ± 0.409	-0.037	$^{3}F_{4}$	$2.957 {\pm} 0.085$	-0.060	0.0 ±0.0
10 10	$18 420 \pm 1.025$		E_{A}	-1.517 ± 0.065	0.044	0.0 ±0.0
3 D	$-10.+39\pm1.033$ 18 200±0 142	0.038				
¹ 38	- 10.277 ± 0.143	0.003		400 00 34 37		
	2/.JUOTU.JJU 3 921±0 502	0.113		400.00 MeV		
² 1 3 р.	J.0JIIU.JYJ 15 252±0 412	-0.112	10	-15 625+0 435	0 344	4.243±0.0
D_1	-13.332 ± 0.412 5.632 ± 0.077	0.000	3 D	$= 19.816 \pm 0.455$	0.044	0.824 ± 0.0
3D	3.033 ± 0.077			-34112 ± 0.907	0.044	2.055 ± 0.0
ν_2	23.033±0.322	0.021	P_1	- 57.112 ± 0.007	0.500	

TABLE V. Single-energy-analysis phase parameters. For each partial wave the column labeled δ is δ_{np} or ϵ . The column labeled ρ is ρ or ϕ . δ_{pp} - δ_{np} is the charge splitting. The energy at the top of each group is the laboratory kinetic energy.

			TABLE V.	(Continued	<i>d</i> .)		
State	δ	$\delta_{pp} - \delta_{np}$	ρ	State	δ	$\delta_{pp} - \delta_{np}$	ρ
	400.0	0 MeV			500.00) MeV	
${}^{3}P_{1}$	-34.783 ± 0.288	0.676	0.763 ± 5.073	$^{3}D_{3}$	3.686±0.253	-0.483	$0.0 {\pm} 0.0$
${}^{3}S_{1}$	-2.086 ± 0.670	0.996	0.0 ± 0.0	E_3	8.964±0.200	0.077	0.0 ± 0.0
E_1	5.258 ± 0.385	-0.191	0.0 ± 0.0	$^{3}G_{3}$	-6.206 ± 0.359	-0.039	0.0 ± 0.0
${}^{3}D_{1}$	-26.186 ± 0.417	-0.040	0.0 ± 0.0	$^{1}G_{4}$	2.922 ± 0.070	-0.043	0.615 ± 0.0
${}^{1}D_{2}$	11.567 ± 0.101	-0.331	8.548 ± 0.304	$^{3}G_{4}$	9.385 ± 0.275	0.000	0.0 ± 0.0
${}^{3}D_{2}^{-1}$	23.761 ± 0.392	0.120	0.0 ± 0.0	$^{3}F_{4}$	4.360 ± 0.056	-0.096	0.0 ± 0.0
${}^{3}P_{2}$	18.112 ± 0.181	-0.702	0.0 ± 0.0	E_4	-1.824 ± 0.064	0.054	0.0 ± 0.0
$\tilde{E_2}$	-1.695 ± 0.138	0.140	0.0 + 0.0	$^{3}G_{5}$	-1.200 ± 0.183	-0.043	0.0 ± 0.0
${}^{3}F_{2}$	0.458 ± 0.154	-0.127	0.793 ± 0.0	5			
${}^{1}F_{2}$	-5.109 ± 0.192	0.052	0.0 ± 0.0		550.0	0 MeV	
${}^{3}F_{2}$	-2.664 ± 0.233	0.163	1.486 ± 0.0		550.0		
${}^{3}D_{1}$	4.536 ± 0.297	-0.447	0.0 ± 0.0				
E_{2}	8 426+0 140	0.070	0.0 ± 0.0	${}^{1}S_{0}$	-30.081 ± 0.506	0.624	7.650 ± 2.606
${}^{3}G$	-4.818 ± 0.343	0.070	0.0 ± 0.0	$^{3}P_{0}$	-30.420 ± 0.496	0.367	7.424 ± 2.740
^{1}G	2146 ± 0.072	-0.037	0.0 ± 0.0	$1P_1$	-31.545 ± 1.846	0.711	6.890 ± 3.631
${}^{3}G$	7907 ± 0.072	-0.037	0.0 ± 0.0	$^{3}P_{1}$	-43.432 ± 0.358	0.683	15.741 ± 1.054
${}^{3}F$	3.721 ± 0.059	0.018	0.0 ± 0.0	³ S1	-14.572 ± 1.763	0.982	0.844 ± 0.0
F.	1.904 ± 0.064	-0.079	0.0 ± 0.0	E ₁	6.324 ± 1.003	-0.189	0.0 + 0.0
L ₄	-1.904 ± 0.004	0.030	0.0 ± 0.0	$^{3}D_{1}$	-34.151 ± 1.106	-0.070	0.0+0.0
				$1D_{2}$	12.808 ± 0.141	-0.360	19.154+0.276
	450.0	0 MeV		$^{3}D_{2}$	12.600 ± 0.111 19.654+0.931	0.250	4.217+0.0
• • •				$^{3}P_{2}$	19.551 ± 0.951 19.553 ± 0.258	-0.709	6 913+0 795
¹ S ₀	-20.793 ± 0.591	0.451	8.204 ± 0.0	E E	-0.797 ± 0.177	0.114	0.0+0.0
P_0	-24.882 ± 0.540	0.152	4.771 ± 0.0	$^{3}E_{2}$	-1.749 ± 0.206	_0.159	3281 ± 0.0
${}^{1}P_{1}$	-36.667 ± 0.892	0.636	3.637 ± 0.0	1 I E	-7.605 ± 0.200	0.070	0.201 ± 0.0
${}^{3}P_{1}$	-36.226 ± 0.323	0.674	6.572 ± 1.504	³ F	-7.005 ± 0.520	0.070	8502 ± 0.348
${}^{3}S_{1}$	-5.859 ± 0.687	0.995	0.0 ± 0.0	30	-1.538 ± 0.100	0.100	0.0+0.0
E_1	3.997 ± 0.433	-0.192	0.0 ± 0.0		0.231 ± 0.342	-0.490	0.0 ± 0.0
${}^{3}D_{1}$	-28.393 ± 0.497	-0.051	$0.0 {\pm} 0.0$	L_3	9.231 ± 0.342 6 175 ± 0 000	0.080	0.0 ± 0.0
${}^{1}D_{2}$	12.938 ± 0.146	-0.354	11.329 ± 0.343		-0.173 ± 0.999	-0.039	1.261 ± 0.0
${}^{3}D_{2}$	22.072 ± 0.474	0.160	1.401 ± 0.0	36	3.423 ± 0.084	-0.040	0.0+0.0
${}^{3}P_{2}$	18.881 ± 0.180	-0.707	0.722 ± 0.0	3 _E	10.790 ± 0.439	-0.007	0.0±0.0
E_2	-2.204 ± 0.183	0.131	$0.0 {\pm} 0.0$	F4	4.033 ± 0.093	-0.103	0.0 ± 0.0
${}^{3}F_{2}$	-0.109 ± 0.188	-0.140	1.529 ± 0.0		-1.030 ± 0.009	0.030	0.0 ± 0.0
${}^{1}F_{3}$	-5.329 ± 0.363	0.059	$0.0 {\pm} 0.0$		$0.0/2\pm0.100$	-0.032	0.0 ± 0.0
${}^{3}F_{3}$	-3.065 ± 0.155	0.166	3.581 ± 0.0	30	-2.249 ± 0.144	0.033	3.292 ± 0.0
${}^{3}D_{3}$	4.602 ± 0.315	-0.467	$0.0 {\pm} 0.0$	311	$-0.3/0\pm0.233$	-0.047	0.0 ± 0.0
E_3	8.105 ± 0.212	0.073	$0.0 {\pm} 0.0$	°H ₆	$1.15/\pm0.000$	-0.005	0.0 ± 0.0
${}^{3}G_{3}$	-5.475 ± 0.414	-0.040	$0.0 {\pm} 0.0$		(00.0	0 M M	
${}^{1}G_{4}$	2.563 ± 0.087	-0.040	0.0 ± 0.0		600.0	0 Mev	
${}^{3}G_{4}$	8.442 ± 0.364	0.009	$0.0 {\pm} 0.0$	10	22 500 1 0 402	0.600	0 222 + 7 202
${}^{3}F_{4}$	4.162 ± 0.076	-0.087	$0.0 {\pm} 0.0$	·S ₀	-32.599 ± 0.483	0.682	0.332 ± 7.202
E_4	-1.850 ± 0.098	0.052	$0.0 {\pm} 0.0$	P_0	$-34.92/\pm0.55/$	0.464	8.386±2.3//
				P_1	$-31.0/0\pm1.225$	0.743	2.203 ± 7.110
	500.0	0 MeV		P_1	-45.884 ± 0.455	0.685	17.328±1.235
1~			0 404 - 0 454	<i>S</i> ₁	$-18.6/5 \pm 1.024$	0.972	0.977 ± 0.0
$^{1}S_{0}$	-23.914 ± 0.619	0.548	0.434 ± 8.451	E_1	6.675±0.620	-0.186	0.0 ± 0.0
$^{3}P_{0}$	$-27.66/\pm0.463$	0.257	5.234 ± 2.376	$^{J}D_{1}$	-34.809 ± 0.791	-0.078	0.0 ± 0.0
P_1	-36.699 ± 0.922	0.677	3.251±2.569	D_2	10.481±0.188	-0.330	21.901±0.278
P_1	-39.637 ± 0.296	0.677	8.392±1.320	D_2	19.243±0.524	0.299	5./88±0.0
S_1	-10.623 ± 0.751	0.989	0.658±0.0	P_2	19.208±0.196	-0.704	11.440±0.627
E_1	6.043 ± 0.508	-0.191	0.0 ± 0.0	E_2	-0.328 ± 0.170	0.106	0.0±0.0
D_1	-29.098 ± 0.486	-0.061	0.0±0.0	${}^{3}F_{2}$	-2.071 ± 0.182	-0.163	4.107 ± 0.0
$^{1}D_{2}$	13.146 ± 0.106	-0.367	16.685 ± 0.287	F_3	-7.392 ± 0.358	0.074	0.0±0.0
D_2	20.184 ± 0.477	0.203	2.685 ± 0.0	${}^{3}F_{3}$	-0.547 ± 0.134	0.153	12.968±0.295
°Р ₂	18.960 ± 0.188	-0.710	3.111 ± 1.043	³ D ₃	2.151 ± 0.414	-0.506	0.0 ± 0.0
E_2	-1.537 ± 0.164	0.123	0.0 ± 0.0	E_3	9.366 ± 0.206	0.083	0.0 ± 0.0
F_2	-0.615 ± 0.156	-0.151	2.390 ± 0.0	G_3	-4.940 ± 0.435	-0.039	0.0 ± 0.0
${}^{1}F_{3}$	-6.217 ± 0.205	0.065	0.0 ± 0.0	G_4	3.680 ± 0.083	-0.050	3.325±0.856
${}^{3}F_{3}$	-2.051 ± 0.216	0.165	6.278 ± 0.408	³ G₄	10.983 ± 0.242	-0.014	0.0 ± 0.0

State	δ	$\delta_{pp} - \delta_{np}$	ρ	State	δ	$\delta_{pp} - \delta_{np}$	ρ
	600.0	0 MeV		<u> </u>	700.0	00 MeV	
${}^{3}F_{4}$	5.132±0.069	-0.110	0.679 ± 0.0	$^{1}H_{5}$	-6.003 ± 0.273	-0.113	$0.0 {\pm} 0.0$
E_{A}	-1.511 ± 0.070	0.057	0.0 ± 0.0	$^{3}H_{5}$	-1.085 ± 0.206	0.061	9.050 ± 0.0
${}^{3}H_{4}$	1.108 ± 0.080	-0.035	0.0 ± 0.0	^{3}G	-0.302 ± 0.206	0.060	0.0 ± 0.0
$^{1}H_{5}$	-3.744 ± 0.205	-0.100	0.0 ± 0.0	$^{3}H_{6}$	1.435 ± 0.059	-0.008	2.990 ± 0.0
${}^{3}G_{5}$	0.233 ± 0.184	-0.051	0.0 ± 0.0	0			
	650.0	0 MeV			750.0	0 MeV	
${}^{1}S_{0}$	-35.120 ± 0.931	0.723	11.491±3.250	¹ S ₀	-47.131 ± 1.742	0.759	7.225 ± 12.747
$^{3}P_{0}$	-41.502 ± 1.123	0.531	18.146 ± 3.241	${}^{3}P_{0}$	-55.983 ± 1.622	0.567	26.009 ± 4.939
${}^{1}P_{1}$	-34.044 ± 1.892	0.771	0.749 ± 11.140	$^{1}P_{1}$	-37.497 ± 1.876	0.818	10.121 ± 3.683
${}^{3}P_{1}$	-49.474±0.859	0.682	21.405 ± 2.123	${}^{3}P_{1}$	-53.292 ± 0.969	0.667	20.331 ± 3.016
${}^{3}S_{1}$	-20.308 ± 1.530	0.963	1.110 ± 0.0	$^{3}S_{1}$	-18.035 ± 2.438	0.944	1.238 ± 0.0
E_1	7.144±0.944	-0.183	$0.0 {\pm} 0.0$	E_1	5.410 ± 1.800	-0.175	0.0 ± 0.0
${}^{3}D_{1}$	-35.477 ± 1.066	-0.085	0.0 ± 0.0	${}^{3}D_{1}$	-35.552 ± 1.518	-0.096	0.0 ± 0.0
${}^{1}D_{2}$	9.010±0.397	-0.287	23.245 ± 0.456	$^{1}D_{2}$	4.156 ± 0.483	-0.200	24.284 ± 0.364
${}^{3}D_{2}$	17.393 ± 0.715	0.350	7.202 ± 0.0	${}^{3}D_{2}$	11.108 ± 1.134	0.457	9.245 ± 0.0
${}^{3}P_{2}$	17.988 ± 0.396	-0.691	14.595 ± 0.844	$^{3}P_{2}$	15.046 ± 0.373	-0.634	19.252 ± 0.648
E_2	-0.061 ± 0.332	0.100	$0.0 {\pm} 0.0$	E_2	-1.163 ± 0.459	0.093	0.0 ± 0.0
${}^{3}F_{2}$	-3.022 ± 0.345	-0.166	4.792 ± 0.0	${}^{3}F_{2}$	-7.049 ± 0.387	-0.163	5.860 ± 0.665
${}^{1}F_{3}$	-5.435 ± 0.469	0.078	$0.0 {\pm} 0.0$	${}^{1}F_{3}$	-5.096 ± 0.556	0.083	$0.0 {\pm} 0.0$
${}^{3}F_{3}$	-0.764 ± 0.301	0.155	17.030 ± 0.459	$^{3}F_{3}$	-4.308 ± 0.582	0.233	24.585 ± 0.495
${}^{3}D_{3}$	1.793 ± 0.484	-0.514	0.0 ± 0.0	$^{3}D_{3}$	1.324 ± 0.488	-0.523	$0.0 {\pm} 0.0$
E_3	8.832 ± 0.307	0.086	0.0 ± 0.0	E_3	9.569 ± 0.459	0.093	0.0 ± 0.0
${}^{3}G_{3}$	-5.983 ± 0.438	-0.038	0.0 ± 0.0	$^{3}G_{3}$	$-8.378 {\pm} 0.500$	-0.036	0.0 ± 0.0
$^{1}G_{4}$	4.059 ± 0.152	-0.053	2.977 ± 1.214	$^{1}G_{4}$	4.276 ± 0.266	-0.060	5.857 ± 1.028
${}^{3}G_{4}$	11.155 ± 0.380	-0.020	$0.0 {\pm} 0.0$	$^{3}G_{4}$	9.385 ± 0.526	-0.030	$0.0 {\pm} 0.0$
${}^{3}F_{4}$	5.287 ± 0.134	-0.117	1.465 ± 0.0	$^{3}F_{4}$	5.957 ± 0.114	-0.127	3.304 ± 0.0
E_4	-1.639 ± 0.149	0.058	0.0 ± 0.0	E_4	-1.836 ± 0.237	0.059	$0.0 {\pm} 0.0$
°H ₄	0.975 ± 0.127	-0.037	0.0 ± 0.0	$^{3}H_{4}$	0.425 ± 0.133	-0.041	$0.0 {\pm} 0.0$
$^{1}H_{5}$	-4.627 ± 0.277	-0.107	0.0 ± 0.0	H_5	-6.351 ± 0.393	-0.118	0.0 ± 0.0
$^{3}H_{5}$	-1.267 ± 0.206	0.060	7.341 ± 0.0	$^{3}H_{5}$	-1.191 ± 0.222	0.061	8.890 ± 0.476
$^{3}G_{5}$ $^{3}H_{6}$	0.107 ± 0.204 1.337 ± 0.064	-0.056 0.007	0.0 ± 0.0 2.020±0.0	$^{3}G_{5}$ $^{3}H_{6}$	0.611 ± 0.165 1.814 ± 0.035	0.065 0.009	0.0 ± 0.0 3.963 ± 0.0
0	700.0	0 MeV		0	800.0	0 MeV	
la	40 738 + 0 873	0.749	6 0 4 9 + 5 7 1 0	19	51 (27) 1 055	0.757	
-30 3D	-40.728 ± 0.872	0.746	-0.940 ± 3.710	3D	$-51.03/\pm1.855$	0.757	15.442 ± 6.552
1 P 0	-49.010 ± 1.008	0.304	26.037 ± 2.708 1 804 + 32 497	P_0	-39.903 ± 1.238	0.549	33.323±3.997
Г ₁ 3р	-36.200 ± 1.002	0.794	-1.804 ± 32.497	r_1	-36.410 ± 3.424 55.221 ± 0.015	0.650	12.023 ± 0.393
3°.	-16208 ± 1736	0.070	1188 ± 0.0	35	-33.221 ± 0.913	0.037	1260 ± 0.0
F_{1}	-10.200 ± 1.750 9 912 + 1 252	0.179	0.0+0.0		-20.474 ± 2.855	0.939	1.209 ± 0.0
${}^{3}D.$	-36000 ± 1357	-0.091	0.0 ± 0.0	$\begin{bmatrix} \mathbf{L}_1\\ 3\mathbf{D}_1 \end{bmatrix}$	-37772+2030	-0.170	0.0 ± 0.0
$^{1}D_{2}$	5.524 ± 0.395	-0.242	23.054 ± 0.441	$1 D_1$	2659 ± 0588	-0.161	24.096 ± 0.042
$^{3}D_{2}$	14.631 ± 0.885	0.403	8 354+0.0	$^{3}D_{2}$	10.714 ± 1.785	0.511	9.696 ± 4.231
$^{3}P_{2}$	16.513+0.388	-0.668	15.832 ± 0.580	$^{3}P_{2}$	12.563 ± 0.351	-0.589	21.555 ± 0.661
\tilde{E}_{2}	0.162 ± 0.333	0.095	0.0+0.0	E_2	-0.992 ± 0.419	0.092	0.0 ± 0.0
${}^{3}F_{2}$	-4.630 ± 0.329	-0.166	5.310 ± 0.0	$^{3}F_{2}$	-8.454 ± 0.371	-0.158	5.286 ± 0.534
${}^{1}F_{2}$	-4.743 ± 0.392	0.081	0.0 ± 0.0	${}^{1}F_{3}$	-4.814 ± 0.496	0.085	$0.0 {\pm} 0.0$
${}^{3}F_{3}$	-3.643 ± 0.339	0.181	19.580±0.459	$^{3}F_{3}$	-7.320 ± 0.579	0.294	25.366±0.462
${}^{3}D_{3}$	2.105 ± 0.429	-0.519	0.0 ± 0.0	$^{3}D_{3}$	0.720±0.507	-0.526	0.0 ± 0.0
$\vec{E_3}$	7.967 ± 0.350	0.089	0.0 ± 0.0	E_3	9.158±0.499	0.096	0.0 ± 0.0
${}^{3}G_{3}$	-8.349 ± 0.537	-0.037	0.0 ± 0.0	$^{3}G_{3}$	-9.020 ± 0.493	-0.036	0.0 ± 0.0
${}^{1}G_{4}$	4.188 ± 0.139	-0.056	6.300 ± 0.755	$^{1}G_{4}$	4.531±0.299	-0.063	6.671 ± 1.214
${}^{3}G_{4}$	10.063 ± 0.395	-0.025	$0.0 {\pm} 0.0$	$^{3}G_{4}$	8.753 ± 0.602	-0.032	$0.0 {\pm} 0.0$
${}^{3}F_{4}$	5.915 ± 0.114	-0.122	2.379 ± 0.0	$^{3}F_{4}$	5.940 ± 0.118	-0.130	4.204 ± 0.0
	4 (00) 0 1 - 0	0.059	0.0 ± 0.0	F.	-1923+0189	0.059	0.0+0.0
E_4	-1.693 ± 0.173	0.038	0.010.0	1 4	1.725±0.107	0.000	0.010.0

TABLE V. (Continued.)

			TABLE V.	(Continue	<u>ed.</u>)		
State	δ	$\delta_{pp} - \delta_{np}$	ρ	State	δ	$\delta_{pp} - \delta_{np}$	ρ
	800.0	0 MeV			900.0	0 MeV	
177	7 052 1 0 277	0 101	00100	31	0 602 1 0 068	0.142	2 892 1 7 1 42
°П 5 З П	-7.053 ± 0.377	-0.121	0.0 ± 0.0	\mathbf{F}_{2}	-9.092 ± 0.908	-0.143	3.882 ± 7.142
$^{-}H_{5}$	-0.842 ± 0.220	0.060	9.047 ± 0.323		$-12.32/\pm 0.7/6$	0.390	25.009 ± 1.338
311	0.080 ± 0.170	-0.069	0.0±0.0		5.008 ± 0.431	-0.070	10.382 ± 1.340
H_6	1.959±0.034	-0.011	4.882±0.0	F 4	0.201 ± 0.280	-0.132	5.948 ± 0.0
	050.0				-0.900 ± 1.313 1 104 ± 0.479	0.000	0.0 ± 0.0
	850.0	0 Mev		П4 3П	0.820 ± 0.644	-0.040	0.0 ± 0.0
10	50 500 + 0 200	0.744	01:459 + 5 701	311	-0.820 ± 0.044	0.037	6.405 ± 0.0
-30 30	-52.520 ± 2.502	0.744	21.438 ± 3.791	116	2.420±0.152	-0.014	0.49510.0
P_0	-64.031 ± 1.803	0.518	30.835 ± 4.020		050.0	0.14.17	
P_1	-31.280 ± 3.049	0.853	22.775 ± 7.251		950.0	0 Mev	
P_1	-34.195 ± 1.151	0.040	21.802 ± 3.233	10	50 464 - 2 610	0.004	10.0((+ 0.00)
יג _ו	-44.787 ± 2.607	0.932	1.288 ± 0.0	¹ S ₀	-58.464 ± 3.610	0.694	19.066±9.286
E_1	2.041 ± 2.494	-0.100	0.0 ± 0.0	P_0	-60.986 ± 1.777	0.439	19.707 ± 14.861
D_1		-0.105	0.0 ± 0.0	P_1	-60.601 ± 1.195	0.623	45.221±3./18
D_2	1.016±0.798	-0.123	23.744 ± 0.051	D_2	-4.253 ± 1.148	-0.050	24.9/9±0.484
$^{3}D_{2}$	1.94/±2.422	0.566	0.539 ± 4.809	P_2	3.496±0.780	-0.391	26.008±1.110
P_2	10.125±0.498	-0.533	24.082 ± 0.810	E_2	-1.431 ± 1.022	0.094	0.0 ± 0.0
E_2	-2.091 ± 0.528	0.092	0.0 ± 0.0	F_2	-11.555 ± 0.687	-0.134	5.31/±0.9/1
F_2	-9.084 ± 0.478	-0.151	4.035 ± 0.903	F_3	-14.708 ± 0.755	0.423	25.600 ± 1.233
·F3	-0.105 ± 0.858	0.086	0.0 ± 0.0	·G ₄	5.257 ± 0.380	-0.073	$11./11\pm0.8/1$
² F ₃	-9.358 ± 0.374	0.347	25.050 ± 0.510		5.979 ± 0.220	-0.132	0.812 ± 0.0
$^{\circ}D_{3}$	$-4.27/\pm1.434$	-0.526	0.0 ± 0.0	E_4	$-0.4/3\pm0.343$	0.060	0.0 ± 0.0
E_3	0.332 ± 0.804	0.099	0.0 ± 0.0	$^{3}H_{4}$	0.999 ± 0.269	-0.047	0.0 ± 0.0
G_3	$-8.0/4\pm0.698$	-0.035	0.0 ± 0.0	H_5	-0.975 ± 0.369	0.055	12.279 ± 0.925
•G ₄	4.99/±0.384	-0.066	9.343 ± 1.110	°H ₆	2.413±0.126	-0.016	7.193±0.0
3G4	8.902 ± 1.290	-0.034	0.0 ± 0.0		1000.0	0 M W	
°F ₄	6.334 ± 0.192	-0.132	5.081 ± 0.0		1000.0	0 MeV	
<i>E</i> ₄	-1.862 ± 0.212	0.060	0.0 ± 0.0	10	50.015 . 0.016	0.000	15 220 10 665
	0.494 ± 0.194	-0.044	0.0 ± 0.0	·S0	$-58.31/\pm 3.010$	0.002	15.320±9.005
·H 5 311	-8.129 ± 0.521	-0.122	0.0 ± 0.0	P_0	-65.206 ± 4.071	0.400	57.542 ± 2.248
^{3}C	-0.184 ± 0.323	0.038	11.020±0.047		-60.250 ± 0.973	0.011	$36.2/3 \pm 3.133$
°G5 311	$3.18/\pm0.810$	-0.074	0.0 ± 0.0	D_2	-3.993 ± 0.807	-0.014	25.341 ± 0.504
H_6	2.152±0.069	-0.012	5.720±0.0	P_2	3.255±0.689	-0.308	27.382 ± 0.893
	000.0	0 M.V		E_2	-2.037 ± 0.720	0.096	0.0 ± 0.0
	900.00	UNIEV		3Γ	-13.802 ± 0.447	-0.123	6.194 ± 0.867
10	52 0C1 + 4 547	0 702	17.026 + 0.620	F_3	-15.202 ± 0.647	0.450	$25.3/1\pm1.028$
3D	$-33.901\pm4.34/$	0.723	1/.030±9.029	3 _C	5.444 ± 0.323	-0.070	12.009 ± 0.719
r_0	-04.039 ± 12.237	0.4/9	10.090 ± 20.340	F4	$5.5/1\pm0.209$	-0.130	/.0/8±0.0
P_1	-30.948 ± 1.034	0.035	38.030 ± 0.239		-1.680 ± 0.283	0.060	0.0±0.0
$\frac{1}{3}$	-1.053 ± 1.082	-0.087	25.011 ± 0.306		0.143 ± 0.222		0.0 ± 0.0
P_2	0.229±0.984		$23.44/\pm 1.490$		-0.349 ± 0.279	0.053	13.815±0.664
E_2	-1.015 ± 4.159	0.092	0.0±0.0	H_6	2.710 ± 0.082	-0.017	7.829±0.0

system, using any type of terminal, in order to obtain a large amount of experimental and theoretical information about nucleon-nucleon, π -proton, and K^+ -proton scattering below a few GeV.

SAID is basically a system for displaying the partialwave solutions obtained from analyses of these reactions and for displaying the data bases from which the solutions were derived. Graphical output (on appropriate terminals) of amplitudes and observables is available. Users can also enter their own solutions and/or data and can conduct parameter studies. A manual describing how to dial into and use SAID is available from the VPI&SU authors (R.A.A. and L.D.R.).

Recently, SAID has been converted to run on the VAX11-780/VMS system, and has been redesigned so that it can be sent by tape to other sites with VAX computers. This eliminates the telephone charges and allows faster graphics. Sites to which SAID has been sent to data are LAMPF, TRUIMF, Argonne National Laboratory, University of Texas, University of Geneva, SIN, University of Alberta, University of Maryland, Texas A&M University, and University of Indiana. Other VAX/VMS users can obtain SAID at no cost by contacting the VPI&SU authors (R.A.A. and L.D.R.).

ergy in M	leV.													
$T_{ m lab}$	1	S ₀	T ₁	02	91	4	l ₁	6	ε.	P_0	e '	P ₁	I _c	2
1	0.454	0.291	0.000	0.000	0.000	0.000	0.000	0.000	0.002	0.000	-0.001	0.000	0.000	0.000
S	0.473	0.663	0.001	0.000	0.000	0.000	0.000	0.000	0.028	0.001	-0.015	0.000	0.004	0.000
10	0.472	0.664	0.003	0.000	0.000	0.000	0.000	0.000	0.065	0.004	-0.035	0.001	0.012	0.000
15	0.483	0.628	0.006	0.000	0.000	0.000	0.000	0.000	0.099	0.010	-0.054	0.003	0.021	0.000
20	0.492	0.589	0.009	0.000	0.000	0.000	0.000	0.000	0.127	0.016	-0.070	0.005	0.032	0.001
25	0.497	0.551	0.012	0.000	0.001	0.000	0.000	0.000	0.150	0.023	-0.085	0.007	0.043	0.002
50	0.488	0.393	0.030	0.001	0.003	0.000	0.000	0.000	0.209	0.046	-0.142	0.021	0.096	0.010
75	0.447	0.275	0.047	0.002	0.005	0.000	0.001	0.000	0.214	0.048	-0.186	0.036	0.142	0.023
100	0.387	0.184	0.064	0.004	0.007	0.000	0.002	0.000	0.194	0.039	-0.224	0.053	0.178	0.036
125	0.318	0.114	0.080	0.006	0.010	0.000	0.003	0.000	0.159	0.026	-0.257	0.071	0.207	0.048
150	0.244	0.064	0.095	0.009	0.012	0.000	0.003	0.000	0.116	0.014	-0.288	0.091	0.229	0.059
175	0.169	0.030	0.108	0.012	0.015	0.000	0.004	0.000	0.067	0.005	-0.315	0.112	0.246	0.069
200	0.098	0.010	0.121	0.015	0.017	0.000	0.005	0.000	0.017	0.000	-0.340	0.133	0.260	0.077
225	0.031	0.001	0.132	0.018	0.020	0.000	0.006	0.000	-0.033	0.001	-0.362	0.155	0.270	0.083
250	-0.031	0.001	0.143	0.021	0.022	0.000	0.007	0.000	-0.082	0.007	-0.382	0.177	0.278	0.088
275	-0.085	0.007	0.152	0.024	0.025	0.001	0.008	0.000	-0.129	0.017	-0.400	0.199	0.284	0.092
300	-0.134	0.018	0.161	0.027	0.027	0.001	0.009	0.000	-0.172	0.030	-0.415	0.221	0.289	0.095
325	-0.176	0.032	0.168	0.031	0.030	0.001	0.010	0.000	-0.211	0.047	-0.428	0.242	0.293	0.097
350	-0.213	0.048	0.175	0.036	0.033	0.001	0.011	0.000	-0.247	0.065	-0.440	0.263	0.295	0.098
375	-0.244	0.066	0.181	0.044	0.035	0.001	0.012	0.000	-0.279	0.085	-0.449	0.284	0.296	0.099
400	-0.271	0.086	0.186	0.053	0.038	0.001	0.013	0.000	-0.307	0.105	-0.456	0.304	0.297	0.099
450	-0.319	0.139	0.191	0.078	0.043	0.002	0.015	0.000	-0.351	0.153	-0.461	0.347	0.297	0.099
500	-0.366	0.195	0.185	0.110	0.048	0.002	0.017	0.000	-0.382	0.217	-0.458	0.395	0.293	0.098
550	0.404	0.252	0.163	0.140	0.053	0.003	0.019	0.000	-0.406	0.301	-0.453	0.446	0.286	0.100
009	-0.433	0.309	0.133	0.160	0.058	0.005	0.021	0.000	-0.422	0.393	-0.450	0.493	0.271	0.107
650	-0.453	0.368	0.101	0.169	0.063	0.007	0.023	0.001	-0.423	0.484	-0.445	0.534	0.250	0.117
700	0.464	0.427	0.074	0.173	0.067	0.010	0.025	0.001	0.411	0.568	-0.437	0.570	0.222	0.130
750	-0.467	0.485	0.049	0.174	0.071	0.014	0.027	0.001	-0.388	0.642	-0.428	0.601	0.190	0.143
800	-0.463	0.540	0.028	0.175	0.074	0.019	0.029	0.001	-0.359	0.704	-0.418	0.629	0.156	0.157
850	-0.453	0.592	0.007	0.177	0.078	0.025	0.031	0.001	-0.327	0.754	-0.406	0.653	0.120	0.172
906	-0.439	0.639	-0.012	0.179	0.080	0.032	0.032	0.001	-0.295	0.795	-0.394	0.675	0.086	0.187
950	-0.422	0.682	-0.030	0.182	0.083	0.039	0.034	0.001	-0.266	0.827	-0.382	0.694	0.052	0.204
1000	-0.403	0.720	-0.048	0.186	0.084	0.047	0.036	0.001	-0.238	0.853	-0.369	0.711	0.020	0.221
1050	-0.382	0.753	0.066	0.191	0.086	0.055	0.037	0.002	-0.214	0.874	-0.357	0.727	-0.011	0.238

16	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.002	0.004	0.006	0.009	0.011	0.014	0.017	0.020	0.023
H _E	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.002	0.002	0.003	0.004	0.005	0.006	0.007	0.008	0.009	0.011	0.012	0.014	0.017	0.020	0.023	0.026	0.029	0.031	0.034	0.037	0.039	0.042	0.044	0.047
2	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.001	0.001	0.001	0.001	0.002	0.005	0.010	0.017	0.026	0.033	0.038	0.043	0.047	0.050	0.052	0.055
H _E	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.002	-0.003	-0.006	-0.008	-0.011	-0.013	-0.015	-0.017	-0.019	-0.021	-0.023	-0.025	-0.026	-0.028	-0.029	-0.032	-0.034	-0.035	-0.035	-0.033	-0.029	-0.024	-0.018	-0.012	-0.007	-0.003	0.001	0.005
4	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
H^{+}	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.002	0.003	0.004	0.005	0.007	0.008	0.008	0.009	0.010	0.011	0.011	0.012	0.012	0.012	0.012	0.012	0.011	0.011	0.009	0.008	0.007	0.005	0.004	0.002	-0.000	-0.002
	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.001	-0.001	-0.001	-0.001	-0.001	-0.002	0.002	-0.002	-0.002	-0.002	-0.003	-0.003	-0.003	-0.003	-0.003	-0.003	-0.003	-0.003	-0.003	-0.003	-0.003	-0.003
E4	-0.000	-0.000	-0.000	-0.000	-0.000	-0.001	-0.003	-0.006	-0.009	-0.012	-0.014	-0.016	-0.018	-0.019	-0.021	-0.022	-0.023	-0.024	-0.025	0.026	-0.026	-0.027	-0.028	-0.029	-0.029	-0.030	-0.030	-0.030	-0.030	-0.030	-0.030	-0.030	-0.029	-0.029
4	0.000	0.000	0.000	0.000	C.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.001	0.002	0.002	0.002	0.003	0.003	0.004	0.004	0.005	0.006	0.007	0.008	0.00	0.010	0.012	0.014	0.016	0.019	0.021	0.024	0.027	0.031
^{3}F	0.000	0.000	0.000	0.000	0.000	0.001	0.003	0.006	0.011	0.015	0.020	0.025	0.030	0.035	0.039	0.044	0.048	0.052	0.056	0.060	0.064	0.071	0.077	0.083	0.088	0.093	0.097	0.099	0.101	0.101	0.100	0.098	0.095	0.091
33	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.001	0.002	0.002	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.006	0.014	0.031	0.061	0.102	0.146	0.180	0.200	0.210	0.214	0.215	0.216	0.217
Ιε	-0.000	-0.000	-0.001	-0.001	-0.003	-0.004	-0.013	-0.023	-0.031	-0.038	-0.044	-0.048	-0.051	-0.053	-0.055	-0.055	-0.055	-0.054	-0.053	-0.051	-0.049	-0.043	-0.034	-0.021	-0.00	-0.005	-0.020	-0.049	-0.083	-0.114	-0.140	-0.161	-0.179	-0.195
2	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.002	0.003	0.003	0.004	0.004	0.004	0.004	0.004	0.003	0.003	0.002	0.002	0.002	0.001	0.002	0.003	0.005	0.008	0.012	0.016	0.022	0.027	0.034	0.042	0.050	0.059	0.069
^{3}F	0.000	0.000	0.000	0.001	0.001	0.002	0.006	0.010	0.015	0.019	0.022	0.025	0.027	0.028	0.027	0.026	0.025	0.022	0.018	0.014	0.00	-0.003	-0.018	-0.034	-0.052	-0.071	-0.091	-0.112	-0.133	-0.154	-0.174	-0.195	-0.215	-0.234
2	-0.000	-0.000	-0.000	-0.000	-0.000	-0.001	-0.003	-0.007	-0.0010	-0.013	-0.015	-0.016	-0.017	-0.017	-0.017	-0.016	-0.016	-0.015	-0.014	-0.012	-0.011	-0.008	-0.005	0.001	0.007	0.015	0.022	0.028	0.033	0.037	0.041	0.045	0.047	0.050
F	-0.000	-0.001	-0.004	-0.007	-0.011	-0.015	-0.031	-0.043	-0.050	-0.054	-0.055	-0.055	-0.054	-0.052	-0.050	-0.048	-0.045	-0.042	-0.039	-0.036	-0.033	-0.027	-0.022	-0.017	-0.014	-0.012	-0.011	-0.010	-0.010	-0.010	-0.009	-0.008	-0.008	-0.007
$T_{ m lab}$	1	S	10	15	20	25	50	75	100	125	150	175	200	225	250	275	300	325	350	375	400	450	500	550	009	650	700	750	800	850	906	950	1000	1050

TABLE VI. (Continued.)

${}^{3}P_{2}$	000 0000	05 0.000	0.000	124 0.001	135 0.001	346 0.002	0.012	149 0.025	186 0.039	215 0.052	238 0.064	55 0.074	269 0.083	0.089	387 0.095	94 0.099	99 0.102	302 0.104	304 0.106	306 0.107	307 0.107	306 0.106	303 0.106	0.108	381 0.114	58 0.124	230 0.136	197 0.150	162 0.163	126 0.178	90 0.193	156 0.209	0.226 0.226	0.244
	0.00 0.0	0.000 0.00	0.002 0.0	0.004 0.0	0.006 0.0	0.00 000.0	0.024 0.1	0.040 0.1	0.058 0.1	0.077 0.2	0.098 0.2	0.119 0.2	0.142 0.2	0.164 0.2	0.187 0.2	0.209 0.2	0.231 0.2	0.253 0.3	0.274 0.3	0.294 0.3	0.315 0.3	0.358 0.3	0.406 0.3	0.456 0.2	0.504 0.2	0.545 0.2	0.580 0.2	0.611 0.1	0.638 0.1	0.662 0.1	0.684 0.0	0.702 0.0	0.719 0.0	0.735 -0.0
${}^{3}P_{1}$	-0.002	-0.019	-0.041	-0.061	-0.078	-0.093	-0.152	-0.196	-0.234	-0.267	-0.297	-0.324	-0.349	-0.370	-0.390	-0.407	-0.421	-0.434	-0.445	-0.454	-0.460	-0.464	-0.460	-0.454	-0.449	-0.443	-0.435	-0.426	-0.415	-0.403	-0.390	-0.378	-0.365	-0.353
P_0	0.000	0.001	0.006	0.013	0.020	0.028	0.053	0.055	0.045	0.031	0.017	0.006	0.001	0.001	0.006	0.015	0.029	0.046	0.064	0.085	0.106	0.155	0.221	0.306	0.400	0.492	0.576	0.650	0.711	0.761	0.801	0.832	0.857	0.877
E.	0.004	0.034	0.075	0.111	0.141	0.165	0.224	0.229	0.208	0.172	0.128	0.079	0.027	-0.025	-0.075	-0.123	-0.168	-0.209	-0.245	-0.278	-0.307	-0.353	-0.384	-0.408	-0.423	-0.423	-0.409	-0.385	-0.355	-0.323	-0.291	-0.261	-0.234	-0.210
9	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.002
I	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.002	0.003	0.003	0.004	0.005	0.006	0.007	0.008	0.009	0.010	0.011	0.012	0.013	0.015	0.017	0.019	0.021	0.023	0.025	0.027	0.029	0.031	0.033	0.035	0.036	0.038
ۍ ۲	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.002	0.003	0.003	0.005	0.007	0.010	0.015	0.020	0.025	0.032	0.039	0.047	0.056
1	0.000	0.000	0.000	0.000	0.000	0.001	0.003	0.005	0.008	0.010	0.013	0.015	0.018	0.020	0.023	0.025	0.028	0.030	0.033	0.036	0.038	0.044	0.049	0.054	0.059	0.064	0.068	0.072	0.076	0.079	0.081	0.084	0.086	0.087
D_2	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.002	0.004	0.007	0.010	0.013	0.016	0.019	0.022	0.025	0.028	0.033	0.038	0.046	0.055	0.081	0.114	0.144	0.164	0.173	0.177	0.178	0.179	0.180	0.183	0.186	0.190	0.194
1	0.000	0.001	0.003	0.006	0.010	0.013	0.031	0.049	0.067	0.083	0.098	0.112	0.125	0.136	0.147	0.157	0.165	0.173	0.180	0.186	0.191	0.196	0.189	0.167	0.136	0.104	0.076	0.051	0.029	0.00	-0.011	-0.029	-0.048	-0.065
5 0	0.779	0.797	0.740	0.685	0.636	0.592	0.420	0.295	0.198	0.123	0.069	0.033	0.011	0.001	0.001	0.007	0.019	0.033	0.050	0.068	060.0	0.144	0.203	0.261	0.320	0.380	0.439	0.497	0.552	0.603	0.650	0.692	0.730	0.762
11	0.415	0.402	0.439	0.464	0.481	0.491	0.494	0.456	0.398	0.329	0.254	0.178	0.104	0.035	-0.028	-0.085	-0.135	-0.178	-0.216	-0.249	-0.276	-0.325	-0.371	-0.409	-0.438	-0.456	-0.466	-0.467	-0.462	-0.451	-0.436	-0.418	-0.398	-0.377
$T_{ m lab}$	1	S	10	15	20	25	50	75	100	125	150	175	200	225	250	275	300	325	350	375	400	450	500	550	600	650	700	750	800	850	906	950	1000	1050

ARNDT, ROPER, BRYAN, CLARK, VERWEST, AND SIGNELL

<u>28</u>

I ₆	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.002	0.004	0.006	0.00	0.011	0.014	0.018	0.021	0.024
I _c	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.002	0.002	0.003	0.004	0.005	0.006	0.007	0.008	0000	0.011	0.012	0.014	0.0017	0.020	0.023	0.026	0.029	0.032	0.034	0.037	0.040	0.042	0.045	0.047
I ₅	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.001	0.001	0.001	0.001	0.002	0.005	0.010	0.018	0.026	0.033	0.039	0.043	0.047	0.050	0.053	0.055
I _ε	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.002	-0.004	-0.006	-0.008	-0.011	-0.013	-0.015	-0.018	-0.020	-0.022	-0.024	-0.025	-0.027	-0.029	-0.030	-0.032	-0.035	-0.036	-0.036	-0.035	-0.030	-0.025	-0.019	-0.013	-0.008	-0.003	0.001	0.004
14	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
3 ⁴	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.002	0.003	0.004	0.006	0.007	0.008	0.00	0.010	0.010	0.011	0.011	0.012	0.012	0.013	0.013	0.013	0.012	0.011	0.010	0.00	0.008	0.006	0.004	0.003	0.001	-0.001
	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	0.000	-0.000	-0.000	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.002	-0.002	-0.002	-0.002	-0.002	-0.003	-0.003	-0.003	-0.003	-0.003	-0.003	-0.003	-0.003	-0.003	-0.003	0.003	-0.003
. E4	-0.000	-0.000	-0.000	-0.000	-0.001	-0.001	-0.004	-0.007	-0.010	-0.012	-0.015	-0.017	-0.019	-0.020	-0.022	-0.023	-0.024	-0.025	-0.026	-0.027	-0.027	-0.028	-0.029	-0.030	-0.030	-0.031	-0.031	-0.031	-0.031	-0.031	-0.031	-0.031	-0.030	-0.030
4	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.001	0.002	0.002	0.003	0.003	0.003	0.004	0.004	0.005	0.006	0.007	0.008	0.009	0.011	0.013	0.015	0.017	0.019	0.022	0.025	0.028	0.031
³ F	0.000	0.000	0.000	0.000	0.000	0.001	0.003	0.006	0.011	0.016	0.021	0.026	0.031	0.035	0.040	0.045	0.049	0.053	0.057	0.061	0.065	0.072	0.079	0.085	060.0	0.095	0.099	0.101	0.103	0.103	0.102	0.100	0.097	0.093
г ₃	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.002	0.002	0.002	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.006	0.014	0.032	0.062	0.104	0.149	0.183	0.204	0.214	0.218	0.220	0.221	0.222
3	-0.000	-0.000	-0.001	-0.002	-0.003	-0.005	-0.014	-0.024	-0.032	-0.039	-0.045	-0.050	-0.053	-0.056	-0.057	-0.058	-0.058	-0.057	-0.056	-0.054	-0.052	-0.046	-0.037	-0.024	-0.011	-0.007	-0.022	-0.051	-0.085	-0.117	-0.143	-0.165	-0.183	-0.199
2	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.002	0.003	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.003	0.003	0.002	0.002	0.002	0.002	0.003	0.005	0.008	0.011	0.016	0.021	0.027	0.033	0.041	0.049	0.058	0.068
3F	0.000	0.000	0.000	0.001	0.001	0.002	0.006	0.011	0.015	0.019	0.023	0.026	0.028	0.029	0.029	0.028	0.026	0.024	0.020	0.016	0.011	-0.001	-0.015	-0.031	-0.049	-0.068	-0.088	-0.109	-0.130	-0.151	-0.172	-0.192	-0.213	-0.232
	-0.000	-0.000	-0.000	-0.000	-0.000	-0.001	-0.004	-0.007	-0.011	-0.014	-0.016	-0.018	-0.018	-0.019	-0.018	-0.018	-0.017	-0.016	-0.015	-0.014	-0.012	-0.010	-0.006	-0.000	0.007	0.014	0.022	0.028	0.033	0.038	0.042	0.045	0.048	0.051
E_2	-0.000	-0.001	-0.004	-0.008	-0.012	-0.016	-0.033	-0.045	-0.052	-0.056	-0.058	-0.058	-0.057	-0.055	-0.053	-0.050	-0.047	-0.044	-0.041	-0.038	-0.035	-0.029	-0.024	-0.019	-0.016	-0.014	-0.013	-0.012	-0.012	-0.011	-0.011	-0.010	-0.009	-0.008
$T_{ m lab}$	-	S	10	15	20	25	50	75	100	125	150	175	200	225	250	275	300	325	350	375	60	450	500	550	009	650	700	750	800	850	<u> 006</u>	950	1000	1050

TABLE VII. (Continued.)

) 2	0.000	0.000	0.000	0.001	0.002	0.004	0.023	0.049	0.074	0.096	0.114	0.128	0.139	0.146	0.150	0.152	0.153	0.152	0.150	0.146	0.142	0.133	0.122	0.113	0.104	0.097	060.0	0.084	0.078	0.072	0.067	0.063	0.059	0.056
I _E	0.000	0.004	0.016	0.031	0.049	0.066	0.150	0.215	0.262	0.295	0.318	0.334	0.345	0.353	0.357	0.359	0.360	0.359	0.357	0.353	0.349	0.339	0.325	0.308	0.290	0.270	0.250	0.230	0.210	0.190	0.171	0.152	0.134	0.116
1	0.000	0.000	0.001	0.001	0.001	0.002	0.010	0.024	0.040	0.059	0.077	0.096	0.114	0.131	0.147	0.162	0.177	0.190	0.203	0.215	0.226	0.247	0.267	0.285	0.301	0.317	0.332	0.346	0.359	0.372	0.384	0.395	0.406	0.417
$T_{ m f}$	-0.000	-0.003	-0.009	-0.019	-0.029	-0.041	-0.098	-0.150	-0.194	-0.231	-0.262	-0.288	-0.310	-0.329	-0.345	-0.358	-0.371	-0.381	-0.391	-0.399	-0.407	-0.420	-0.431	-0.441	-0.449	-0.457	-0.463	-0.469	-0.473	-0.478	-0.481	-0.485	-0.487	0.490
	0.001	0.014	0.022	0.021	0.019	0.016	0.013	0.015	0.016	0.016	0.013	0.008	0.002	-0.005	-0.013	-0.020	-0.027	-0.033	-0.039	0.045	-0.050	-0.058	-0.063	-0.067	-0.069	-0.070	-0.070	-0.069	-0.067	-0.064	-0.062	-0.059	-0.055	-0.052
E_1	-0.002	-0.008	-0.005	-0.001	0.002	0.003	0.008	0.015	0.026	0.038	0.050	090.0	0.069	0.076	0.081	0.085	0.087	0.088	0.087	0.086	0.085	0.080	0.074	0.068	0.061	0.055	0.048	0.043	0.037	0.032	0.028	0.024	0.021	0.017
S ₁	0.285	0.778	0.951	0.996	0.997	0.979	0.811	0.632	0.478	0.354	0.258	0.185	0.130	0.089	0.059	0.038	0.024	0.015	0.011	0.010	0.011	0.022	0.038	0.059	0.081	0.105	0.129	0.153	0.176	0.199	0.221	0.241	0.261	0.279
34	-0.452	-0.415	-0.215	-0.062	0.054	0.143	0.391	0.482	0.499	0.476	0.434	0.383	0.329	0.275	0.222	0.171	0.123	0.078	0.036	-0.003	-0.040	-0.106	-0.164	-0.213	-0.255	-0.291	-0.322	-0.349	-0.372	-0.391	-0.407	-0.421	-0.434	0.444
ر ₅	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.001	0.001	0.002	0.003	0.004	0.005	0.007	0.010	0.013	0.017	0.021	0.026	0.032	0.038	0.045
H ¹	-0.000	-0.000	-0000	-0.000	-0.000	-0.001	-0.003	-0.006	-0.008	-0.010	-0.012	-0.013	-0.014	-0.016	-0.017	-0.019	-0.021	-0.023	-0.026	-0.029	-0.033	-0.041	-0.050	-0.061	-0.073	-0.086	-0.099	-0.114	-0.129	-0.144	-0.160	-0.175	-0.191	-0.207
3	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.002	0.003	0.004	0.005	0.006	0.006	0.007	0.007	0.008	0.008	0.008	0.009	0.009	0.009	0.009	0.009	0.009	0.009	0.008	0.008	0.007	0.007	0.007	0.006	0.006	0.005
H ₁	-0.000	-0.000	-0.001	-0.003	-0.006	-0.008	-0.023	-0.036	-0.046	-0.055	-0.063	-0.069	-0.074	-0.078	-0.082	-0.085	-0.088	-0.090	-0.091	-0.092	-0.093	-0.094	-0.095	-0.094	-0.093	-0.092	-0.090	-0.088	-0.085	-0.083	-0.080	-0.077	-0.074	-0.071
0	0.000	0.000	0.001	0.002	0.003	0.004	0.011	0.024	0.045	0.072	0.102	0.134	0.165	0.194	0.220	0.245	0.266	0.285	0.302	0.316	0.329	0.350	0.365	0.376	0.384	0.388	0.390	0.390	0.388	0.386	0.382	0.377	0.371	0.365
-1	-0.003	-0.019	-0.036	-0.047	-0.056	-0.064	-0.103	-0.153	-0.207	-0.258	-0.303	-0.340	-0.371	-0.395	-0.415	-0.430	-0.442	-0.451	-0.459	-0.465	-0.469	-0.474	-0.476	-0.476	-0.474	-0.472	-0.471	-0.469	-0.468	-0.466	-0.465	-0.463	-0.462	-0.460
$T_{ m lab}$	1	ŝ	10	15	20	25	50	75	100	125	150	175	200	225	250	275	300	325	350	375	400	450	500	550	009	650	700	750	800	850	006	950	1000	1050

TABLE VII. (Continued.)

ARNDT, ROPER, BRYAN, CLARK, VERWEST, AND SIGNELL

<u>28</u>

6	0.000	0.000	0.000	0.000	0,000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.001	0.001	0.002	0.002	0.003	0.003	0.004	0.005	0.006	0.007	0.008	0.00	0.011	0.012	0.013	0.015	0.016	0.017	0.019	0.020
lε	0.000	0.000	0.000	0.000	0.000	0.000	0.002	0.005	0.008	0.012	0.016	0.021	0.025	0.030	0.034	0.039	0.043	0.047	0.052	0.056	090.0	0.068	0.075	0.082	0.089	0.096	0.102	0.109	0.114	0.120	0.125	0.131	0.136	0.140
S	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.001	0.001	0.002	0.002	0.002	0.002	0.003	0.003	0.003	0.004	0.004	0.005	0.005	0.006	0.006	0.006	0.007	0.007	0.008	0.008	0.008	0.009
I _£	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	0.000	-0.001	0.002	-0.004	-0.005	0.007	-0.008	-0.010	-0.011	-0.013	-0.015	-0.016	-0.018	-0.020	-0.021	-0.024	-0.027	-0.030	-0.032	-0.035	-0.037	-0.040	-0.042	-0.044	-0.046	-0.048	-0.050	-0.052
2 ₅	0.000	0.000	-0.000	-0.000	-0.000	-0.000	-0.000	0.000	-0.000	0.000	-0.000	0.000	0.000	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.002	-0.002	-0.002	-0.002	-0.002	-0.002	-0.002	-0.002	-0.003	0.003	-0.003	-0.003	-0.003
I	0.000	0.000	0.000	0.000	0.000	0.001	0.004	0.008	0.013	0.018	0.022	0.027	0.030	0.034	0.037	0.040	0.043	0.045	0.048	0.050	0.052	0.055	0.058	0.061	0.063	0.065	0.067	0.069	0.070	0.072	0.073	0.075	0.076	0.077
5	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.001	0.001	0.001	0.002	0.002	0.002	0.002	0.003	0.003	0.003	0.003	0.004	0:004	0.004	0.005	0.005	0.005	0.005	0.006	0.006	0.006	0.006
3 ⁰	0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.001	-0.002	-0.003	-0.005	-0.006	-0.007	-0.007	-0.008	-0.008	-0.008	-0.008	-0.008	-0.007	-0.007	-0.006	-0.005	-0.004	-0.002	-0.000	0.001	0.003	0.005	0.007	0.009	0.011	0.013	0.015	0.017
4	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.002	0.003	0.005	0.006	0.008	0.010	0.012	0.014	0.016	0.018	0.020	0.021	0.022	0.024	0.026	0.026	0.026	0.026	0.025	0.024	0.022	0.021	0.019	0.017	0.015	0.013
36	0.000	0.000	0.000	0.001	0.002	0.003	0.014	0.027	0.041	0.054	0.067	0.080	0.091	0.101	0.110	0.119	0.126	0.133	0.138	0.143	0.147	0.154	0.158	0.160	0.161	0.159	0.157	0.153	0.148	0.142	0.135	0.128	0.120	0.111
73	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.002	0.004	0.006	0.008	0.011	0.013	0.015	0.017	0.018	0.020	0.022	0.024	0.025	0.027	0.030	0.032	0.035	0.037	0.040	0.042	0.044	0.046	0.048	0.049	0.051	0.053	0.054
3C	-0.000	-0.000	-0.000	-0.000	-0.001	-0.001	-0.005	-0.010	-0.016	-0.022	-0.028	-0.035	-0.040	-0.046	-0.052	-0.057	-0.062	-0.067	-0.071	-0.076	-0.080	-0.088	-0.096	-0.103	-0.110	-0.116	-0.122	-0.127	-0.132	-0.137	-0.142	-0.146	-0.150	-0.154
č ₃	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.001	0.001	0.000	-0.001	-0.002	-0.004	-0.006	-0.008	-0.011	-0.014	-0.016	-0.019	-0.022	-0.024	-0.027	-0.030	-0.032	-0.035
I	0.000	0.000	0.002	0.004	0.007	0.010	0.030	0.048	0.063	0.076	0.087	0.096	0.104	0.111	0.117	0.122	0.126	0.130	0.134	0.137	0.140	0.145	0.148	0.152	0.154	0.156	0.158	0.159	0.160	0.161	0.162	0.162	0.163	0.163
3	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.003	0.005	0.008	0.010	0.013	0.015	0.017	0.019	0.020	0.022	0.023	0.024	0.024	0.025	0.026	0.026	0.026	0.026	0.026	0.027	0.027	0.027	0.027	0.028	0.029	0.029	0.030
T_{ϵ}	0.000	0.000	0.001	0.001	0.002	0.003	0.012	0.023	0.034	0.044	0.052	0.058	0.063	0.067	0.070	0.072	0.073	0.073	0.072	0.071	0.069	0.064	0.058	0.051	0.043	0.034	0.025	0.016	0.007	-0.003	-0.012	-0.022	-0.031	-0.041
$T_{ m lab}$	1	2	10	15	20	25	50	75	100	125	150	175	200	225	250	275	300	325	350	375	400	450	500	550	600	650	700	750	800	850	900	950	1000	1050

<u>28</u>

TABLE VII. (Continued.)

NUCLEON-NUCLEON PARTIAL-WAVE ANALYSIS TO 1 GeV

FIG. 3. Partial-wave parameters δ , ϵ (single-energy values for both $= \bullet$), and ρ (single-energy values $= \Box$). See Eq. (4). The curves are our energy-dependent solution (SP82). The Dubois *et al.* (B) and Hashimoto *et al.* (H) solutions are as plotted.

FIG. 3. (Continued.)

T _{lab} (MeV)

400

B

800

H

н

1000

^BH

600

4

2

o L o ³Н6

200

Ri-1

FIG. 4. Argand diagrams for the ${}^{1}D_{2}$ and ${}^{3}F_{3}$ states. The curve is our SP82 energy-dependent solution and the ellipses are our single-energy solutions (see Table III) with their attendant errors; the short lines connect the single-energy solutions to the appropriate energy for the energy-dependent solution. Four of the single-energy solutions are labeled by the energy in MeV.

- *Currently at Research and Development, Arco Oil and Gas Co., P.O. Box 2819 Dallas, Texas 75221.
- ¹R. A. Arndt, R. H. Hackman, and L. D. Roper, Phys. Rev. C 15, 1002 (1977).
- ²J. Bystricky, F. Lehar, and P. Winternitz, J. Phys. (Paris) <u>39</u>, 1 (1978).
- ³N. Hoshizaki, Suppl. Prog. Theor. Phys. <u>42</u>, 107 (1968).
- ⁴C. Lechanoine, F. Lehar, F. Perrot, and P. Winternitz, Nuovo Cimento <u>56A</u>, 201 (1980).
- ⁵G. Breit, Phys. Rev. <u>99</u>, 1581 (1955).
- ⁶R. A. Arndt and L. D. Roper, Phys. Rev. D <u>25</u>, 2011 (1982).
- ⁷H. P. Stapp, R. Ypsilantis, and N. Metropolis, Phys. Rev. <u>105</u>, 302 (1957).

VI. CONCLUSION

We have presented energy-dependent and single-energy analyses of nucleon-nucleon scattering below 1 GeV laboratory kinetic energy. Isovector (pp) amplitudes seem well constrained by existing data up to 800 MeV except for some "noise" between 650 and 800 MeV where, we believe, a few more spin parameters would enhance the pp data base. Isocalar amplitudes are not well determined above 600 MeV, but measurements now under way, or being planned, should clarify the np situation within the next few years. In both cases (pp and np), extrapolations above 700 MeV are based upon a very meager data base and are intended only as a reasonable indication where the phases are headed as energy increases.

Predictions of all these analyses are available through an interactive dial-in computing system (SAID) at VPI&SU, and through copies of SAID which exist at several laboratories and universities throughout the world. SAID can also be used to modify solutions and plan new experiments.

ACKNOWLEDGMENTS

This work was sponsored by United States Department of Energy Contracts No. DE-AS05-76-ER04928, No. DE-AS05-76-ER05223, and No. AC02-79-ER10516. The authors are grateful to a large number of colleagues who have made suggestions regarding these analyses and the SAID program.

- ⁸W. Grein and P. Kroll, Nucl. Phys. <u>A377</u>, 505 (1982).
- ⁹B. J. VerWest and R. A. Arndt, Phys. Rev. C <u>25</u>, 1979 (1982).
- ¹⁰R. Bhandari, R. A. Arndt, L. D. Roper, and B. J. VerWest, Phys. Rev. Lett. <u>46</u>, 1111 (1981).
- ¹¹B. J. VerWest, Phys. Rev. C <u>25</u>, 482 (1982), and references therein.
- ¹²R. Dubois, D. Axen, R. Keeler, M. Comyn, D. G. A. Ludgate, J. R. Richardson, N. M. Stewart, A. S. Clough, and D. V. Bugg, Nucl. Phys. <u>A377</u>, 554 (1982).
- ¹³K. Hashimoto, Y. Higuchi, and N. Hoshizaki, Prog. Theor. Phys. <u>64</u>, 1678 (1980); <u>64</u>, 1693 (1980).
- ¹⁴M. Lacombe, B. Loiseau, J. M. Richard, R. Vinh Mau, J. Cote, P. Pires, and R. de Tourreil, Phys. Rev. <u>21</u>, 861 (1980).