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Quantum chromodynamics for static sources in the A =0 gauge
and Schrodinger representation —Quantum fluctuations about the classical limit
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Quantum chromodynamics for static c-number sources is studied nonperturbatively using the
canonical formalism with 2 =0. Solutions to the functional differential homogeneous Gauss-law
equation are found and the issue of Gauss-law constraints on the state vector is approached by
transforming to a set of curvilinear gauge-invariant coordinates. When fi is small, but finite, collec-
tive oscillations of the gluon field about a mean field are found. An illustrative example of a single
color charge source is considered.

In recent years, many nonperturbative studies of solu-
tions to the classical Yang-Mills equations with static c-
number sources have been carried out (see, for example,
Refs. I—g). While the non-Abelian nature of these equa-
tions makes their solution difficult and interesting from a
mathematical viewpoint, the real motivation behind these
efforts is the hope that certain features of the solutions
will be preserved by the true quantum solutions.
Nevertheless, the quantal significance of the classical solu-
tions has remained quite obscure.

With a view towards understanding the relation between
@CD and its classical counterpart, we shall consider the
quantum theory with fixed c-number sources in the
Schrodinger representation and A =0 gauge. In this rep-
resentation the "coordinates" of the time-independent
Schrodinger equation can be chosen to be the gauge field
A(x), and —E(x) as the conjugate momentum. Explicit
covariance is sacrificed in favor of an equal-time surface.
While such a Lorentz-frame choice would not be suitable
for scattering problems, it is entirely appropriate for
bound states.

The gauge choice A =0 is a highly desirable one for at
least two reasons. First, one completely avoids the issue of
the Gribov singularity for strong fields. This singularity
is a feature of the Coulomb gauge, and arises from the
noninvertibility of a certain operator when the field
strength exceeds a critical value. No unambiguous way of
formulating the strong-field problem beyond the critical
value is known. The second advantage is the existence of
a straightforward canonical quantization procedure. The
price paid for these gains is well known —one must require
all physical states to obey the Gauss law. This means that
the state vector must obey an infinite number of con-
straints, in addition to being a solution of the equation of
motion. For the gauge group SU(2), Goldstone and
Jackiw' (see also Baluni and Grossman") were able to
construct an effective Hamiltonian which operates on un-
constrained states. Unfortunately, the complex structure
of this Hamiltonian makes practical calculations unfeasi-
ble.

To confront the fundamental problem of gauge invari-
ance of solutions to the Schrodinger equation, we shall not
try to construct an effective Hamiltonian as in Refs. 10
and 11. Rather, an infinite set of gauge-invariant coordi-
nates I Q] will be constructed. By requiring that the am-

plitude of the wave functional %[A] be expressed only in
terms of Q;, this amplitude automatically satisfies gauge
invariance. One is still left with a condition for the phase
and a functional differential equation whose exact solution
is, of course, impossible. Nevertheless, by posing the
problem in gauge-invariant coordinates, some gains can be
made. First, the classical wave functional is seen to be
proportional to a 5 function in an appropriate gauge-
invariant coordinate. Second, by assuming A infinitesimal
the classical solution can be corrected for minimal quan-
tum fluctuations of the gluon field.

The organization of this paper is as follows.
In Sec. I, the necessary notation and formalism will be

established by briefly reviewing the classical Yang-Mills
theory, and then the issues of gauge invariance and canon-
ical quantization in the A =0 gauge.

In Sec. II, the wave functional %[A] will be expressed
as the product of an amplitude and a phase, and the corre-
sponding Schrodinger and Gauss equations for these quan-
tities written down. Next, the case g =0 will be solved and
a functional introduced which generates a complete set of
states obeying the Gauss law for g=O. This functional
will then be generalized to the case of arbitrary g, and a set
of generalized curvilinear gauge-invariant coordinates [Q I
defined. After displaying the transformed Schrodinger
equation, the relation to the classical Yang-Mills theory
will be made explicit. Then, by assuming A to be small
but finite, a quantum wave functional will be postulated
which reduces to the classical form as A~O. Collective
oscillations of the gluon field centered around the classical
field value are found. Finally, an application to a single
static charge source is made.

Section III contains a brief summary and closing com-
Inents.

I. NOTATION AND THEORY

The canonical formalism for the Yang-Mills theory has
been extensively reviewed elsewhere (see, for example,
Refs. 12 and 13). Therefore, only aspects of direct
relevance will be covered here.

The Yang-Mills Hamiltonian in the limit of infinite
quark masses and the A =0 gauge is given by

H= —, Jd x(E .E +B .B ),
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[gl gm] &ylmngn (1.2)

In terms of the fundamental gauge fields A;(x), the elec-
tric and magnetic fields are defined by

where E;(x) and 8;(x) are the color electric and magnetic
fields, respectively. (Color indices will always be denoted
by I, m, and n and space indices by i, j, and k.) The color
matrices A, obey the relation

A A'= U 'AU —g 'U 'VU, (1.15)

l(x) =(D E)l pl— (1.16)

the Hamiltonian and equations of motion remain invari-
ant, provided only that U is a time-independent, but other-
wise arbitrary, %&Xmatrix. To this symmetry there cor-
responds a Noether current, and hence a charge. Define
now the Gauss's law operator S (x)

E i(x) = —A (x), (1.3)
Then, using Eqs. (1.5)—(1.7), the following Poisson rela-
tions can be proved:

8'(x)=7 XA' ——,gf™AXA" . (1.4)
[ S'(x), 9™(x')

I =gf' "S"(x)5'(x —x') . (1.17)

Considering the fields to be classical at this stage, the
following equal-time Poisson bracket relations hold:

It can be shown that the Gauss's law operator is the
generator of infinitesimal gauge transformations. To see
this, let

[A;(x),AJ (x')I =0,
[E;(x),EJ (x')( =0,
[E;(x),AJ (x')I = —5™5ij5(x—x') .

(1.5)

(1.6)

(1.7)

U(x) =1 igki5—A (x),
where 5A(x) is arbitrary. Then,

5A (x)=A (x)—A (x)

(1.18)

Equation (1.7) is a statement that E' is the momentum
canonically conjugate to the dynamical variable A .

Application of the Hamiltonian equations of motion
0=—[H, OI, and exploitation of the definition Eq. (1.4),
yield the following three generalized Maxwell equations:

p 5Al gylmnA m5An

If we express the unitary transformation P as

P =1+i J d'x 5A'(x)9"(x),

then it is readily verified that

(1.19)

(1.20)

E =(D&B),

(1.8)

(1.9)

A Iy —i A I+f5Al gylmnA m5An

'I
=A (1.21)

where the D operators are defined by

(DX8) V X8i yimnAmX8n

(D.8)l j.8 i gIlmnA m. 8 n

(1.10)

(1.12)

Finally, let us now consider quantization of the theory,
which hitherto has dealt with the classical fields A and
E . By the usual canonical prescription, the Poisson
brackets Eqs. (1.5)—(1.7) are now to be replaced by their
corresponding commutators. We can choose A (x) to be a
diagonal operator, and hence

(D,E)l i (1.13)

Some further insight into the issue of Gauss's law may
be obtained from the following. If the static Maxwell
equations were to be derived from an energy variational
principle, then one would require the energy functional de-
fined below to be stationary with respect to arbitrary vari-
ations of E;(x), A;(x) and Ao(x),

I'[E' A'A ]=—J d x(E'E +8'8')
—J d'x Ao(x)(D E' p') . —(1.14)

If A o{x) is restricted to zero, then clearly Eq. (1.13) cannot
be recovered from Eq. (1.14).

Since the issue of gauge transformations will be of criti-
cal importance, let us briefly consider its relation with
Gauss's law.

Under the following gauge transformation of fields
A(x) (A=giAi).

Gauss's law is conspicuously absent from Eqs.
(1.8)—(1.10). It cannot be obtained as an equation of
motion if Ao ——0. Hence, one must arbitrarily impose as
an extra constraint on the solutions of Eqs. (1.8)—{1.10)
the condition

E (x)=i
5A( )

(1.22)

(1.23)

One might conceive of solving Eq. (1.23) approximately,
subject to appropriate boundary conditions. This would
be a mathematically consistent procedure. However,
under the gauge transformation Eq. (1.15), the wave func-
tional does not remain invariant but instead transforms as

1+iJd x5A'(x)S'(x) (1.24)

Thus, physical observables calculated from 4' will depend
on the choice of gauge unless Pi@=0, i.e., unless Cxauss's
law is imposed.

An analogy with ordinary rotations is helpful in under-
standing the Gauss's law condition at an intuitive level.

The system is described by a wave functional V[Ai(x)]
which has the interpretation of being the probability am-
plitude for a particular field configuration A (x) at time
t =0. %' is a solution of the functional differential
Schrodinger equation,
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[gl ym] lelmngn (1.25)

Equation (1.24) then tells us that the wave function
transforms under rotations into a different form unless it
has "l=O," i.e., unless it satisfies Gauss's law. For ordi-
nary space, any wave function expressed only in terms of r
will automatically be rotationally invariant. If one could
find coordinates in function space analogous to r and ex-
press 4' in terms of these coordinates, then (Il would be
gauge invariant and "only" have to satisfy the Schrodinger
equation, Eq. (1.23).

II. ANALYSIS OF SCHRODINGER AND
GAUSS EQUATIONS

First, let us observe from the commutator version of Eq.
(1.17) that S for the gauge group SU(2) behaves quite
like the usual angular momentum operator for (x =x'),

tionarity of (qi
~

H E—
~

0') under arbitrary variations of
7 and @.

To analyze Eqs. (2.2) and (2.3), we shall proceed by a
number of steps.

A. Electrodynamics

It is useful to first consider the g=O case. This is
equivalent, of course, to electrodynamics with N indepen-
dent fields. Hence we drop the label l. Equations (2.2)
and (2.3) become

—, fd'x — +
~

VXA~'+ ~Vp~' X=eX,
5A 5A

(2.6)

(2.7)

We begin the analysis of the functional Schrodinger and
Gauss's equations by writing the wave functional 4 as

5X

5A
(2.8)

%[A I] =X[A ]exp( i4—[A I]), (2.1)

and

5A I 5A1 5A I 5A I

(2.2a)

where X and &5 are purely real. Inserting Eq. (2.1) into Eq.
(1.23) and equating real and imaginary parts yields

Equation (2.7) is the replacement of Eq. (2.3b). We
could, of course, have set 5@/5A =V/+ curl of an arbi-
trary vector. However, we shall set this arbitrary vector to
zero since its inclusion merely redefines e in Eq. (2.6).
Also, the relation Eq. (2.2b) is satisfied identically if the
solutions of Eq. (2.7) are required to be finite at infinity.

Let us now define a generating functional Qo by

IIp ——exp ——,
' fd'x(V&&A);

~

V
i

'(V&&A);

fd'x
5A' 5A'

Similarly, Gauss's law becomes

fimnA m 5&.

(2.2b)

(2.3a)

(2.9)

where
~

V
~

is defined in a Fourier transform sense, i.e.,
[V[

—I ikx
~k~

—1 ikx

We now observe the following facts. First, Qo satisfies
Gauss's equation

and
5QO

V =O
5A

(2.10)

fi .Am. 5@
(2.3b)p

The total charge-density operator pT(x) is the sum of
quark and gluon color charges,

Second, IIp is the lowest-energy solution of Eq. (2.6):

2 fd x — +
~

V XA
~

+
~
VP

~
Qp ——EpQp

5A 5A

~l+ fImnA m.pr=p (2.4)
with

(2.11)

gy
0

V
5X I+=pT +s e (2.5)

This is as it should be—color is not conserved locally.
However, integrating Eq. (2.5) and assuming that the sur-
face integral originating from the divergence term van-
ishes, it is seen that 4 is an eigenstate of total charge.

It is interesting to note that gauge invariance causes the
phase of the wave function to play a crucially important
role even for time-independent states, whereas for the or-
dinary Schrodinger equation the phase is inconsequential.
Further, Eqs. (2.2) are also obtainable from requiring sta-

The wave functional + is not an eigenstate of pT,

pili pl+gf lmnAm. qi +Igf lmnAm. e
—i45@ . - 5X

5A" 5A"

E =fd x
i
V

i
5(0)+ —,fd x d x'

4~/ x —x'
/

=g
~

k
~
+ —,

' fd'xd'x'
k 4+i x —x'[

(2.12)

A(k)= fd xe '" "A(x), (2.13)

The first term in Eq. (2.12) represents the zero-point ener-

gy of photons in a finite box, whereas the second term is
the usual Coulomb energy.

We shall now see that repeated functional differentia-
tion of Qo generates a complete set of physical Hilbert-
space vectors. Whereas one could equally well work in the
coordinate representation, the momentum representation is
a little more familiar.

With the definition
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the generating functional Qp becomes

d k
~
kXA'

(2n. )3

We now observe that

5&p = —kAT(k)QO,
5A( —k )

where AT is the transverse part of the field

AT(k)=A(k) —k(k A) .

(2.14)

(2.15)

(2.16)

with arbitrary numbers of A's does not generate solutions
of Eq. (2.3a). However, if 0 is an operator formed from
products of 5/5A, and if [9'i,O]=0, then OQ is a solu-
tion of Eq. (2.3a). It is easy to see that there are an infin-
ite number of operators 0, and that they can be generated
as sums and repeated products of a few basic units. '

C. Coordinate transformation

Anticipating later use, let us now write the field A i(x)

Recalling now the form for the momentum operator
Ai(x) =A,i(x)+5Ai(x), (2.25)

P= f—d' BX ',
5A

where A,i(x) is arbitrary at this point. Further, define a
functional Z[A ] by

it may now be readily verified that

PQp ——0

Z =exp( ——,uo ),
(2 18) where

(2.26)

and

Pg(k„k~, . . . )=(k, +k~+. . . )

Xl((ki, k~, . . . ), (2.19) and

Qp=

1/2

fd xB 8' 1/2

fd xB,i B,i
1/2fd x 8 ~i'8 ~i

(2.27)

where B,i ——V XA, i
—, gf™A

i —XA,"i . (2.28)

6 5it(k„k~, . . . )=
5A( —ki) 5A( —kq)

Qp.

(2.20)

B. Generalization to g&0

Let us now consider the full theory, g&0. Define first
the generating functional 0 by

0[A ]=exp — fd x B;B;2a
(2.21)

where the color-magnetic field is defined in Eq. (1.4) and
a is any constant with dimensions of energy. The utility
of Q arises from its being an exact, nontrivial, solution of
Eq. (2.3a),

Hence, an arbitrary Fock-space vector
~
nk, nk, , . . . ) can

be generated by repeated functional differentiation. The
functionals lt(k„kq, . . . ) or g(x, , xq, . . . ) can then be
used as a basis for unconstrained diagonalization of the
Hamiltonian.

I INote that up vanishes, and hence Z peaks, when B =B,1.
IFurther, it is assumed that 8,1 is not identically zero. We

Iare not, however, identifying B,] with the classical value
at the present time. With the help of the discussion in
Sec. II B, it is readily shown that Z satisfies the sourceless
Gauss's law equation (2.3a). Also, one can once again gen-
erate all independent solutions of Eq. (2.3a) by operating
with the operators O. Let [Q] be this set of functionals
with Qo =Z.

We now make a transformation of coordinates from the
original set [3 (x)I to a new set [Q,qj. The set [qI is a
set of functionals which have no common members with
[QI, and which are needed to make the transforma-
tion [AJ(x) I ~[Q,qI complete. The motivation for this
transformation is that 7 is automatically gauge invariant
when expressed as a function of the Q's,
X=X(QO, Qi, . . . ). The coordinate QO=Z plays the key
role since it is the only one which explicitly occurs in the
Harniltonian. This fact will be crucially important later.

Continuing, the transformation of coordinates is
characterized by a transfer matrix M,

IlmnA m. 5+ 0
gA I gA gg

To see this we note that

5Q ~ (D ~g)IQ

and the easily proven identity

[D (DXB)]'=0.

(2.22)

(2.23)

(2.24)

5Q 5Qp

» (x) 5A, (x)
where Q stands for either Q or q. The Jacobian g is

g =(detM)'~

In terms of these, the Hamiltonian [Eq. (2.2a)] is

(2.29)

(2.30)

(2.31)

Equation (2.22) then follows.
Consider now the generation of other solutions from Q,

as was discussed earlier for the g=0 case. Differentiation

g2K= ——g M pgaa. aa~ ' (2.32)
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V= —,(1+
i
21nQp

i

' ) f d x B,i B,i
+ fd'x e'e'. (2.33)

In Eq. (2.32), A has been restored, whereas earlier it had
been implicitly set equal to one. The quantity e in Eq.
(2.33) is a solution of Eq. (2.3b),

P.&
I gylmllA m en'iil (2.34)

The general solution of Eq. (2.34) is the sum of a particu-
lar solution and a homogeneous solution,

e '(Q ) = e 'p(q)+ e ~(Q) . (2.35)

We are at liberty to set eH ——0. [It is also known (Ref. 15)
that there are no nontrivial finite-energy solutions to the
classical homogeneous equations in three space dimen-
sions. ] Thus, Qp is the only element of [QJ which enters
into the potential Eq. (2.33).

D. Classical theory

V(Qp=l)= —,f d x(e,i e,i+B,i B,i), (2.36)

The relation to the classical theory is now easily seen
from Eqs. (2.29)—(2.34). Setting iri=O, the total energy is
now simply the potential V. Clearly, V achieves its
minimum as a function of the coordinate [Q j when
Qp=1, or from Eqs. (2.26) and (2.27), when up=0. This

I 1condition is satisfied if A =A,~. Remembering A, ~
had

been hitherto arbitrary, let us define it now to be that field
which minimizes the quantity

and

Mpp ——fd x
5A (x} 5At(x)

d & DXBcI ' DXB{$

fd xB,i B,i
(2.41)

(DXB,i)'= V XA, i
—gf' "A,) XB,"i . (2.42)

In deriving Eq. (2.40), consistent with the assumption of X
being very narrowly peaked, the derivatives of all quanti-
ties (Mand/ ) were neglected, except that of BX/Bup.

Equation (2.40) is, of course, the equation for a one-
dimensional oscillator with the "collective coordinate" U,

where X(Qp) is hypothesized to be very narrowly peaked
around Qp ——l. (One could equally well formulate the
problem here onwards in a variational language. )

The form postulated for 7 can now be inserted into the
Schrodinger equation (E+ V)X=EX, where E and V are
defined in Eqs. (2.32) and (2.33). However, it is con-
venient to revert to the quantity up [Eq. (2.27)] and use
Qp—=Z=exp( ——,

'
up ). With this change of variables, the

Schrodinger equation becomes

Mpp + —,(1+up} fd x 8,i B,i
Bup

E——,
' fd'x e,i e,i X, (2.40)

where

subject to the condition

Then A, ~
is indeed identical to the classical field which

satisfies the classical Yang-Mills equations, and V(Qp ——1)
is the classical energy.

Finally, let us explicitly write down the total wave func-
tional [Eq. (2.1)] which corresponds to the system being in
its classical configuration,

V = 1+up

The solution is

CX2

22ll(n / )2

1/2

H„(au)e

E„=—,
' fd'x(e,', e'„+8',i 8,', )+(n+ —,

' )fico,

(2.43)

(2.44)

(2.45a)

%„=5(Qp—1)exp i fd x e—',
~

A (2.38) where the dimensionless parameter a frequency co are
given by

The physical significance of the classical limit is clear. In
the absence of kinetic energy (iri=O), the energy is mini-
mized if the real wave functional g is concentrated at a
point (or points) in Q space corresponding to a local
minimum. However, since the potential is cyclic in
Q i, Qi, . . . , there is no advantage gained if the wave
function concentrates itself around fixed values of these
points. In other words, there can only be a single 5 func-
tion multiplying the exponential in Eq. (2.38).

E. Quantum correction

Having seen the relation to the classical (iri=O) limit, we
can now attempt to include quantum corrections in a
minimal way by assuming fi to be small but finite.

From the form of the classical wave functional, Eq.
(2.38), we are encouraged to seek a form for 4,

%=X(Qp)exp i fd x e,& A,&— (2.39)

3/2fd x BBd~i1
' 1/2fd'x(D XB,&)'(D XB,&)'

fd'x (D XB,i )'(D X B,i }'

(2.45b)

(2.45c)
d XB )BcI

The condition for validity of the energy expression Eq.
(2.45) is that a &&1. It is also clear that in the limit A~O,

Equations (2.43)—(2.45) are the central re-
sults of this paper.

Although our derivation of the above results has con-
sistently been in the Ap ——0 gauge, we are now free to
choose any gauge for solving the classical problem. Fur-
ther, our identification of A, ~

with the true classical field
is really true only to O(A). To see this, consider minimi-
zation of the following functional (note all fields below are
e-number fields),
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1/2

fd x(DXB) (DXB)
E[e',A, P']=(n+ —,

'
)A'

fd xB .B

+ ,' fd—'x(~'~'+B'B')
V. &

l gflmnAm. &n l (2.47)

Varying with respect to P, e, and A gives the three equa-
tions

~&l Vyl+ gf lmnA myn
d'x P'(x)(V ~' gf—™Ae" p'—) .~

~

(2.46) and

(2.48)

(n + —,
'

)A'( [D X [D X (D X B)] I gf' —"B X (D XB)"—co (D X8)')
+(D X~)! gf lmnym& n 0

2~'n fd3x B l.B l
(2.49)

Equations (2A7) and (2.48), and Eq. (2.49) with A'=0, to-
gether with the definition of B in Eq. (1.4), are the usual
static Maxwell equations. The term proportional to A in
Eq. (2.49) makes the solution of Eqs. (2.47—(2.49) dif-
ferent from the usual classical solution. However, the
corrections enter as O(A' ) in the energy and can be dis-
carded there.

F. Application

Many practical applications of the results derived above
can be made. Consider, by way of illustration, one such
example. Specifically, let us take a single external point
source

length. The total charge is calculated to be

I =5 q(1 ——,'P) . (2.55)

The configuration described by Eqs. (2.51)—(2.54) satis-
fies Gauss's law, but is not a solution of either the static
Maxwell equations or their modified counterparts, Eqs.
(2.48) and (2.49). Nevertheless, the configuration has
some interesting properties, as was shown in Ref. 4. First,
by choice of parameters, the energy can be made to be ar-
bitrarily smaller than the Coulomb energy. Second,
screened solutions (P&0) have lower energy than un-
screened ones. It is interesting to see if these properties
differ when quantum corrections are included.

Using Eqs. (2.51)—(2.54), the energy is calculated to be

p =q5 35 (x) . (2.50) E=ED+(n+ —,
'

)iris!, n =0, 1,2, . . . , (2.56)

Following Sikivie and Weiss, we take P =0 and the fol-
lowing form for e ' and A':

(2.51)

where

q q 1 (p5)P
8m.5 12~ 1 —p 5

e = [5l3rF(r, 6)+5!QG(r, 8)]
4mr

with

(2.52)

2 2 4 2 2

X —2P+, +, , (8+p')
a g q

~=(1—p)' 'fi(p)—
5

(2.57)

(2.58)

(2 53) Also, the value of a [Eq. (2A5b)] issin 0,F(r, 0) =1—P 1+pr
1 a' f2(p)

A
kg (1—p)

(2.59)
G ( g) PQ (lier P

a ( I +pr )P+ ' (2.54)

The parameters P, p (0&p & 1), and a are dimensionless
while the parameter p (0 has dimensions of inverse

In Eqs. (2.58) and (2.59), fi(p) and f2(p) are functions of
p alone and have no poles or zeros in the range 0 (p ( 1.
The energy minimized with respect to a and n is

1 1 (iu5 ) 4' 2 inE= —,'i!i(1 p)'~ fi(p) ++ — — —2P+ ~P~p(8+p )' ' +O
5 8m5 12m 1 —p 5 gq 5

(2.60)

The cutoff parameter 5 (5~0) is made necessary because
of the pointlike nature of the source.

Let us now make the following observations for the case
where the parameter ' a—:gq/4m has values o. & —, and

3
CX (

(a) If a& —', , and if p is fixed (0&p &1), then the
screened configuration (P&0) has lower energy than the

unscreened one (P&0). Further, the P&0 (P&0) case has
energy lesser (greater) than the Coulomb energy, which
has P=O.

(b) If a& 2, and if p&0, then E [Eq. (2.60)] is mini-
mized by letting p~1. This i1nplies that co~0, and hence
that there are no stable modes around the screened config-
urations.
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(c) If P&0, then E is once again minimized by letting
p~1. However, it is now no longer true that co~0, even
though the minimized energy is still greater than the
Coulomb energy. Instead, co ~5 in this limit and one
has the possibility of osci11ations about a local rninirnum.
These oscillations obviously cannot represent stable modes
of the system since even the Coulomb solution has lower
energy. However, our minimal quantum corrections do
not allow for tunneling to a lower level.

III. DISCUSSION

In this paper, we have considered QCD with static c-
number sources and with arbitrary coupling constant g,
but with A' assumed small. In a sense, this is a weak-
coupling approximation because g A is a dimensionless
coupling constant and is small because A is small. Indeed,
if A were exactly zero, then one would have only classical
tree graphs. ' In the language of perturbation theory, the
present approach includes some subset of loop diagrams.
However, it is difficult to be more precise since the physi-
cal basis of our approximation is not based on perturba-
tion theory.

When QCD is expressed in the canonical formalism, the
equation of motion becomes a functional differential equa-
tion for the system wave functional, which is the projec-
tion of the state vector onto the gauge fields. Worse, the
wave functional must obey the infinite number of con-
straints imposed by Gauss's law. The key element that
made progress possible here was the observation that a
complete set of solutions could be constructed for the
homogeneous Gauss's law equation, starting from the sim-
ple function

exp —const X fd x B 'B '

This is highly significant since the only dependence of the
static Hamiltonian on the gauge field A ( x) is through the
term fd xB B.

Seen in the context of the formalism described in this
paper, the classical Yang-Mills theory results from simply
ignoring a generalized kinetic energy term E, i.e., setting
Pi=0 in Eq. (2.32). The total gluon energy is then solely
the "potential" energy V. Further, seen as a function of
the gauge-invariant coordinates [Q I defined in the text, V
depends on only one coordinate of this (infinite) set of
coordinates. This dependence is of harmonic form.

Quantum corrections to the classical (A'=0) limit can be
motivated by the following heuristic argument: Consider
a particle in a harmonic-oscillator well V= —,'ku . If
A=O, the energy is minimized if the particle is localized at
the well bottom, i.e., if its wave function is a 5 function
5(u). If A' is now "turned on," this is no longer the state
of minimum energy —the uncertainty principle forces the
wave function to spread. However, if fi is small one may
still expect the wave function to be narrowly peaked
around x =0. Precisely this argument was applied to the
QCD problem, where it was further assumed that all
derivatives save that of the rapidly varying function can
be neglected. One is then left with a simple one-
dimensional oscillator problem and the total energy is sim-
ply E=E,„„i„ i(++n—,

'
)hco, where ai is defined in Eq.

(2.45) in terms of the classical color magnetic field B (x).

Since B'(x) is caused by all gluons, it is fair to refer to co

as a collective-gluon frequency.
Could the collective-gluon modes predicted by the

present analysis actually have a physical existence detect-
able, for instance, by resonantly exciting them with quark
projectiles? It appears impossible to provide an answer
within the present framework for two reasons. First, one
simply does not know whether the assumption of small A

has anything to do with physical reality. Second, and this
is a more serious objection, we have considered only c-
number sources. These are merely the components of an
(X —1)-dimensional vector. Physically, on emitting a
gluon, the source remains unchanged —"recoil" in color
space is forbidden. All strengths of the charge source are
permitted and gq is the appropriate dirnensionless parame-
ter which characterizes a source. On the other hand,
quantum sources are required to have a fixed strength
q=gA because of gauge invariance. Also, these sources
obey the commutation relation

pl Im~ ~ylmnln (3.1)

In Eq. (3.2), E z is the transverse electric field, pr is the
total charge density, and 6 (x, x') is a matrix which is
obtainable in principle as the solution of an integral equa-
tion. Despite the complexity of H, the fact that for small
field strengths Gauss's law is automatically incorporated
in it (i.e., the state vectors are unrestricted) makes the
Coulomb gauge attractive for perturbative studies.

The essence of the one-mode approximation is

A ( x ) = g V„(x)a„
n=0

=Vo(x)at . (3.3)

In the above, IV„} are a complete set of basis functions
which can all be chosen variationally in principle. In
practice, only Vo(x) can be thus determined. Basically,
therefore, the one-mode approximation restricts the possi-
ble configurations of the field Ai(x). Equivalently, the
Hamiltonian Eq. (3.2) is approximated by a simpler and
more tractable expression. It is now possible to salve (al-
beit approximately) a simplified Schrodinger equation.

There is no nontrivial classical limit if the quark sources
are assumed to lie in the fundamental SU(N) representa-
tion. It can be argued' that classical sources correspond
to quarks occupying infinite-dimensional representations
of the gauge group. Unfortunately, it is unclear how
minimal corrections arising from large, but finite, dimen-
sionality can be incorporated.

Finally, it is interesting to compare the semiclassical ap-
proach of this paper with the "one-mode" approximations
of Giles and McLerran' and of Pottinger and Warner. '"
The two approaches are quite different, of course.
Nevertheless the comparison is quite instructive.

The one-mode approximations'6' to QCD are formu-
lated in the Coulomb gauge and take as a starting point
the Hamiltonian

H= —,fd x(Er Eq+8 B )

+ —,
' f fd xd x'pr(x)G (x, x')pr(x') .
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It is not possible to make a one-mode approximation
with the A =0 gauge Hamiltonian because one cannot
satisfy the Gauss's law constraint with any finite set of
modes. Nevertheless, there is a similarity in that we too
approximate the QCD Hamiltonian (after making a
transformation to a more appropriate set of coordinates).
However, the approximation philosophy is different —the
potential term is presumed to dominate over the kinetic
term in determining the wave functional, i.e., A is taken as
a small parameter. Thus, our approach essentially builds
small quantum corrections into the classical Yang-Mills

theory. Solutions corresponding to collective-gluon oscil-
lations exist at this level of correction. That such oscilla-
tions may persist even at the physical value of R, and with
quantum sources, is an interesting possibility.
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