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We examine the lattice strong-coupling expansion for the ground-state energy of the quantum-
mechanical Hamiltonian 2p +g lx l, a&0. We are interested in the large-order behavior of this

series for various values of o;. Treated as a quantum field theory, this simple model provides a labo-
ratory for investigating the fascinating subtleties that arise when there are cancellations among
graphs. The param. eter a distinguishes between regions in which these cancellations occur with
varying degrees of complexity. This paper considers various approaches to this very difficult prob-
lem and presents a partial solution.

I. INTRODUCTION

Recently there has been much research on the large-
order behavior of Feynman perturbation expansions in
quantum field theory. ' The approaches used in field
theory were first developed and tested by analyzing the
large-order behavior of the Rayleigh-Schrodinger pertur-
bation series for the anharmonic oscillator and other
quantum-mechanical models. A general feature of all
field theories for which the large-order behavior has been
successfully analyzed is that the graphs in a given order
add i n phase. Superrenormalizable theories such as
(gq& )d, d&4, are examples of theories whose large-order
behavior is understood. Roughly speaking, when n is
large, the graphs in nth order form a sharply peaked sta-
tistical distribution in which the dominant graphs have
the value g"C", where C is a constant that depends on the
dimension of space-time d (C= —,', when d=l). Since
there are approximately n!16" nth-order graphs in a gy
theory when n is large, the nth term in the Feynman series
has the approximate value (16C)"n!g". Renormalizable
theories such as quantum electrodynamics and gy" in four
dimensions have not been successfully analyzed because
the graphs do not add in phase and the resulting cancella-
tions have a drastic effect on the large-order behavior.
Moreover, because of coupling-constant renormalization,
individual graphs in such theories can grow much faster
than C"; specific classes of graphs have been shown to
grow like n! This combination of very large values for
graphs and complicated cancellations between them has so
far proved too formidable a problem to overcome and the
large-order behavior of perturbation theory for such
theories is not yet understood.

In this paper we examine the lattice strong-coupling
perturbation series for the ground-state energy of the
quantum-mechanical Hamiltonian

torial of n (these graphs are large not because of renormal-
ization effects but because the vertices of the graphs grow
rapidly with n). Thus, the simple model in (1.1) exhibits
all of the properties that make the large-order behavior of
renormalizable quantum field theories so hard to deter-
mine. This model is interesting because it provides a labo-
ratory for investigating the subtleties in the fact that there
are complicated cancellations among large numbers of
graphs. The parameter a is crucial because, as we will
show, it distinguishes between regions in which the cancel-
lations occur with varying degrees of complexity.

The notation and graphical rules for the lattice strong-
coupling expansion for the ground-state energy Eo(a) of
the Hamiltonian in (1.1) have been derived elsewhere. We
review them very brieAy. A dimensional argument shows
that the ground-state energy Eo(a) can be expressed as a
pure dimensionless number e(a) times an appropriate
power of g:

E (~) e(~)g2I(a+2)

Introducing a lattice enables us to express e(a) as the lat-
tice limit of a series in powers of the dimensional lattice
parameter x =a '~+ ' g

e(a)= lim x ' + ' 1+ g x "Ca+2
2A x —+oo n=1

We refer to C„as the nth term in the lattice strong-
coupling perturbation series. In Ref. 4, the first 12 coeffi-
cients C~, . . . , C&2 are computed for all values of a.

To calculate C„we use the following graphical pro-
cedure: Draw all n-line connected graphs having no exter-
nal legs. These graphs must have an even number of lines
emerging from every vertex. The 2n-point vertices are as-
signed the value V2„, where

~= —,'p'+g lx l

We will see that there are cancellations among graphs con-
tributing to the nth term in the perturbation expansion.
We will also identify specific graphs that grow like a fac- and

oo J2'

„&, (2.). "
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F(J)= f dx e

J28~
=F(0) g (2n)!

(1.5)

2n +1
2N r(1/a) . (1.6)

The first few vertex factors are

5)~+I —25I~+5;+I J .

Lattice sums must be performed over all vertices but one.
To evaluate a graph we multiply together the symmetry

number for the graph, the values of the vertices in the
graph, and the result of performing the lattice sum. To
obtain C„we combine the results for all connected n-line
graphs and multiply the result by 2n (The .factor of 2n
arises because, as explained in Ref. 4, it is simplest to find
the lattice series for g dE/dg and this differentiation in-
troduces the extra factor of 2n. )

In this paper we attempt to determine the behavior of
C„ for large n for various values of a. We will show that
there are three distinct regions of a to consider. When
0&a & 1 the C„grow very rapidly with n. In this region

I

Vi =I (3/a)/1 (1/a),
V4 ——I (5/a)/r(1/a) —3r~(3/a)I i(1/a),

V6 ——I'(7/a)I (1/a) —15I'(5/a)l (3/a)/I (1/a)

+301 (3/a)/I (1/a) .

The lines are represented in coordinate space as the lattice
equivalent of the inverse boson propagator 5"(x —y): a
line connecting the vertices i and j has the form

2n+1
a (n~oo) .

Because the vertices grow so rapidly we can identify one
graph in nth order that dominates all others. From this,
we determine the leading behavior of C„ for large n:

( —1)"2I ((2n + 1)/a)
r( )r(1/ )

(1 9)

By including more graphs we obtain the higher-order
corrections to the growth of C„:

the asymptotic behavior of C„ for large n is easy to derive
because we can identify the largest graphs and evaluate
them in closed form. When 1 &a &2 the C„do not grow
as rapidly with n, but the series in (1.3) is still divergent
for all x. This region is difficult to analyze because there
is a cancellation among graphs; C„grows less rapidly with
n than the individual graphs. This cancellation prevents
us from obtaining the precise asymptotic behavior of C„.
However, it appears that in this region the cancellation
can be treated approximately by various methods, and we
obtain good estimates for the growth of C„. When a&2
the cancellation among graphs occurs on a very profound
and subtle level. The cancellation is so strong that the
series in (1.3) has a finite radius of convergence. We do
not know how to treat this case analytically.

Here is a detailed summary of the results that are ob-
tained throughout the rest of this paper.

Region 1: 0&a &1. Note that for these values of a the
integral in (1.5) does not exist. However, the series coeffi-
cients IV&„ in (1.6) and Vz„ in (1.4) do exist, and these
series make sense as asymptotic series. In this region the
vertices Vi„grow more rapidly than (2n)! and are all posi-
tive,

( —1)"2I ((2n +1)/a) I'((2n —1)/a)1 (3/a)n (n —2)
I (n)I"(1/a) I ((2n + 1)/a)I (1/a) (1.10)

Note that from (1.9) the Carleman condition5 is satis-
fied [C„grows no faster than (2n)!] when a) 2/3. Thus,
the series in (1.3) is Borel summable and, as shown in Ref.
4, Fade summation of (1.3) gives an accurate approxima-
tion the e(a). Region 1 is treated in Sec. II.

Special Case: a=1. The value of a marks the dividing
line between Regions 1 and 2. For this value of a we have
an exact formula for the vertices:

V2pg ='t2n)'~n .

Because the vertices no longer grow faster than (2n)! when
a & 1, it is no longer true that a small number of graphs
dominate the large-order behavior of perturbation theory.

Region 2: 1&a&2. When a&1 the vertices V2„grow
in magnitude roughly like (2n)! (by comparison, the ver-
tices in Region 1 have a factorial growth that depends on
a). This growth of the vertices Vq„ for large n is estab-
lished in Sec. III.

The sign pattern of V2„ is irregular when 2&a&1.
This irregular sign pattern leads to cancellations between

I

positive and negative graphs. This cancellation gives a lat-
tice series whose coefficients C„grow less rapidly than the
vertices:

I ((2n + 1)/a)
I (n)

(1.12)

( —1)"(2n)!
2n( t)2

(1.13)

Note that the lattice series has a finite radius of conver-

where K is a constant.
We present three different arguments to obtain the re-

sult in (1.12): a partial summation of graphs in Sec. IV, a
graph averaging argument in Sec. V, and a lattice instan-
ton calculation in Sec. VI. None of these arguments is
sufficient to obtain the value of K.

Special Case: a=2. This value of a separates Regions
2 and 3. For this special value of a (the harmonic oscilla-
tor) all of the vertices vanish except V2. As a result the
perturbation coefficients can be computed in closed form:
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n self-loops n- se -oo s

FIG. 1. The largest graph in order n when 0 & a & 1.
FIG. 2. The second-largest graph in order n when 0 & a & 1 ~

gence. This feature of the lattice series persists into Re-
gion 3.

Region 3: a &2. As in Region 2, the vertices in Region
3 continue to grow like (2n)!. However, unlike the vertices
in Region 2, the V2„ in Region 3 alternate in sign. This
sign alternation seems to result in a much deeper cancella-
tion among the graphs contributing to C„. The result is
that the lattice series in (1.3) has a finite radius of conver-
gence. However, unlike the lattice series coefficients in
Region 2, the C„ in Region 3 have an irregular sign pat-
tern. As we observed in Ref. 4, the onset of the irregular
sign pattern occurs earlier as a increases beyond 2. We do
not know how to calculate the radius of convergence of
the lattice series in Region 3. We discuss Region 3 in Sec.
VII.

We include two appendices on graph counting. In Ap-
pendix A we study the asymptotic growth of the number
of lattice strong-coupling graphs as n, the number of lines
per graph, becomes large. In Appendix 8 we divide the
set of all n-line graphs into distinct topological classes la-
beled by the number of vertices and identify the class that
dominates the asymptotic estimate in Appendix A.

II. REGION 1: 0 & a & 1

In this region the integral in (1.5) does not exist. How-
ever, the series in (1.5) does exist as an asymptotic series.

(2 1)

But

2n+1
2N

CX

I (1/a) . (2.2)

Thus, successive terms in (2.1) become increasingly negli-
gible because the largest contributions come from the end
points of the sums. Hence, to leading order, the vertices
are all positive and

2n+1
2' r(1/a) (n~ a) ) . (2.3)

Including the first correction term in (2.1) gives a higher-
order approximation to V2„.

Moreover, the series in (1.4) which defines the vertices V2„
does exist. Since W2„grows faster than (2n)! as n ~ oo it
is easy to argue that V2„—8'2„as n~ oo. expanding the
logarithm in (1.4) and matching powers of J "gives an ex-
plicit series representation for V2„.

V2n ~2n
~

IV2k IV2n —2k

(2n)! (2n)! ' k, (2k)!(2n —2k)!

I ((2n+1)/a) I {(2n —1)/a)I (3/a)n (2n —1)
r(1/a) I {(2n +1)/a)I (1/a)

(n~ o) .o (2.4)

C.'

ecause the vertices grow so rapidly with n in this region we can identify one graph in nth order which dominates over
all other graphs. This graph, shown in Fig. 1, has an extremely small symmetry number, 2 /n. , and its lattice sum is
( —2) . However, the vertex V2„ in (2.3) grows so rapidly with n that the dominant effect in the region that determines
the relative contributions of graphs is the vertex content.

Multiplying together the symmetry number, vertex factor, lattice sum, and extra factor of 2n according to the rules
stated in Sec. I, gives the contribution of this graph to the perturbation coefficient C„:

2( —1)"I ((2n+1)/a)
r( )r(1/ )

(2.5)

The second-largest n-line graph is shown in Fig. 2. This graph is second largest because it contains the second-largest
vertex V2„2. Note that the symmetry number for this graph is 2 l(n —2).. This is larger than the symmetry number
for the graph in Fig. 1 by a factor of n . However, for large n, the vertex V2„ is larger than the vertex V2„2 by a factor
of n . Thus, in the region where a&1 the graph in Fig. 1 clearly dominates. When a) 1 the graph in Fig. 1 ceases to
be the largest graph.

We can include the contribution of the graph in Fig. 2, but we must be consistent and also include the higher-order
corrections to the vertex V2„ in (2.4) for the graph in Fig. 1. We obtain the following higher-order correction to C„:

2( —I )"r((2n + 1)la) r((2n —1)la)I (3/a)n (n —2)
I (n)I (1/a) I ((2n +1)/a)I (1/a)

(n~oo } . (2.6)
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TABLE I. A comparison between the exact value of C„, the leading-order approximation to C„given in (2.5), and the higher-order

approximation to C„ in (2.6) for a = —, . The portion of the approximation that agrees with the exact value of C„ is underlined. The

exact results are taken from Ref. 4.

3
4
5

6
7
8
9

10
11
12

C„
(exact)

—2.519 127 711 835 5 X 10
5.624 858 393 450292 X 10

—3.485 048 443 196043X 10'"
3.274 768 755 460 36 X 10'"

—3.072 412 787 262 667 X 10'
2.118349 007 399 682 X 10

—8.490 813 348 601 395 X 10
1.644 271 440 102 857 X 10

—1.324 368 686 557 919X 10
3.92Q 147 296 082 1 54 X 1Q36

C„
[leading-order approximation

in (2.5)]

—2.519 1276X 10
5.624 858 390X 10

—3.485 048 443 09 X 10'
3.274768 75545 X 10"

—3.072412 787 2617 X 10'
2. 118349 007 39957X 10
8.490 813 348 601 31 X 10
1.644271 440 102 853 X 10

(exact to 16 places)X10
(exact to 16 places)X10

C„
[higher-order approximation

in (2.6)]

—2.519 127 71181X 10
5.624 858 393 44 X 10

—3.485 048 443 196038X 10'"
(exact to 16 places)
(exact to 16 places)
(exact to 16 places)
(exact to 16 places)
(exact to 16 places)
(exact to 16 places)
(exact to 16 places)

In Tables I—V we compare the exact value of C2„ for
I 1 1 2a 8 4 2 3 and 1 with the approximations given in

(2.5) and (2.6). These approximations work best when a is
near zero. Note that the correction term in (2.6) increases
the magnitude of the leading-order approximation to C„.
This is expected because our numerical results in Tables
I—V show that the leading-order approximation to C„ in
(2.5) is smaller than the exact value.

Vp„——(2n)!/n . (3.1)

When a & 1 we do not have such a closed-form expres-
sion for V2„(except for a=2). However, it is easy to
show that for large n, V2„continues to grow roughly like
(2n)!. To do so we apply the Hadamard factorization
theorem.

When a & 1 the series in (1.5) converges for all J and
demonstrates that F(J) is an entire function. The coeffi-

III. LARGE-n BEHAVIOR OF THE VERTICES
V2„FOR a) 1

When a=1 we have an exact formula for the vertices
V2„ in (1.11):

cients a„of a Taylor series define the order p of that
series:

1 . . f ln( 1/
~
an

~
)

p n ~ n inn

For the series in (1.5),

~2n I ((2n + 1)/a)
(2n)! (2n)!1 (1/a)

Thus,

a
a —1

(3.2)

(3.3)

The Hadamard theorem states that if p & 1, F(J)/F(0) has
the form e (~'F, (J) where P(J) is a polynomial of degree

(p and Fi(J) is an entire function. When Fi(J) is not
constant it has zeros in the complex J plane.

For 1&a& ao, we have p&1. Thus, we know that
Fi(J) has zeros in the complex J plane except when a=2.
[Only the special case a=2 gives a constant for F,(J).]
Thus, ln[F(J)/F(0)j has branch points in the complex J
plane when a & 1 (a&2). The distance R from the origin
to the nearest branch point in the complex J plane is the
radius of convergence of the series in (1.4). This shows
that for a ~ 1 and a&2,

C„
(exact)

TABLE II. Same as in Table I except that a = 4 .

[leading-order approximation
in (2.5)]

C„
[higher-order approximation

in (2.6)]

3
4
5

6
7
8
9

10
11
12

—1.815 215 037 526 724 X 10"
5.740973 297 123 301 X 10

—8.391 153 809 536072 X 10
4.308 690083 413 996X 10

—6.420 531 486 735 540 X 10
2.412 113440 391 647 X 10

—2.051 021 502 929 257 X 10'
3.624 269 997 615 144X 10'"

—1.241 918 161 696 587 X 10"
7.793 395 783 031 931 X 10'

—1.814 8116X 102'

5.740637 8 X 10
—8.3910088X 10

4.308 663 2X 10
—6.4205148X10

2.412 1105 X 10
—2.051 0202 X 10'

3.624 268 8 X 10'"
—1.241 9179 X 10'

7.793 3949X 10'

—1.815 216215 332X 10"
5.740959 721 195X 10

—8.391 151976 233 X 10
4.308 689 998 954 X 10

—6.420 531 468 546X 10 6

2.412 113439 450 X 10
—2.051 021 502 761 X 10'

3.624 269 997 541 X 10'"
—1.241 918 161 689X 10

7.793 395 783 017X 10'
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TABLE III. Same as in Table I except that a =
2 .

3
4
5
6
7
8
9

10
11
12

C„
(exact)

—6.350 74 X 10'
1.209 22 X 10'

—4.321 36X 10~8

2.613 18X 1P
—2.475 80X 10

3.467 17X 10
—6.861 14X 10 8

1.851 22 X 10
—6.615 31 X 10

3.056 52 X 10

[leading-order approximation
in (2.5)]

—6.227X 10
1.186X10"

—4.258X 10'
2.585 X 10
2.456 X 10
3.446X 10"

—6.827 X 103

1.844X 10"
—6.593 X 10"

3.048X 10

C„
[higher-order approximation

in (2.6)]

-6.3577 X 10'
1.2056 X 10'4

4 3109X10is

2.6097X 10
—2.4741 X 10

3.4660X 10
-6.8598 X 10"

1.8510X 10~
—6.6148X 10

3.0564X 10"

V2gg
~

-(2n)!& " (n ~~ ) (3.4)

[For the special case a=2 where F, is a constant the
series in (1.4) terminates. ] Note that when a & 1 the con-
trolling factor (2n)! of the behavior of V2„ for large n is
independent of a. This contrasts with the result for the
behavior of V2„ in Region 1 (a&1) in (2.3). Numerical
computations indicate that the range a)1 divides into
four interesting subregions: (i) When a= 1 the V2„are all
positive [see (3.1)]. (ii) When 1 &a &2 the V2„seem to
have an irregular sign pattern; the first few V2„are posi-
tive, but as a increases the irregular sign pattern sets in at
smaller values of n. (iii) When a=2, V2„——0 for n&1.
(iv) V2„alternate in sign like ( —1)"+' when a&2. These
results are illustrated in Table VI.

IV. REGION 2: 1&a&2.
SUMMATION OF DOMINANT CxRAPHS

In Sec. II we showed that the graph in Fig. 1 contri-
butes more to C„ than any other n-line graph and that the
graph in Fig. 2 gives the second-largest contribution.
These conclusions depend on the following observations:
The symmetry number for the graph in Fig. 2 is larger
than that for the graph in Fig. 1 by a factor of n, but the
vertex V2„ is larger than V2„2 by the factor n, which
is larger than n as long as a(1.

This simple dominance argument fails when a&1 be-
cause from (3.4) we have approximately

V2n -n (n —&Do) .
V2n-2

(4.1)

and

V2„4 V2 I22 2

graph 3(a)=(—1)"
(n —4)! 8

(4.2)

Thus, the graphs in Figs. 1 and 2 are of comparable size as
n~ Oo.

We will argue in this section that in addition to the
graphs of Figs. 1 and 2 there is a large class of n-line
graphs all of comparable size as n~oo. These are the
largest graphs having n lines. We will show how to sum
this class of graphs to obtain an estimate of C„.

To characterize the class of largest graphs we systemati-
cally examine all n-line graphs whose largest vertex is
V2„2k (we term this the subclass k), for k ranging from 0
to n. For each value of k it is easy to identify the largest
graphs in this subclass. The graphs for k=0 and 1 are
shown in Figs. 1 and 2.

There are four connected graphs to consider when k=2
and these are shown in Fig. 3. One can evaluate these
graphs according to the rules given in Sec. I. The symme-
try numbers for the graphs in Figs. 3(c) and 3(d) are small-
er than the symmetry numbers for the graphs in Figs. 3(a)
and 3(b) by a factor n As a r.esult, the dominant contribu-
tion to C„ from connected graphs containing V2„4,
n~cc, is given by

TABLE IV. Same as in Table I except that a =
3 .

3
4
5
6
7
8
9

10
11
12

C„
(exact)

—1.352 86 X 10'
6.981 14X 10

—5.308 41 X 10"
5.630 48 X 10'

—7.99001 X 10'
1.46608X10 '

—3.381 85 X 10
9.58226X 10

—3.27178X10 '

1.324 86X 10

C„
[leading-order approximation

in (2.5)]

—1.28 X 106

6.43 X 10
—4.88 X 10"

5.21X 10'4
—7.47 X 10"

1.38 X 10"
—3.21 X 10'4

9.15X 10"
—3.14X10 '

1.27X10"

C„
[higher-order approximation

in (2.6)]

—1.362 X 10
6.881 X 10

—5 197X10"
5.521 X 10'4

—7.868 X 10'7

1.449 X 10"
—3.353 X 10'4

9.522 X 10"
—3.256X10 '

1.320 X 10"
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TABLE V. Same as in Table I except that a=1. Here we expect that the approximations in (2.5)
and (2.6) fail because the graphs we have neglected are not small when a lies outside region 1.

3
4
5
6
7
8
9

10
11
12

(exact)

—832
1.7968 X 10'

-4.5590' 10'
1.3190' 10'

—4.2745 X 10'
1.5338~ 10"

—6.0428 & 10"
2.5970' 10"

—1.2108 &( 10'
6.0960X 10'

[leading-order approximation
in (2.5)]

—720
1.34~10'

—3.02' 10'
7.98 X10'

—2.42~ 108

8.30' 10'
—3.18~10"

1.34' 10"
—6.19~ 10'4

3.11 )& 10'

C„
[higher-order approximation

in (2.6)]

—864
1.728 && 10

—4.032~ 10'
1.089 X 10

—3.353~ 10
1.162)& 10'

—4.483 ~ 10"
1.905 )& 10'

—8.850 & 10'
4.460' 10"

graph 3(b)=( —1)
V2„—4 I4 V4

(n —4)! 24
(4.3)

V2n —6 I6 V6 I2 V2I4 V4 I2 V2

(n —6)! 6! 2!4! 3!8

I,I ——2+2" .

The values of the graphs in Figs. 1 and 2 are

(4.4)

Vp„
graph 1=(—1)"

(n)! ' (4.5)

Here I&I is the result of evaluating the lattice sum for the
graph consisting of two points joined by 21 lines (see Fig.
4).

(4.7)

In Fig. 6 we show some graphs in subclass k=3 whose
contribution to C„ is negligible compared to (4.7) as

n~ a.eThe expression (4.7) is larger than the contribu-
tions of Figs. 6(a) and 6(b) by a factor n and is larger than
the contribution of Fig. 6(c) by a factor n 2, as n ~ ae.

Having characterized by the examples above the largest
graphs of subclass k we can write a general formula for
the sum Sk of the dominant graphs in subclass k:

„V2n-2 I2V2
graph 2=( —1)"

(n —2)!
(4.6)

gk =( —1)" "
[coefficient of z " in f (z)],

(n —2k)!

(4.8)

Note that V2„—(2n)! so the expressions in (4.2), (4.3),
(4.5), and (4.6) are all of the saine order as n ~ ae.

It should now be evident that the largest graphs in the
subclass k are those with the smallest number of self-

loops, because these graphs have the largest symmetry
numbers. Such graphs have no substructures other than
self-loops and graphs of the form shown in Fig. 4. Thus,
the three dominant graphs in the subclass k= 3 are those
shown in Fig. 5 and together they contribute

where

V2(I2Iz
2l

f (z) =exp
/=1

(4.9)

The sum in (4.9) can be evaluated exactly using the gen-
erating function for the vertices in (1.4). Using the expres-
sion for I2( in (4.4) we obtain

V2(z ~ V2((2z)f (z) =exp 2g, exp

2

self-
loops

n-4
self-
loops

+(z)
+(0)

(4.10)
E(2z)
F(0)

Using the generating function for F in (1.5) and the defini-
tion (1.6) we can extract the coefficient of z2" from (4.10)
as a double sum:

self-
loops

e n-3
self-
loops

(c) (d)
2Q lines

FIG. 3. All connected n-line graphs containing the vertex
V2„4 ~ As n —+ oo the graphs (a) and (b) dominate the graphs (c)
and (d) by a factor of order n.

FIG. 4. The evaluation of the lattice sum for this graph gives

Ip$ ——(2+2 )/(21)!.
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(4.12)

I ((2k —2j+1)/a)I ((21 +1)/a)1 ((2j —21 +1)/ix)2
(2k —2j)!(2l)!(2j—2l)![I (1/a)]3

Finally, we apply the results given above to calculate, according to the rules explained in Sec. I, the contribution of these
dominant graphs to C„. The result is

( —1)"2n ("~! V2n —Zk 2g
I

2z I ((2k 2j +—1)/a}1 ((21 +1)/n)I'((2j —21+1)/a}
[I (1/a)] k o (n —2k)' oi 0 (2k —2j)f(2I)f(2j —2I) ~

This is the final expression resulting from the approxima-
tion of retaining only the largest n-line graphs of each sub-
class k.

In Sec. V we compare the exact values of C„with a nu-
merical evaluation of (4.12) and to other approximations.
We will see that the approximation in (4.12) is not particu-
larly good and the reason is important.

As illustrated in Table VI, the V2„have an irregular
sign pattern in the region o. ~1, and therefore cancella-
tions among the graphs occur. In deriving (4.12) we used
the exact expression for the generating function (1.4) for
the vertices, thus taking into account the exact cancella-
tions among these graphs. These cancellations reduce the
magnitude of C„ from approximately n!, the value of each
individual graph, to approximately I (2n /a )/n!, as
demonstrated by the exact numerical studies in Sec. V.
Thus, some of the graphs that we neglected are larger than
the final result in (4.12). Of course, these graphs also can-
cel against each other. But, it is clear that this cancella-
tion phenomenon is not easy to treat properly and makes
it extremely difficult to estimate a priari the accuracy of
the approximation method.

V. REGION 3: 1(a~2.
GRAPH-AVERAGING ARGUMENT

In this section we make the approximation that the can-
cellation among graphs is not very sensitive to the specific
rules for calculating lattice sums. Thus, we replace the
lattice sum for each n-line graph by an average lattice
sum. Then we calculate C„by summing exactly over a)l
n-line graphs weighted by their symmetry numbers and

vertices. Based on previous experience with graphical
theories we expect that the average lattice sum for an n-
line graph behaves for large n like 6", where 6 is a con-
stant. We will see that this expectation is consistent with
our numerical results and we will determine the constant
6 empirically and use it to estimate C„ for large n. The
numerical results of this procedure are quite good.

To perform this calculation we construct a model field
theory in which every n-line graph has the value 6" apart
from its symmetry number and vertex content. To con-
struct the vacuum-vacuum function Z for such a theory
we combine the operator

6 d
exp

dx

which inserts lines, each line weighted by 6, and

00 2ll

exp g Vz„"( n)."(2 )'

(5.1)

(5.2)

6 d oo 28
lnZ =ln exp — exp g V2„2 dx' „, '" (2n)!

x=0

(5.3)

The term containing G" in the Taylor expansion of (5.3) is
the sum of the connected vacuum graphs with n lines.

which represents the set of vertices for this theory as in-
troduced in Sec. I. The sum of all connected vacuum
graphs is given by

n-6
!self—

loops I

(o) n-5
sel f-
loops

e

n-6
self-
loops

(b) n-5
self-
loops

(c) n-6
self —,

!loops,

n-4
se lf-
loops

FIG. 5. The largest n-line graphs containing the vertex V~„
(subclass k =3).

FIG. 6. Some graphs in subclass k=3 (n-line graphs contain-
ing the vertex V2„~) whose contribution to C„ is negligible as
n —+ ao compared to (4.7).
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We can perform the sum over Vq„ in (5.3) by making
use of the generating function for the vertices in (1.4):

G d~ F(x)
lnZ = In exp

By employing this generating function we take into ac-
count the delicate cancellations between graphs that occur
in this model theory because of the variations in the signs
of the vertices V2„.

Using the expansion in (1.5) for F(x) and expanding the
exponential operator in (5.4) gives

G" r{(2n+1)/a)
lnZ =ln 1+

, 2"n! I (1/a)
(5.5)

Since we are in Region 2, 1 & a & 2, the nth term of the
sum in (4.5) grows rapidly with increasing n. In particu-
lar, the factor controlling the asymptotic behavior is

I ((2n +1)/a) n {2/a —1)=n (5.6)

G" I ((2n +1)/a)
2"n! r(1/a) (5.7)

As discussed in Sec. I we obtain the perturbation coeffi-
cients C„by including an extra factor of 2n [see the para-
graph following (1.7)]:

2nG" I ((2n+1)/a)=
2nn! r(1/a) (5.8)

Thus, we can use the argument given at the beginning of
Sec. II leading to (2.1). Therefore, as n~ m an asymptot-
ic approximation to the term containing G" in (5.5) is
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G„=—

S;„ (5.9)

where the sums are performed over all graphs having n-
lines.

The denominator in (5.9) can be calculated analytically
(see Appendices A and 8). We have evaluated the
numerator numerically for n =1,2, 3, . . . , 12. The results
for G„are given in Table VII. Assuming that G„has the

This is the result for C„obtained by making the drastic
approximation that the lattice sum for each n-line graph
may be replaced by its average value and that the average
value has the form 6". Note that this calculation gives a
result for the sum over all n-line graphs which is dramati-
cally smaller than the size of the dominant graphs dis-
cussed in Sec. IV which typically grow like n .. This is the
simplest and cleanest demonstration we know which
shows the large degree of cancellation that occurs in a
theory whose graphs do not add in phase.

To complete this calculation we need a value for G. We
obtain 6 empirically by determining the average size of a
lattice sum for an n-line graph. Noting that the exact lat-
tice sum for a graph is independent of a we define the
average graph size G„as follows: let S;„be the symmetry
number associated with the ith n-line graph. Let I; „be
the exact value of the lattice sum associated with that
graph. Then 6„ is the weighted average
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1

2
3
4
5
6
7
8
9

10
11
12

—2
5.333 33

—14.8571
41.1245

—112.502
303.308

—805.831
2110.61

—5453.08
13 906.88

—35 031.77
87 221.20

2.0
2.309 39
2.458 36
2.532 36
2.571 77
2.592 07
2.601 22
2.603 46
2.601 25
2.596 11
2.589 01
2.580 59

form 6", we obtain from Table VII a very rough estimate
that G lies in the range —2.5 & G & —2.

To demonstrate that this graph-averaging technique
gives a good description of the large-n behavior of C„we
compute the ratio

2n I ((2n + 1)/a )

2"n!I (1/a)
(5.10)

and take the nth root of the result. We find (see Table
VIII) that for the values a= 1, 1.25, 1.5, and 1.75 these re-
sults are quite close to those in the third column of Table
VII. These values give an estimate of the average graph
size; the estimate for 6 obtained from Table VII and those
given in Table VIII are independent of each other. The
close agreement is an indication that the concept of an
average graph size, independent of a, is meaningful even

TABLE VIII. Values of

I ~ C„~ 2"n!1 (1/a)/2n1 ((2n +1)/a)j'/"
5 3 7for a = 1, 4, T, 4 . These values give an estimate of the average

graph size, as discussed in the paragraph containing (5.9). Note
that these values are in approximate agreement with the in-
dependent estimate of the average graph size in the third column
of Table VII. Notice also that the entries in this table increase to
a maximum, which depends weakly on a, and then decrease.

1

2
3

5
6
7
8
9

10
11
12

2.0000
2.RKM
2.0987
2.1506
2.1711
2.1746
2.1691
2.1595
2.1462
2.1367
2.1256
2.1154

5/4

2.0000
2.0000
2.1371
2.2322
2.2921
2.3285
2.3498
2.3611
2.3657
2.3659
2.3632
2.3586

3/2

2.0000
2.0CKR

2.1659
2.2969
2.3931
2.4639
2.5167
2.5564
2.5867
2.6098
2.6275
2.6410

7/4

2.0000
2.0000
2.1866
2.3445
2.4691
2.5680
2.6477
2.7128
2.7669
2.8122
2.8507
2.8836

TABLE VII. The average graph size G„determined from
(5.8). For large n, G„behaves very roughly like G" where G is a
constant lying between —2 and —2.5.

/6 [1/n

at these small values of n. %'e believe from a numerical
analysis of the results in Table VII that G = —2.

As a gets closer to two we find (not surprisingly) that
the numbers are not in such good agreement. This is be-
cause as a~2 the series in (5.5) becomes less divergent
and thus the argument used in arriving at (5.8) becomes
weaker in the sense that the leading term in the expansion
of the logarithm in (5.5) is less dominant. Indeed, one can
evaluate (5.5) numerically to determine the exact value of
the approximation to C„ that it incorporates and verify
that the approximation (5.8) is considerably more accurate
at a=1 than at a=2.

To close this section we compare (see Table IX) the ex-
act perturbation-series coefficients C„ to the approximate
values for C„obtained by the summation-of-dominant-
graphs method of Sec. IV [see (4.12)] and by the graph-
averaging method of this section. In the graph-averaging
results we use (5.8) with the exact average graph sizes G„
given in the second column of Table VII instead of the es-
timates for G" obtained by the method of Table VIII.

Note that the dominant-graph approximation gives
numbers that are too small. Apparently, cance11ations be-
tween dominant graphs reduce their net contribution to a
size comparable to or less than that of individual graphs
that were neglected in this approximation.

Qn the other hand, it is remarkable that an approxima-
tion as simple as graph averaging manages to give such an
accurate result; statistica1 ana1ysis of graphs is very diffi-
cult when they do not add in phase.

VI. REGION 2: 1&a&2.
LATTICE INSTANTON CALCULATION

In this section we apply a Lipatov approach' to the
problem of determining the large-order behavior of the
perturbation coefficients C„. In this approach one writes
a functional integral representation for the nth
perturbation-theory coefficient and applies a saddle-point
method to find the asymptotic behavior for large n. The
saddle point is a point in function space called an instan-
ton that satisfies the field equations and gives a finite con-
tribution to the action when the method is successful.

In contrast to the usual continuum applications of the
instanton method, in the lattice strong-coupling theory the
classical field equations that determine the instanton are
finite-difference equations on the lattice. As a result we
must deal with two different limits: the limit n~ Oo and
the limit in which the number of lattice points ~ oo. Al-
though we have succeeded in extracting the controlling
factor in the asymptotic behavior of C„we are unable to
complete the instanton analysis and determine the full
asymptotic behavior of C„. The difficulty is related both
to the ambiguity in the order of the two limits and to the
problem of finding an instanton solution to the finite-
difference field equations that yields finite action.

%'e begin with the Euclidean functiona1 integral repre-
sentation for the ground-state energy Eo(a) for the Hamil-
tonian H (1.1):

e = ID+exp —f ( —,ip +g ~%~ )dt

(6.1)

where V is the volume of space. On the lattice V=&a,
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TABLE IX. Comparison of the exact perturbation series coefficients C„, the approximate values cal-
culated by the method of dominant graphs in Sec. IV, and the graph-averaging method of Sec. V. (a)
a=1, (b) a= 4, (c) a= 2, (d) a= 4.5 3 7

1

2
3
4
5
6
7
8
9

10
11
12

Exact C„

—4.0
48.0

—8.32 X 10
1.8x 104

—4.6X 10'
1.3X 10'

—4.3 x 10'
1.5 X 10"

—6.0X 10"
2.6X 10"

—1.2x 10"
6.1X10"

Dominant graphs

(a)
a=1

40
72.0

—6.7 X 102

1.2X 104
—2.3 x 10'

5.5 X 10
—1.5x 10

4.9x 10'
—1-7x 10

7.0X 10"
—3.1 x 10'

1.5 x 10'

Graph averaging

—4.0
64.0

—1.3 x 10'
3.5X 1O'

—1.1 x 10'
3.8 X 10'

—1.5X 10
6.8X 10'

—3.4X 10'2

1.8x 10"
—1.1X10"

6.6X 10"

1

2
3
4
5
6
7
8
9

10
11
12

—2.1

10.0
—65.0

4.7 X 102
—3.7X10'

3.2X 104
—2.9x 10~

2.8X 10'
—2.9x 10

3.0X 10
—3.3 x 10

3.8 X 10"

(b)
5a ——
4
—2.1

17.0
—40.0

1.9x10'
—6.8x 10'

2.8x10'
—8.8 x 10'

1.4x 10'
1.4X 10'

—2.0X 106

1 ~ 5x10'
—6.6X 10'

2. 1

14.0
—98.0

7.7X 10
—6.6X 10'

6.1X 104
—6.0X 10'

6.2 X 10'
—6.8x 10'

7.7x 10'
—9.1X10'

1.1 x 10"

1

2
3
4
5
6
7
8
9

10
11
12

—1.5
4.1

—14.0
51.0

—2.0X10'
8.6 X 10

—3.7 X 10'
1.7 X 104

—7.7X 104

3.6x 10'
—1.7x10'

8.6X 10'

(c)
3a=—
2

—1.5
7.4

—5.7
11.0

—2.9
—9.3
38.0

—12.0
—2.3x10'

7.6X 10'
—4.1 X 10'

2.8x10'

—1.5
5.5

—20.0
76.0

—2.9 X 10'
1.2X10'

—4.7X10'
1.9x 10

—8.1x 10
3.4x10'

—1.5x 10
6.5x 10'

1

2
3
4
5
6
7
8
9

10
11
12

—1.2
2.3

—5.0
12.0

—30.0
78.0

—2.0X10'
5.6 X 10'

—1.5x 10'
4.3x lo'

—1.2X 10
3.4x 10

(d)
7a=—4
—1.2

4.3
—1.0

0.93
0.91

—0.46
—0.95

1.1
1.7

—4.4
31.0

—8.6x10'

—1.2
3.0

—7.1

16.0
—37.0

83.0
—1.8 x 10'

4.0X 102
—8.8 X 102

1 9x 10
—4.2X10'

9.0X 10'
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—NaE0(a)
N

e e
p v'2+a

where

(6.2)

where a is the lattice spacing and X is the number of lat-
tice points. Therefore, the lattice version of (6.1) is

Let y; =n ' o.;. Then

i=0i=0

N —1 N

L = ,'x—n'/ g (cr;+, —o;).'+n g I
o;

I
(6.9)

N —1

L=a p-
i=p~ 2

2'P. N

+ga X I
p

I

i=0
(6.3)

¹ dEp(a)

dg

i=0 j=0

f / (d'p;/v'2~a )e
i=0

(6.4)

Solve for Ep(a) by calculating the logarithmic derivative
of (6.2) with respect to the coupling strength g:

N N
a f + (d)I(; /v'2+a )e

C„=coefficient of x" in

nn do.;e oJ.

i=0

g do;e
(6.10)

Cn -a„/b p, n ~ Oo .

It is easy to evaluate the expression

f

(6.11)

(6.12)

Thus, b„ is smaller than a„by a factor of n and we have

Each term in the numerator sum contributes equally, be-
cause of translation invariance. Using this fact and (1.2)
we obtain

by the substitution t =g . The result is
N

b p —— 2E' 1+—1 (6.13)

g ' + ' f g(d%';/v'2ma )e

e(a) = i =0
2 N

f + (d%, /v'2~a )e-
i=0

(6.5)

To compute a„by the Lipatov technique, express a„as
a contour integral over the numerator of (6.10):

N/ d
I I

(6.14)
2&l x p

N —1 N
L=-,'x X (m;+1 V')'— (6.6)

and

i=0 i=0

where j is any integer between 0 and X. We now intro-
duce the dimensionless lattice parameter
x =g a ' + '~ and the dimensionless lattice field
1p;=(ax) '/

1(j;. Thus,

where L is given by (6.9). Next, make the substitution
x =n ' / y and use (6.13) to obtain

( 1)nn x/an (2/a —1)n
C„—-

2 I (1+1/a)

X f f +do;Io.
I

e ", (6.15)

where

N+ 1()();e
i=0

Nf Hdq
(d)

a+2 xa/(a+2)
2

(6.7)
i =0i =0

N —1 N

L =ln( —y)+ —,y g ((7;+1—o;) + g I
(r;

I

(6.16)

C„=coefficient of x" in

Naf /(date 'lv, l

i=0

f IId~' '
i —0

(6.8)

It has already bmn argued that the series g C„x" is
divergent when 0&a&2. If g C„x"=pa„x"/g b„x",
where the series on the right-hand side represents the
numerator and denominator of (6.8) and are divergent, it
follows that C„-(a„—Cpb )/bp as n ~ ao. A scaling ar-
gument suggests that b„ is negligible compared to a„as
n~oo ~

where the continuum limit x~ oo is understood. Com-
paring (6.7) with (1.3) one finds Notice that the integral in (6.15) is now in standard La-

place form, f e" (")Dg; this was the goal of the scaling
manipulations. In a conventional analysis one would now
proceed as follows: locate the maximum of f and argue
that the integral is dominated by this contribution, with
Gaussian corrections. The general result of such a treat-
ment is typically an asymptotic behavior for the integral

of the form e '" & (algebraic terms- n'), n ~~.
There are, however, several problems with (6.15). First,

(6.15) contains an explicit factor [n '/ /2l (1+1/a)]
where % is the number of lattice points and n is the order
of perturbation theory (the number of lines). Implicit in
our lattice analysis is the idea that N is large, but fixed,
and that the perturbation coefficients do not depend on N.
The limit n —+oo, for a quality that depends explicitly on
X, is not well defined.

Moreover, the detailed application of the Laplace argu-
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C„-n (2/a —1)n n~oo . (6.17)

Note that this agrees with the controlling factor of the re-
sult (5.8) obtained by graph averaging.

VII. REGION 3.
THE INTRACTABLE RANGE a & 2

Of the three methods used in Secs. IV—VI to analyze
the large-n behavior of C„ the simplest and most effective
is the average graph approach of Sec. V. It is clear from
(5.8) that this approximation must fail in Region 3 be-
cause (5.8} predicts that C„alternates in sign. However,
we know (see Ref. 4) that the sign pattern of C„ is irregu-
lar.

A tempting explanation of this failure is the following.
To obtain (5.8) we asymptotically expanded the logarithm
in (5.5). The expansion used is valid in Region 2 because
the series in (5.5) is divergent for a &2. However, when
a & 2 the asymptotic expansion is invalid and (5.8) cannot
represent the behavior of C„ for large n. A direct remedy
for this problem is to evaluate the Taylor series of (5.5) ex-
actly (using MACSYMA). Unfortunately, while the result-
ing numerical values for C„now have an irregular sign
pattern, it is the wrong sign pattern. Moreover, the pre-
diction for

~
C„~ is wrong by many orders of magnitude.

The other approaches in Secs. IV and VI also fail when
cx) 2.

Apparently the reason for this failure is that the cancel-
lation between graphs (which produces a convergent lat-
tice perturbation series for a&2) is very subtle. No
graph-averaging technique is delicate enough to accurately
embody these cancellations and no simple topological class
of graphs seems to dominate in the presence of such can-
cellations. The cancellations appear to occur on a graph-
by-graph basis and we know of no asymptotic approxima-
tion that can successfully predict the behavior of C„ for
large n.

This difficulty appears to be generic to the class of field
theories having convergent perturbation expansions. We
know of no example of an asymptotic analysis which
correctly predicts a nonzero radius of convergence of the
perturbation expansion of a field theory. We therefore be-
lieve that continued study of this very simple model field

ment requires that one locate the maximum of L in (6.16)
by differentiating with respect to y and the 0.;. Because L
involves

~
cr; ~, the action is not continuously differenti-

able. If we nevertheless solve the resulting difference
equations the action is not finite at the location of the in-
stanton solution.

Finally, the integral in (6.15) involves both N and n If.
n ~ oo for fixed N, the number of lines becomes large with
respect to the number of available lattice points, which
implies that most of the graphs are neglected.

Nevertheless, we emphasize that (6.15) has the form

C„-n ' ~ ""X (algebraic factors)

)& (Laplace integral) .

Because the Laplace integral cannot give an n dependence
stronger than exponential, there is good reason to believe
that the controlling behavior of C„has been successfully
identified as

theory for the region a &2 is worthwhile because a suc-
cessful technique might well generalize to the case of more
complicated realistic theories.
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APPENDIX A: ASYMPTOTIC ESTIMATES
OF THE NUMBER OF GRAPHS

Z(O, e)=1+ g A„e" .
n=1

(A2)

3„ includes all n-line graphs, disconnected as well as
connected. To obtain B„,the number of connected graphs
having n lines, we construct 8'=lnZ, which is the gen-
erating function for the connected graphs:

W(e)= g B„e".
n=1

(A3)

We shall show that A„grows sufficiently rapidly with n
so that the argument leading to (2.3) applies and therefore

We define the number of graphs A„of order n as fol-
lows: Assign to each graph its appropriate symmetry
number and sum over all graphs with n lines. In this ap-
pendix we study the asymptotic growth of the number of
lattice strong-coupling graphs for large order n, where n is
the number of lines. We then verify these estimates by
comparing them with exact computer calculations of the
number of graphs for small and intermediate values of n.
The result gives an asymptotic estimate, for large n, of the
denominator in (5.9).

We compute A„by means of a generating function,
Z(x, e}:

d2 2k
Z(x, E) =exp —,e exp g . (Al)

dx k 0 2k)!

The operator exp( ~ ed /dx ) is a line-insertion operator,
so each line will be associated with one power of e. There-
fore, if Z is expanded as a series in powers of e, the coeffi-
cient of e" is the number of graphs having n lines. The
factor —, occurs in this operator because the lines in this
theory are not directional. The factor

oo x2k

, (2k)!

inserts all vertices with an even number of lines and gives
each vertex unit weight. The factor 1/(2k)! is necessary to
avoid overcounting because all the lines at a given vertex
are identical.

The variable x plays the role of the external current in
this model quantum field theory in zero-dimensional
space-time. Therefore, if Z is expanded as a series in
powers of x, the coefficient of x is the number of graphs
having I external legs. In this paper we consider only vac-
uum, or bubble, graphs (graphs having no external legs).
Thus to obtain A„we evaluate Z at x=0:
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A„-B„(n~ ce ) . (A4) Noting that y"(k)= —2n/k —1/k, a Gaussian approxi-
mation to the summand in (A9} is

Z{x,e)=exp 2 e e"'d
dX

Thus, from (A2),

coshxe
eel !2 dx p

(AS)

Using the generating function for the associated Bessel
functions, we have the following identity:

To find the asymptotic behavior of A„as n ~m we be-
gin by writing

2 1
exp[2n lnkp+ko kolil(2kp)]

7Tkp ppg !2

1 2n
X g exp —— + 2

(k —ko) . (A12)
2 kp

e k~- —I e "dX=
k = —oo

(e~oo) .

Thus,

Finally, we use a Reimann integral to approximate the
sum

&tcoshx g I {t} kx

k= —to

(A6)

Using this formula we can express A„ in (AS) as the infin-
ite sum

2 exp( 2n +ko+—2n lnko)
A„— (n~ao) .

en!2"[1 +ln(2ko)]'~
(A13)

This gives the following approximation to (A7):

A„— g e~ (n~oo),y(k)

e ~n!2" k

p(k) =2n Ink +k —k ln(2k),

(A9)

(Ala)

where we have used Stirling's formula to approximate k!
in (A8).

{p(k) attains its maximum at k =ko, the solution to

koln{2ko)=2n . (Al 1)

g Ik(1)k ".
en~2" k

The result in (A7) is exact. To obtain the asymptotic
behavior of A„ for n large, we approximate the sum in
(A7) using a discrete Laplace's method. That is, we iden-
tify the value of k for which the summand in (A7) is max-
imum. Then we approximate the nearby terms in the sum
by a Gaussian. The Gaussian sum when evaluated by re-
placing it by a Riemann integral gives the leading approxi-
mation to A„ for large n.

As n~ ao it is clear that the sum in (A7) is dominated
by large values of k. Thus, it is correct to approximate
Ik(1) by its asymptotic behavior for large k (Ref. 10):

2k
Ik(1)- (k~co) .

k! (A8)

Note that A„grows with n slightly less rapidly than n!;
very roughly, A„=n! /[1n( 2n) /v 2] ". This growth, how-
ever, is sufficiently rapid to allow us to invoke the argu-
ment given in Sec. II, and to conclude that A„-B„.

We used MACSYMA to calculate the exact value of A„
and B„ for 1 & n (30 from (AS) and (A3). The first six of

1 1 31 379 1639
hese are A&

———,, A2 ———,, A3 —
48 A4 —384 A5 ——,

150349 1 3 7 83
46080 ~ and B1 2~ B2 8& B3 16~ B4 128&

B5 ——2,6, B6 ——
,53@) In Table X we compare the asymp-

totic formula (A13) for the number of graphs with the ex-
act numerical values of A„and B„ for n =20,25,30.

APPENDIX 8: STATISTICAL ANALYSIS OF GRAPHS

g A„J.——3„.
j=l

(B1)

In this appendix we carry out a statistical analysis
whose purpose is to characterize topologically the class of
graphs that dominates the asymptotic estimate given in
(A13} for the total number of graphs A„(connected or
disconnected}.

Graphs containing n lines can have from one to n ver-
tices. This divides the set of all n-line graphs into n topo-
logically distinct classes labeled by an integer j, 1 &j (n,
where class j has j vertices. We define A„j to be the num-
ber of graphs having n lines and j vertices so

TABLE X. Comparison between the exact total number of graphs 3„,the exact total number of con-
nected graphs 8„,and the asymptotic estimate given by (A13).

30

kp
Exact A„
A„ from (A13)
% relative error
between (A13) and 3„

Exact B„
% relative error
between (A13) and 8„

12 AA/1

9.627 15 X 10'
9.5215 X 10

—1.10

8.029 83 X 10'

18.6

14.768
9.978 01 X 10
9.8836X 10

—0.95

8.578 09X 10'

15.2

17.011
1.831 12 X 10'
1.8158X 10"

—0.83

1.605 92 X 10"

13.1
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We further subdivide the jth class according to the
specific types of vertices present. That is, if 2a; is the
number of lines at the ith vertex then

(B2)

of j for which A„~ dominates the sum in (B1). We verify
our analytic results by comparing them with exact numer-
ical values of A„J.

The total number of diagrams belonging to the partition
Ia~, a2, . . . , aJ) is exactly

Thus, the set Ia ~, az, . . . , a~ I is a partition of n and the
number of subdivisions of the jth class is equal to the
number of partitions of the integer n.

The analysis of this appendix is a statistical analysis of
graphs having many lines. First, we fix the number of
vertices j and analytically determine the distribution of
vertices I a&, a2, . . . , aJ I that dominates the sum over par-
titions contributing to A„&. Then we determine the value

(2n —i)!!
Jj!g (2ak)!

k=1
(B3)

We derive this result as follows: Consider a set of j ver-
tices, the kth vertex having 2ak free lines emerging from
it. To construct the graphs in this partition pick an arbi-
trary free line and join it to any other free line. There are

n = 20 n =30

30

~ j=11.067

j=13.708 j=15.738

20

10

C)

~o 50

n= 5

j=4. 518

p G. J 0
7 8 9 10 11 12 1314 15 16

Q
9 10 111213 141516 17 18 ]9

0» 4 -iD Q
10 1112 13 1415161718192021 22

n = 15

C3

40 I

j=7.080
j=9.412

30

10

123 345678910 G~ as HR&

2 3 4 5 6 7 8 9 1011121314 15

FKx. 7. Histograms displaying the results of a computer calculation of the number of n-line graphs with j vertices, as a percentage
of the total number of n-line graphs, for n= 5, 10, 15, 20, 2S, and 30. The values of j in the calculation range from one to n but values
of j for which the ordinate is & 10 are not shown. The arrow on each histogram marks the asymptotic prediction in (814) for the
dominant value of j. Note that the distribution of graph numbers are sharply peaked about a central value that agrees very closely
with (B14).
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2n —1 choices. Next pick one of the remaining free lines
and join it to any of the (2n —3) other free lines. Repeat
this process until no free lines remain. The number of
graphs constructed using this procedure is (2n —1)!!.
However, this enormously overcounts the number of dis-
tinct graphs in this partition. We must reduce this total
by the number of ways j t of relabeling the vertices. Furth-
ermore, the lines emerging from the kth vertex are identi-
cal so we must divide by (2ak)! for the kth vertex

Summing over all partitions Ia„a2, . . . , aj I having j
vertices subject to the constraint in (82) we obtain the to-
tal number of graphs with n lines and j vertices:

(2n —1)!! e "
j' (2~)I"

J
1g exp —g (2ak+ —, )ln(2ak) (j,n~oo),

all ak k=1

(85)

subject to the constraint in (82).
One way to achieve an asymptotic evaluation of (85) is

to make a continuum approximation to the sum over the
ak. Introduce the continuous variable

(2n —1)!!
A„J ——

jt J
all ak ~ (2&

(84) t =k/j, 0(t (1 (86)

i=0

This result is exact.
In order to obtain an asymptotic evaluation of (84) we

want to identify the partition that dominates this sum.
We begin by using Stirling's formula to approximate the
factorials in (84), assuming that each of the ak is large
(our final result is consistent with this assumption):

n
ak = —.a (t) .j

The constraint in (82) becomes

(87)

and replace the discrete function a; by a continuous func-
tion a (t):

n=6
60—

50—

zero

dimenstona1

theory

one

dtmenslonal

theory

jl = 12

40—

C)

C)

30

20—

10—

2 3 ]. 2 3 4 5 6 7 8 9 10 11 12

FIG. 8. Comparison of the relative sizes of A„J for the zero-dimensional pure graph-counting case considered in Appendix B (in
which all lattice sums have the value one) and the one-dimensional case considered in the body of the paper (in which lattice sums are
evaluated as explained in Sec. I). The histograms display the number of n-line graphs with j vertices as a percentage of the total num-
ber of n-line graphs. Observe that the location of the maximum value of A„j and the widths of the distributions are almost indepen-
dent of the dimension.
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1f dttt(t)=1. (8&)

Note that the normalization factor n /j in (87) was chosen

so that a {t) =0 {1}and (88) contains no large or small pa-
rameters.

In terms of the new variables, the sum in (85) becomes
a functional integral:

(2n —1)!! 2n
A„J— "

exp 2n —(2n + —,)lnj t j
1f Da exp —f dt[ —,

' j +2na(t)]lna(t) (j,n~cc), (89}

where Da stands for

J
lim + dak V 2m,

"k=&

beginning of this appendix; to find the class of graphs that
dominates the asymptotic estimate (A13) for the total
number of graphs. The dominant value of j in (813) is
determined by dA„J /dj=0, which implies that

and the constraint in (88) is understood. We can apply
Laplace's method to this functional integral. Let 21k+ 2 —

2 lnj ——, ln4mn+ —, =0 .

dt —,
' j+2na t lna t

1

+A, f dta(t) —1 (810)

where A, is a Lagrange multiplier that ensures the con-
straint (88).

We now vary L with respect to A, and a (t) to establish
the stationary point in (A, —a) space, which dominates the
integrand of (89). Varying with respect to A, reproduces

the constraint (88):

51. 1 j 2n 2n —lna —( t) =0 .
5a(t} 2 a(t}

(811)

Because (811) does not depend explicitly on t, it follows
that a (t) is a constant, and from (88) we have

a(t)=1 . (812)

(2n —1)!!exp[2n —(2n + —,j)ln2n /j ]
A„lf,j j!(2m.)J~

(813)

Now we are prepared to answer the question posed at the

With (87) this establishes that the distribution of vertices
[ai,a2, . . . , aj. ] that dominates the sum over partitions
contributing to A„J is flat: [n/j, n/j, . . . , /jn] (j terms).
That is, the dominant partition is that in which each of
the j vertices is the same, with 2n /j lines at each vertex

We have shown that a (t) =1 is the saddle point that
dominates (89}. Therefore, apart from Gaussian correc-
tions,

Numerical solutions to this equation are shown in Fig. 7.
To provide a check on the asymptotic analysis resulting

in (814} we calculate A„J numerically using a procedure
based on a generating function similar to that in (Al).
Consider the generating function

1
ao ~ 2'

Z(x,L, V) =exp ,' L exp —Vgdx , (2n)!

(815)

In the Taylor expansion of (815), the coefficient of L "VJ
is A„J. In Fig. 7 we show histograms of the relative num-
bers of nth-order gl aplls wltll J vcrtlccs (wltll 'tllc total
number of graphs normalized to 100%). The dominant
value ofj calculated from (814) is also shown. Note that
the distributions are sharply peaked about values of j that
agree well with the predictions of (814) and that the agree-
ment improves with increasing n.

Finally, we also calculated the distribution of A„z
versus j for the one-dimensional field theory described in
Sec. I, using MACSYMA to evaluate the lattice sums. In
Fig. 8 we compare histograms of the relative numbers of
6th- and 12th-order graphs with j vertices for this one-
dimensional theory with the results for the zero-
dimensional theory of (815). The location of the max-
imum value of A„J and the widths of the distributions are
almost independent of the dimension. This shows that in
a statistical analysis of graphs, the graph-counting con-
siderations seem to be more important than the rules for
computing lattice sums.

iFor a good summary of this field see Int. J. Quant. Chem. 21
(1982). This issue reports the proceedings of the 1981 Interna-
tional Workshop on Perturbation Theory in Large Order. A
complete collection of references is given therein.

2See, for example, M. L. Laursen, and M. A. Samuel, Phys. Lett.
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22, 1114(1981).

For a study of asymptotic estimates in the many-fermion case,
see G. A. Baker, Jr. and H. J. Pirner, Ann. Phys. (N.Y.) 148,

168 (1983).
4See C. M. Bender, L. R. Mead, and L. M. Simmons, Jr., Phys.

Rev. D 24, 2674 (1981).
~C. M. Bender and S. A. Orszag, Aduanced Mathematical

Methods for Scientists and Engineers (McGraw-Hill, New

York, 1978).
See, for example, M. A. Evgrafov, Asymptotic Estimates and

Entire Functions (Gordon and Breach, New York, 1961), p.
105.
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7C. M. Bender and T. T. Wu, Phys. Rev. Lett. 37, 117 (1976).
SStrong evidence that G =—2 comes from the fact that the ap-

proximations in (4.12) and (5.8) when evaluated at a=1
predict the same controlling factor. Substituting n = 1 in
(4.12), one can easily perform the double summation over 1

and j. Using the value of V2„ in (1.11) one can also perform
ti e sum over k in closed form. The result is

C„=( —1)"9 (2n)!/(n —1)!. The approximation in (5.8),

evaluated for +=1, gives C„=2(G/2)"(2n)!/(n —1)f. These
two results are consistent for G = —2.

Handbook of Mathematical Functions, edited by M.
Abramowitz and I. A. Stegun (U.S. GPO, Washington, D.C.,

1964), (9.6.33),
~ To derive the result in Eq. (A8) we use the Taylor-series expan-

sion

( —,~)~+'"
Irtz)= Q (~ +y+1)

and observe that as y~ oo for fixed z the first term in the sum
dominates. We warn the reader that the formula (8) in 7.13,2
of A. Erdelyi et al. , Higher Transcendental Eunctions
(McGraw-Hill, New York, 1956), Volume II, p. 86 is in-
correct. It is wrong by a factor M~


