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Photon mass in a background of thermal particles
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The mass of the photon in the presence of thermal background particles is studied. We present a
general proof that all contributions to the photon's thermal mass from low-temperature thermal

m /2kT
backgrounds are suppressed by a huge exponential factor at least as large as e ' . We explicitly
show that there is no contribution to the photon's thermal mass of order (aGF)' (kT ) from two-

loop diagrams involving thermal neutrinos at temperature T„.The largest contribution to the
photon's thermal mass from the observed 3 K background is also calculated.

I. INTRODUCTION

The mass of the photon is not constrained to be zero in
finite-temperature field theory, ' unlike zero-temperature
field theory ~here gauge invariance guarantees that the
photon is massless. Recently, there have been several dis-
cussions about the effects of low-temperature thermal
backgrounds on the photon mass. Abbott and Cravela
have argued that temperature mass effects will be

m /kT
suppressed by a factor at least as large as e ', which,
for T of the order of room temperature or less, leads to a
gigantic suppression. They asserted that this follows be-
cause the photon mass is influenced by temperature effects
only through loops involving charged particles, the light-
est of which is the electron. For all practical purposes,
they conclude, the mass of the photon is unaffected by the
presence of thermal backgrounds. Subsequently, however,
Woloshyn pointed out that the photon can interact with
zero-mass thermal particles via diagrams of more than one
loop and that large contributions to the photon mass come
from terms in which only the zero-mass particles are
treated as being thermal. These terms avoid a huge

ng /kT
suppression factor like e ' since the thermal line has
zero mass. In particular he considered a 1.9'K thermal
background of neutrinos in the standard model and ob-
tained from two-loop diagrams involving a neutrino an
"electric" mass of the photon of the order of
V'aGF(mt/Mn )(kT„),where mt is the mass of the
heaviest standard-model charged lepton and T„is the
thermal, background-neutrino temperature. For
T„=1.9'K the "electric" photon mass is of the order of
10 ' eV, which is much smaller than the experimental
limit of 9&(10 ' eV. While this example is of no im-
mediate experimental interest, it leaves open the possibility
of constructing models with much larger photon masses.
Examples could be models in which thermal neutrinos are
replaced by massless thermal scalars, such as Majorons,
or alternative cosmologies where the temperature of the
background neutrinos are much greater than 1.9'K.
Woloshyn argues that replacing the thermal neutrino with
a thermal photon results in no contribution to the mass of
the photon due to gauge invariance.

In this paper, in Sec. II, we repeat the calculation of the

contribution to the photon mass from thermal neutrinos,
initially performed in Ref. 4. In contrast to Ref. 4 we ob-
tain no contribution of order QotGF(kT„) . We perform
our calculation in two different gauges. Also we calculate
the largest contribution to the photon's electric mass,
which comes from the electron one-loop diagram.

We present in Sec. III a general proof that thermal con-
tributions to the thermal mass of the photon are

m /2kT
suppressed by a factor at least as large as e ', when
kT (&m„with the mass of the electron appearing in the
suppression factor since the electron is the lightest charged
particle. The general proof is based on electromagnetic
gauge invariance and the singular or nonsingular nature of
the constituent subdiagrams of the photon self-energy.

A summary and our conclusions are given in Sec. IV.

II. LOW-ORDER CONTRIBUTIONS TO THE THERMAL
MASS OF THE PHOTON

In this section we shall compute the low-order contribu-
tions to the thermal mass of the photon in the standard
model. Initially we will discuss how in zero-temperature
field theory electromagnetic gauge invariance constrains
the photon's mass to be zero and how, in contrast, in
finite-temperature field theory the photon's "electric"
mass is no longer constrained to be zero although the
photon's "magnetic" mass is still zero. We will outline
how finite-temperature calculations are performed and,
for illustration, calculate the one-loop electron contribu-
tion to the photon's thermal mass for a low-temperature
background, kT(~m, . This contribution is the largest
perturbative contribution but nevertheless is suppressed by

m /2kT
the huge factor e ' . Next we calculate the contribu-
tion from two-loop diagrams involving low-temperature,
thermal, massless neutrinos. Since each of these diagrams
involves a massless thermal particle each contributes a
term to the photon's thermal mass that is not suppressed
by a huge exponential factor. However, upon summing all
the diagrams, we find that the contributions that are not
exponentially suppressed cancel, in disagreement with Ref.
4. As checks on our calculation we present diagram-by-
diagram results in two gauges and show the electromag-
netic gauge invariance in one gauge.

The photon mass in zero-temperature field theory is
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determined by calculating the photon self-energy

~»(P)= fd'x e' "&OI ~(jp(x)j.(0» IO& (2.1)

with

Pp ——Pp —Q7 u p

P"vr„„(P~)=0 . (2.2)

When Eq. (2.2) is combined with Lorentz covariance we
obtain

n»(P~) =n(P )(P g&„P&P„—) . Q.3)

To any finite order in e, 2r(P ) has no pole at P =0.
This follows from investigating the analytic properties of
vr(P ) Henc. e

in the limit P~~0, where PI' is the photon's four-
momentum. Electromagnetic gauge invariance implies
that RPgP —RP QP QP —QP

RP QP —QPgP —()
(2.11)

The connection to the zero-temperature case is as follows.
For T=O,

but

n&„(P,u)~vrz„(P)=m(P )(P g.„P„P)—, (2.12)

While Rz and Q» are not unique as a basis for ~„,they
have the useful properties

vrq„(P~~O)=0 (2.4)
R„„+Qp gq„P„P——/P—

Hence at T =0,
(2.13)

P"~„„(P,u) =0 . Q.7)

One can construct two independent Lorentz scalars from
Pand u.

and therefore the photon has zero mass to any finite order
in zero-temperature field theory.

Let us now consider the situation at finite temperature.
In the covariant formulation of finite-temperature field
theory a fluid in thermodynamic equilibrium is character-
ized by the four-velocity of the center of mass of the fluid
u„and a Lorentz-invariant parameter T. In the fluid's
rest frame uz ——(1,0,0,0), and T is the usual temperature
of the fluid. At finite temperature, radiative corrections
introduce a dependence on u& for physical quantities. For
example, the photon self-energy is now given by

m~„(P,u)= f d x e' "Tr[ZG'T(j~(x)j„(0))]
(2.5)

=fd x e' '"ge "' " "
&n

I
T(j„(x)j„(0))

I
n &,

(2.6)
where ZG is the grand partition density operator and
where the trace has been evaluated in the basis of physical
on-shell eigenstates of the Hamiltonian. We have as-
sumed that the densities are low so that the chemical po-
tentials can be taken to be zero. As above for the zero-
temperature case, electromagnetic gauge invariance still
implies that

rr(P )P =~I (P )=vrz. (P ) . (2.14)

The full photon propagator is obtained from the T =0
free-field propagator

D„(P)=~ —g„„+(1—g)
P P

(2. 1 5)

where g is the gauge parameter, by summing all the vac-
uum polarization insertions to obtain

iRp„ iQp„P„P
P —my- P —ml P

(2.16)

In the rest frame of the fluid (u =0) and for co =P =0 in
the Landau gauge (/=0) this reduces to

l
D(

P +nl
(2.17)

D,J
——

2 ( —5IJ+P;PJ/P ),P +mz-

and Dz& ——O. The limit P =0 is of interest for it is the
relevant limit to determine the static correlation lengths of
the electric and magnetic fields. The inverse of these
correlation lengths for P~O are identified as the "elec-
tric" and "magnetic" mass of the photon. In particular
the quantity m.L(P =O, P~O), evaluated in the rest frame
of the fluid, is identified as the "electric" mass

M=—P u~

[(Pau )2 P2]1/2 (2.8) (mr' )—:mL(Pp ——O, P~O) =mpp(Pp ——O, P~O) . (2.18)

This identification follows since
—+

&A p(x)Ap(y) & -e

n& (P, u) =vrz(p, rp)R„„+el(p,.rp)Q„„, (2.9)

2
Rpv=gpv upuv+P&Pvt p

Q»= —
2 2 (p u&+cpP&)(p u„+p2P„),Pv p2p 2

(2.10)

Since P =co —p we may interpret co and p as the
"Lorentz-invariant'" energy and the three-momentum of
the photon. In the rest frame of the fluid, ~ is the usual
energy while p is the magnitude of the usual three-
momentum. The general solution of Eq. (2.7) is

(2.19)

as
I

x —y I
~oo, so it is clear that (mz') ' is the correla-

tion length of the electric field. There is no reason for m&
to vanish. Similarly the quantity m z(P =0,P~0),
evaluated in the rest frame of the fluid, is identified as the
magnetic mass

(mr' ) =mr(Pp ——O, P~O)= —,gm'';(Pp ——O, P—+0)

(2.20)
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where n is integer and P= 1/(kT). For boson propagators

FIG. 1. The diagram for the electron one-loop photon self-
energy.

k —+co„=2n.n /( i P—),
while for fermion propagators

k ~co„=~(2n+1)/( ig—) .

(2.22)

(2.23)

since it defines the correlation length of the magnetic
field. However it can be shown' that for all orders in per-
turbation theory nT(PO ——O, P~O) -P as

~

P
~

~0 so that
the photon's magnetic mass vanishes for finite tempera-
tures.

To perform finite-temperature calculations in the fluid's
rest frame there are two equivalent formulations": the
imaginary-time formalism and the real-time formalism.
When particle densities are low, so that it is a good ap-
proximation to take the chemical potential equal to zero,
Feynman diagrams can be calculated for a system at tem-
perature T if the following changes are made.

(i) Imaginary Time:

(2.21)

(ii) Rea/ Time: The integration over four-momenta
remains the same but the free zero-temperature propaga-
tors have an additional temperature-dependent term. The
free scalar propagator becomes

Dp(k)= 2 2 + pe 5(k —m )k' —m '+ i e eI'E —1
(2.24)

while the free fermion propagator becomes

Sp(k) = . —
p~ (it+ m )5(k m)——m +ie

(2.25)

and the free photon propagator, when the gauge-fixing
term (1/2$)(B„A") is used, becomes

Dp(kg' = 5(k ) [g" —(1 g)k "k—"/(k +ie)],
k +EE 8 —1

(2.26)

where in each case E=(k +m )'r . There are analogous additional temperature-dependent terms for massive vector
propagators and ghost propagators.

The vertices are the same as in zero-temperature field theory for both formalisms. The ultraviolet divergences in the
finite-temperature field theory are just those of the zero-temperature field theory. Consequently the zero-temperature
renormalization procedure eliminates all ultraviolet divergences and finite-temperature effects do not introduce new ul-
traviolet divergences.

For illustrative purposes, let us calculate for kT &&m, the electron one-loop contribution to the photon mass from the
diagram in Fig. 1.' This turns out to be the "largest" contribution. Since at zero temperature the mass of the photon is
exactly zero, the only nonzero contribution must be due to temperature effects. The photon self-energy in the
imaginary-time formalism is given by

e " dk i in.„„(pe=0)=——g 3
Tr y„y„(2~)' " —m,

" —m,
(2.27)

where k =co„=(2n+1br/( iP) Since —finite. -temperature effects do not introduce new ultraviolet divergences and
since nz„(pI'=0) is zero for T =0 the divergences inherent in Eq. (2.27), when treated consistently, should cancel. To
handle the divergences consistently, we work in 4—2e dimensions and at the end let e—&0. Hence d k~d 'k and
Tr(yzy„)=(4—2e)g„„.Upon evaluating the trace in Eq. (2.27) and noting the parity of the integrands we obtain

m„„(p~=O)=0 for p~v,
—4e p(1 —e/2) " d' 'k —2(2n +1)2 1

vr „(2n) ' [(2n +1) +(PE/n)] (2n +1)2+. (PE/m. )2

(2.28)

—4e P(1 e/2) ~ d 2k; P/m 1
m;;(pI'=0) = ——

3—2e 2 22 2 2
vr2 „(2n)3 ' [(2n +1) +(PE/m)] (2n +1) +(PE/m)'

whereE=(k +m, )' . Using theidentity

rr
h

7TX

(2n +1) +x 2x 2

and its derivatives, we obtain

(2.29)
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n.oo(pJ'=0)=e P 1 —— sech
e d 'k

2 pE
(2m)

e d 'k k 1 13E
m;; (pJ'= 0}=2e P 1 —— tanh

(2n-) E ' PE 2
——'sech

2 2
tanh PE

2

(2.30)

Since for x large sechx =2e " the integral for ~00 con-
verges and we obtain the electric mass of the photon in a
thermal background at T ( «m, /k) to be

1/2

[mr ] =moo(pJ'=0) =4am,p 2 2kT
8

&Pl~

(2.31)

which agrees with the result in Ref. 4 up to a factor of 2.
For T=3'K, the temperature of the observed thermal
background

el 1O
—4X 104 ey' (2.32)

which clearly is not observationally relevant.
The first and third terms in the expression for m.;;

diverge since tanhx=1 for x large. However if dimen-
sional regularization is employed the divergences exactly
cancel. Furthermore, one finds that the finite parts of
n;;(pJ'=0) also cancel so that the magnetic mass of the
photon vanishes, as required.

Let us now consider those diagrams, which involve a
thermal massless neutrino, that escape the exponential
suppression. The lowest-order diagrams involving a neu-
trino that contribute to the photon self-energy are shown
in Fig. 2. To evaluate the photon mass in this case it is
easiest to use the real-time formalism. To obtain the
nonexponentially suppressed contributions to the photon
mass we take all the lines in the diagrams in Fig. 2, apart
from the neutrino line, to be at zero temperature and for
the neutrino line we only take the temperature-dependent
part. Note that the contribution to m.„„(pJ'=0)when all
lines are zero-temperature propagators vanishes from
gauge invariance. The computation reduces to evaluating

2n5(q )Tr[qA„„(pJ'=O,q)]
m.„„(pe=0)=

(2n ) e&l q I+1
(2.33)

l

photon forward scattering amplitude, q being the
neutrino's four-momentum. This follows since the 5 func-
tion from the thermal part of the neutrino propagator
forces the neutrino to be on its mass shell.

The diagrams for A&„(p,q) are given in Fig. 3. The con-
tributions to n.„„(pJ=O), not summed, of each diagram is
given in Table I for the Feynman gauge in the standard
model where

rJJ'J'(pJ'=0) =0, JtJ, not summed . (2.35}

Hence the nonexponentially suppressed contributions for
both the "magnetic" and "electric" photon masses have
canceled. One may wonder whether taking one or more
hnes in the diagrams for A&„(p,q) to be the temperature-
dependent part of their propagators may lead to terms
that are not exponentially suppressed. This is not the case,
with each massive temperature-dependent line in the dia-
grams for A&„(p,q) is associated an exponentially large
suppression factor &0(e+ ~

) where m is either the lep-
ton mass or the 8' mass (which is equal to the H+ mass
in the Feynman gauge). More on this later.

As a check on our calculation we repeated it in the non-
linear Rt gauge of Ref. 14 with g= l. In this gauge Feyn-
man rules simplify considerably. There are no H—+ 8' y

1 a
I,(z}= dy y+(1 —y)z

'
(2.34)

1 0
J,(z) —= dy

[y +(1—y)z]'

In Table I z=mI /M~ with m~ being the lepton mass.
Note that individual diagrams give contributions to the
photon mass of 0(+aGF(kT) ) [e.g. , diagram (i)], while
others give terms of 0(+uGF(mJ/M~)(kT) ) [e g , dia. -.
gram (v)]. However upon summing all the contributions
and performing exactly all the parametric integrals we ob-
tain

where A&„(p,q) is the physical zero-temperature neutrino-

(v)

(v}}) (ix)

(x) (xi) (x)t)

FIG. 2. Two-loop photon self-energy diagrams involving a
thermal neutrino. The wavy lines are photons, the curly lines
are either a W~+ or its unphysical Higgs partner H+, while the
straight lines are leptons or neutrinos, neutrinos being indicated.

FIG. 3. The one-loop neutrino-photon scattering diagrams.
The wavy lines are photons, the curly lines are 8'~+'s, the dashed
lines are H+'s, and the straight lines are charged leptons when
the line is internal and are neutrinos when the line is external.
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Feynrnan gauge

TABLE I. Diagram-by-diagram contributions to zr„„(pP=O).The factor (7zr/1201/2)aGFp is suppressed for contributions to
zroe(PP=O) while the factor (7zr/360V 2)aGFP is suPPressed for contributions to zr;;(PP=0), i =1,2, 3. z =mzz/Mivz.

Diagram
number (=1 in gauge of Ref. 14

1V

V

V1

V11

V111

X1

X11

X111

4[Ii(z) —2Iz(z)+Iz(z)+z [Ji(z)—2Jz(z)+Jz(z)j ]
18I2 (z) —2053 (z)
4I2(z)
8[ I, (z) —Iz(z)—+2Iz(z)+z [ —J&(z)+2Jz(z) —Jz(z) j ]
2z [I&(z)—2Iz(z)+Iz(z)+z [J&(z) —2Jz(z)+ Jz(z) j ]
4z t Iz(z) —Iz(z) j
0
4z [ —I~(z)+ 2Iz(z) —Iz(z)+z [

—J& (z)+ 2Jz(z) —Jz(z) j ]
2J, (z)
0
4z [Jz(z) —Jz(z) j
2z [J,(z) —Jz(z) j
8z [

—J,(z)+Jz(z) j

8~, (z) -8J,(z)
0
8[ I&(z)+—2Iz(z) —Iz(z)+z[ —J~(z)+2Jz(z) —Jz(z) j]

0
0
0
0
0

the onlinear Rt g~~g~ for ~=1 is the same a for the Feynma

couplings so that diagrams (ix)—(xiii) in Fig. 3 do not ex-
ist. Diagram (vii) still gives zero contribution. Further-
more the new, more simple form of the 8'Wyy coupling
results in diagram (iii) also giving zero. The diagram-by-
diagram result in this gauge are also given in Table I.
Upon adding the contribution to zr„„(PP=O),we find, as
before, ~& (p~=o) =0.

We should like to point out that checks of electromag-
netic gauge invariance greatly simplify in the nonlinear R~

l

P"A„„(p,q) =0 . (2.36)

The reason for the simplification in the nonlinear R~
gauge is that for g= I the W+—bosons satisfy the tree-level
Ward identity'

gauge. ' In particular one can easily check the elec-
tromagnetic gauge invariance for the neutrino-photon
scattering amplitude:

1 1 1 1
P k2 M 2 [gvp P iz gpppv gizvPPJ (k )2 M 2

' gvp k2 ~ 2 (k )2 M 2( +2k) —2 +2 (2.37)

The term in square brackets is the 8'+8' y vertex and
the other factors come from 8' +—propagators. Equation
(2.37) is the direct analog of the more familiar Ward iden-
tity for fermions

thermal neutrinos vanished in Sec. II.
To carry out the general proof we consider the spectral

decomposition of the photon self-energy, zrp„(P,u), at fin-
ite temperature in the covariant formulation:

I 1
X]Mg —m "g+P—m

(2.38)

Using the Ward identity in Eq. (2.37) we checked the
gauge invariance of 2& (p, q) in the nonlinear R ~ gauge for
g'= I and found Eq. (2.36) to be satisfied.

]n
Q

III. EXPONENTIAL SUPPRESSION OF m ~':

GENERAL RESULT

In this section we shall resent a general proof that
thermal contributions to mr from low-temperature back-
grounds are suppressed by a factor at least as large. as

m /2kT
e ' . The mass of the electron appears in the suppres-
sion factor for it is the lightest charged particle. The gen-
eral treatment of this section will explain why the nonex-
ponentially suppressed contribution to mz' from massless

FICs. 4. The forward Compton-type scattering R(P, Q;P, Q)
of the state

~
n), with momentum Q, off the photon, with

momentum P.
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n„„(P,u)= fd x e' '"ge " " (n
~
T(j&(x)j,(0))

~
n)

n

=f dcr2[f d Qe(go)5(g —o )e "~"T&„(Q,P)],

(3.1)

(3.2)

where

g fd x e' '"(n
~
T(j„(x)j(0))

~

n)5(P„—Q)=T „(Q,P)0(Q )0(Q ) . (3.3)

T„„(P=0,P~O; Q) =0 (3.5)

so that rr&„(Po——O, P~O) vanishes and consequently so
does the electric mass of the photon. [Recall that this lim-

it (Po ——O, P~O) is the limit in which the electric mass of
the photon is determined. ] The proof is as follows. Elec-
tromagnetic gauge invariance implies that

P"T„,(P, Q)=P T„„(P,Q)=0.
If T„(P,Q) is not singular for P~O, it can be expanded
about P =0 so that Eq. (3.6) implies that

P"T„„(O,Q) =0 .

The most general form for T& (O, Q) is

T~„(0,Q) =Agp„+BQ„Q„

(3.7)

(3.8)

so that Eq. (3.7) implies that A =B=0 and consequently
Eq. (3.5) is valid. Hence the photon's electric mass is only
nonzero if T&„(P~O,Q) is singular.

(II) T&„is singular only if one of the external photon
lines is attached to a charged particle in the state

~

n ).
The proof of this statement is analogous to the proof of

Low's theorem' about bremsstrahlung of very-low-energy
quanta. An example of the sort of diagram for T& which

Each term on the left-hand side of Eq. (3.3) is a
Compton-type scattering in the forward direction:
T„(Q,P) is the sum of all such terms with the same Q

Tq (P,Q)= g R(P, Q;P, g), (3.4)
a

z„=Q

where R (P,Q;P, Q) is depicted in Fig. 4. We will proceed
to carry out the proof in two steps.

(I) If T„„(Q,P) is not singular in the limit Pc=0,P~O
then

results in T& being singular is given in Fig. 5 where the
particle coupling to the photon is a scalar. In this case
T&„(P,Q) has a factor

e(2q +P)p
1

"(P+q) —m

which, since the scalar is on-shell (q =m ), reduces to

(3.9)

e(2q +P)p
1

"2P q+P' (3.10)

Clearly in this case as P~0, T& is singular. The same
singularity appears for the external photon attached to a
charged fermion or vector in the state

~

n ).
More generally, a photon can be attached to any exter-

nal particle i charged or uncharged, via higher-order in-
teractions as depicted in Fig. 6. For this sort of diagram
T„(P,Q) has a factor

J„(P+q,q)
2P q+P

(3.1 1)

wherej&(P+q, q) is represented by the cross-hatched blob
in Fig. 6 and where the singular factor 1/(,2P.q+P )

comes from the propagator. While the propagator factor
can give rise to a singularity as P~O one must investigate
the behavior ofj„(P+q,q) as P~O Two thi. ngs can hap-
pen.

(A) j„(q,q)&0. In this case T„(P~O,Q) is singular
and there is a contribution to mz. However j&(q,q)&0 is
just the condition for particle i to be charged, and conse-
quently there is a charged particle in

~

n ).
(B)j~(q, q) =0. In this case T&„(P~O,Q) is not singu-

lar and there is no contribution to m &. However
j„(q,q) =0 is precisely the condition for particle i to be un-
charged. Instead of being attached to an externa1 charged
line, the photon can be attached to an internal charged line
as was the case in our example involving the thermal neu-

Q

FIG. 5. An example that causes T„„(P,Q) to be singular as
P~0.

FIG. 6. The class of diagrams that causes T„„(P,Q) to be
singular as P~0.
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trino. However this sort of diagram does not result in the
appearance of a singularity' as P~O and does not give
rise to a contribution to the photon's mass.

To complete the proof recall the form of tr„„(P,u) given
in Eq. (3.1). If one goes to the rest frame of the fluid,

—P„/kT
each term has a factor e " where P„is the energy of
the state

~

n ). Since from statement (II) only those terms
that have at least one charged particle in the state

~

n ) can
give rise to a nonzero contribution to tr&„(P =O,P~O; u)

and since the electron is the lightest charged particle
P„&m, . Therefore the smallest suppression factor is

e ' . Consequently the photon's electric mass is

suppressed by at least e ' [recall m z' —(neo) '~~].
In summary the chain of argument is as follows. If

T& (P~O, Q) is not singular, then it is zero from elec-
tromagnetic gauge in variance which in turn implies
tr„„(P~O,u) is zero and mr is zero. T„„(P~O,Q) is only
singular if there are charged particles in the state

~

n ) at-
tached to the photon. However since each term in T„„is

—Po/kT
suppressed by e " and since the lightest charged par-
ticle is the electron with mass m, all such contributions to—~~ /2k~
m z' are suppressed by at least e

IV. SUMMARY AND CONCLUSIONS

We have shown that all contributions to the thermal
mass of the photon are suppressed by a large exponential

m /2k7'
factor e ' when the background temperature T is low,

kT «m, . The crucial point is that contributions to the
thermal mass of the photon come only from sets of dia-
grams in which one or more charged lines is taken to be
thermal. Since all charged particles have masses greater
than or equal to m, these lines are accompanied by huge

m /KT
Boltzmann suppression factors at least as large as e
While individual diagrams in which only zero-mass or
nearly zero-mass {and consequently zero-charge) lines are
taken to be thermal give contributions that are not
suppressed by large exponential factors, when they are
summed the nonexponentially suppressed terms cancel.
This latter result follows from {1) electromagnetic gauge
invariance and (2) the absence of infrared singularities as-
sociated with the vanishing of the photon's momentum for
the constituent subdiagrams that make up the photon
self-energy in which zero-charge particles are taken to be
thermal.
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