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We develop practical and rigorous techniques for calculating and renormalizing loop diagrams in

quantum chromodynamics defined in a static spherical cavity. Working with Feynman propagators
and in the Feynman gauge, we use multiple-reflection expansions for the cavity propagators to iso-

late and analyze the short-distance singularities in graphs. Nonsingular contributions to graphs are
evaluated using a set of "Feynman rules" in an energy —angular-momentum representation. As an

application we describe the calculation of the quark self-energy to lowest order in a, . We show that
the self-energy of a confined massless quark is finite and unambiguous, and that all divergences in

the case of a massive quark can be absorbed into a state-independent mass renormalization just as in

free space.

I. INTRODUCTION

(o) (b) (c)

FIG. 1. Examples of cavity perturbation theory diagrams.
Solid and spiraled lines denote confined quarks and gluons,
respectively, while the wavy line is an (unconfined) photon.

The aim of this paper is to develop practical but
rigorous techniques for calculating and renormalizing loop
diagrams in gauge field theories defined in a static spheri-
cal cavity. Typical diagrams of interest are shown in Fig.
1, where the external lines are cavity wave functions and
the propagators are "cavity propagators" which satisfy
(linear, homogeneous) confining boundary conditions, typ-
ically those of the MIT bag model. '

The diagrams of Fig. 1 are important for phenomeno-
logical calculations in QCD using the static-spherical-
cavity approximation to the bag model. O(az) correc-
tions to hadron masses, electromagnetic moments, and
weak charges require calculation of such diagrams. More
generally, to establish a connection between perturbative
QCD as applied to deep-inelastic processes at large Q and
confinement phenomenology at low Q, one must under-
stand renormalization and renormalization-group evolu-
tion in field theories subject to confining boundary condi-
tions. We do not address the question of how well the
static spherical cavity approximates the bag model. There
are well-known difficulties: the cavity approximation ig-
nores the "quadratic boundary condition" and violates
translation invariance. Here we are interested in the very
well-defined problem of the structure of (gauge) field
theories in finite domains.

Cavity diagrams are harder to compute than ordinary
Feynman graphs for several reasons. First, cavity propa-
gators are more complicated. Lacking translation invari-
ance, they depend explicitly on two spatial vectors, x and

x ', and can only be expressed as infinite sums. Secondly,
the constraints of angular momentum conservation at ver-
tices are weaker and algebraically more complex than
those of momentum conservation. Finally, the short-
distance singularities of the cavity perturbation theory ap-
pear at first sight to be worse than those of ordinary per-
turbation theory, where Lorentz invariance limits diver-
gences to those which can be canceled by Lorentz-
invariant Lagrangian counterterms. The allowed diver-
gences of cavity perturbation theory are richer [they can
be enumerated by including the timelike unit vector
7iu=(1,0,0,0) in the counterterm Lagrangian]. Further-
more, the sharp boundary which defines the cavity looks
like a potential source of such additional short-distance
singularities. 'Soft" bag models, ' which smooth out the
bag surface, may avoid these surface divergences. Howev-
er, such models do not lend themselves to practical calcu-
lations for several reasons. First, a smooth boundary
necessitates much more complicated surface-dependent
wave functions and propagators. Second, one could only
trust those results which are reasonably insensitive to the
details of the smoothing process. Third, by introducing a
scalar field with a spatially varying vacuum expectation
value to generate the soft bag, one invariably couples this
field to the quarks or gluons in a nonrenormalizable
fashion to achieve confinement. Loop-graph calculations
are therefore either divergent or dependent on ad hoc
model assumptions. We will keep the surface sharp and
argue that, to lowest nontrivial order, no new divergences
(beyond those of ordinary perturbation theory) arise in
physical quantities like energy shifts.

The problem of constructing a practical confined per-
turbation theory for QCD has been attacked many times
in the past. ' ' Our approach differs in several crucial
ways from all previous attempts. First, we separate out
the singular parts of all diagrams, and treat them analyti-
cally with the methods of conventional renormalization
theory; and second, we express the finite parts of diagrams
in a form amenable to highly convergent numerical com-
putation. In pursuit of these goals we have employed

(1) Feynman (as opposed to time-ordered) perturbation
theory, to reduce the number of graphs in each order;
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(2) a covariant (namely Feynman) gauge, to simplify the
structure of divergences, to avoid ambiguities and spurious
singularities associated with noncovariant gauges;

(3) the "multiple-reflection expansion" (MRE) for cavi-
ty propagators, to isolate and analyze potential short-
distance divergences;

(4) momentum-space techniques, to analyze the most
divergent parts of Feynman diagrams (those generated by
the two first terms in the MRE);

(5) the rotational invariance of the spherical cavity, to
write Feynman rules in angular momentum space with
simplifications analogous to the use of momentum space
in ordinary perturbation theory; and finally,

(6) Wick rotation, to replace slowly convergent "mode
sums" by highly convergent integrals. Some of these ele-
ments, notably (I), (5), and (6), appear in other cavity
QCD calculations. None alone is of much significance
[except perhaps (3)]. Together they enable us to renormal-
ize and calculate with cavity QCD.

Each of these ingredients warrants some discussion.
(I) In the end we find that cavity perturbation theory

resembles ordinary perturbation theory very closely: it is
vastly more economical to use Feynman propagators than
to analyze separately all time-ordered graphs. '

(2} Similarly, renormalization is much simpler in co-
variant gauges than in physical gauges. This is true of
proofs to all orders (which we do not attempt here) as well
as of the renormalization of one-loop graphs (as discussed
in Sec. VI). Another reason we choose a covariant gauge
is to avoid the special treatment required for the instan-
taneous Coulomb propagator in the Coulomb gauge.
This point is discussed further in Appendix A.

(3) We use the multiple-reflection expansion (MRE) to
isolate and analyze the short-distance singularities of cavi-
ty propagators. The idea of the MRE is very simple and
physical". The propagation from x to x ' in a cavity can
be imagined to occur either directly or via any number of
reflections from the surface as depicted in Fig. 2. Each
line in Fig. 2 is a free propagator Go(x, x'). Here x and x'
are four-vectors. The confined propagator G(x,x') can be
developed in an expansion in the number of reflections
from the surface, schematically

G(x,x')= G (x,x')+ I ds G (x,a)G (a,x')

+ J ds dsgG (x,a)G (a,P)G (P,x')

+ 4 4 0
7

where a,P, . . . are points on the surface. This is shown
pictorially in Fig. 3, where the vertices symbolize reflec-
tions. If we interpret reflections as interactions with a
dynamical background field describing the vacuum, Fig. 3

FIG. 2. Pictorial representation of the zero-, one-, two-, and
three-reflection contribution to the multiple-reflection expansion
for a confined propagator.

+ +

FIG. 3. The multiple reflection "Dyson-Schwinger" equation
for a confined propagator.

becomes an expansion of the Dyson equation for a soft-
bag propagator.

The virtue of the multiple-reflection expansion (for our
purposes) is that successive terms are successively less
singular at short distances. The divergent parts of the
Feynman graphs we have studied involve at most one re-
flection. We show explicitly that all divergences in the
lowest-order (in a, ) fermion self-energy lie in the zero-
reflection term, and can be renormalized exactly as in the
continuum. To the same order the (off-shell) propagator
insertion has divergences also in the one-reflection term,
while higher reflections remain finite. Thus the MRE
provides an extremely powerful tool for cavity perturba-
tion theory: it allows us to regulate and renormalize cavi-
ty Feynman graphs using the familiar techniques of ordi-
nary perturbation theory.

An important aspect of the MRE is the decomposition
of the propagator into a free term, G (x,x'}, and a boun-
dary term, G(x,x'),

G(x,x')=G (x,x')+G(x,x'),
where G(x,x') obeys the homogeneous equation and is ad-
justed so G (x,x') obeys the proper boundary condition.

For arbitrary geometries G(x,x') cannot be obtained in
closed form. For a sphere, with the aid of rotational sym-
metry, it can. Constructing G is equivalent to resumming
all terms in the MRE except the first (zeroth reflection).
Alternatively, one can keep the zeroth and first reflection
and resum the rest,

G(x,x')=G (x,x')+ I ds G (x,a)G (a,x')

These alternatives give us great flexibility. We can
separate out any number of singular terms in a propagator
for special, analytic treatment, and then resum the rest for
convenient numerical evaluation.

Numerical calculations are simplest when all but the
first one or two terms in the MRE are resummed.
Nevertheless, it is important to study the contribution to
physical quantities from successive reflections since this
indicates which depend weakly on the details of confine-
ment and which strongly.

(4) The most divergent contribution to any Feynman di-
agram is generated by taking the zeroth-reflection contri-
bution to all the propagators. Except for external wave-
function factors, this contribution does not "know" about
the surface and is translationally invariant, and can be
evaluated in momentum space using conventional Feyn-
man rules. Computation is simple, since we can borrow
standard techniques for handling divergences in momen-
tum space. Also, we can be confident that the regulariza-
tion scheme we use does not violate the generalized Ward
identities which are crucial in order to obtain cancellation
of divergences and to preserve gauge invariance after re-
normalization.
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Momentum-space techniques also simplify the analysis
of loop diagrams with first-reflection terms in one or more
propagators. The leading short-distance singularities in
the first-reflection terms are the same as the ones generat-
ed by an infinite plane and are most easily handled by go-
ing to momentum space in the directions tangent to the
plane. Using this mixed (x, pi) representation, we will
prove that the first-reflection contributions to the lowest-
order quark self-energy are finite.

(5) Rotational invariance plays a role in our formalism
analogous to Poincare invariance in unconfined field
theories. Manifest rotational covariance, via the Wigner-
Eckart theorem (and its generalization to four-point func-
tions), fixes the structure of our vertices. Loop summa-
tions over angular momenta replace the loop momentum
integrations of unconfined theories. In this aspect our ap-
proach resembles that of Refs. 7 and 9, where the impor-
tance of manifest rotational covariance was also recog-
nized. We achieve considerable additional simplification,
however, by making an SU(2) &&SU(2) decomposition of
the Dirac field. This allows us to handle the rotational
properties of the Dirac field in precisely the same manner
as scalar or vector fields, and considerably reduces the
number of invariant matrix elements describing the
quark-gluon vertex.

(6} In the end, the finite parts of loop graphs are given
by multidimensional integrals over the frequencies (ener-
gies} of internal lines and the radial coordinates of interac-
tion vertices, and multidimensional sums over angular mo-
menta. The integrands have singularities at (real) values
of the energy corresponding to all confined cavity eigen-
states. Calculation of this integral by the method of resi-
dues would reduce to a multidimensional sum over cavity
eigenstates ("modes"). Such sums are cumbersome, and
slowly convergent. ' We avoid them by performing a
Wick rotation. ' For the quark self-energy, we show it is
possible to rotate the energy integral until it is parallel to
the imaginary axis. The resulting multidimensional in-
tegral is highly convergent.

Our intention in this paper is pedagogical: We spell out
many of the details for scalar, spinor, and vector fields.
We assume the reader is well versed in ordinary Feynman
perturbation theory but has little or no familiarity with
confined field theories or with the multiple-reflection ex-
pansion. Although most of the results for scalars are not
new and, indeed, some are elementary, we review them in
detail in the next section as a warmup for the spinor and
vector problem. We derive closed expressions for the sca-
lar propagator subject to Dirichlet or Neumann boundary
conditions in a partial-wave expansion, and discuss their
analytic structure. We introduce the MRE, study its con-
vergence as a function of complex frequency, and show
how to resum it. We then study the singularity structure
of the MRE, and show how to isolate interior and surface
singularities. In Secs. III and IV, we repeat the analysis
for Dirac, vector, and ghost fields. The propagator for the
Dirac field confined to a spherical cavity was first written
down by Bender and Hayes' in much the same form as
we employ it. It also appears in the work of Milton. '

The MRE for confined fermions was first used in Ref. 14.
The extension to confined vectors is, to' our knowledge,
new, although the case of conducting boundary conditions

II. THE SCALAR FIELX)

A. The cavity propagator

We define the "cavity propagator" in a confined quan-
tum field theory to be the Green's function of the equation
of motion including boundary conditions, but ignoring in-
teractions. For a massless scalar field,

b, (x,x') = —5 (x —x'), (2.1)

where U =Bo —'()', x = (t, x ). We take the Feynman
boundary conditions at t =+ op. In addition, it is neces-
sary to impose boundary conditions on the surface of the
spherical cavity of radius R to which the fields are con-
fined.

For the scalar field we consider two different boundary
conditions:

and
Dirichlet: b, (x,x')

~

=0 (2.2a)

Neumann: x V'6 (x,x')
~

=0.
Three-vectors on the surface of the sphere are denoted
henceforth by a, P, etc., while x,y, . . . are interior vec-
tors. Analogous conditions are imposed when x ' is on the
boundary. The generalization to "mixed" boundary condi-
tions is straightforward and is given in Sec. IV, where it is
required.

There are many representations for the propagator
A(x, x'). The form most often used in studies of confined
QCD has been the eigenfunction expansion or mode sum.
This is not a convenient representation in which to handle

has been studied previously. ' In Sec. V, we study the ver-
tices of quantum chromodynarnics and combine with this
the results of Secs. III and IV into a set of "Feynman
rules" for confined QCD.

Finally, in Sec. VI, we illustrate our methods by describ-
ing the renormalization and calculation of the self-energy
of a confined quark to one-loop order in QCD. In most of
this paper we limit ourselves to massless quarks. In Sec.
VI, however, we also discuss the self-energy of a massive
quark. We show that it diverges logarithmically and show
that the divergence can be absorbed into a state-
independent mass renormalization. The renormalized
quark mass I depends on an arbitrary renormalization
point p in precisely the same way as it happens in free
space. After handling the divergences generated by the
zeroth-reflection terms, we then show that higher reflec-
tions are finite and finally give an expression for the quark
self-energy which can be put on the computer. Section VI
also contains some remarks on the calculation and renor-
malization of the confined gluon self-energy to one-loop
order.

The reader may wish to consult Sec. VI for a preview of
our methods before going into the details of cavity pertur-
bation theory.

In the interest of brevity, we have omitted proofs of
many assertions regarding the multiple-reflection expan-
sion. Since the MRE is of interest in itself and since some
of our results are novel, we have assembled them into a
separate paper on the MRE. '
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the short-distance singularities of perturbation theory. In-
stead we decompose the cavity propagator into a free-
space propagator and a boundary term

Now decompose b, ( in analogy to Eq. (2.3),

A((r, r', co) =A((r, r', co)+A((r, r', co) . (2.8)

b, (x,x')=6 (x,x')+b, (x,x'), (2.3) The free partial-wave propagator, Al(r, r', m), is construct-
ed by direct integration of Eq. (2.6):

b(x, x ',co)= g A((r, r', co)F( (II)F( (II') .
lm

The partial-wave propagator, b, ((r, r', co), satisfies

(2.5)

1 c)2 1(l + 1) 2, 5(r r')—
r — +co b((r, r', co)=

Qp TT

(2.6)

where b, (x,x') is the free, scalar Feynman propagator.
A(x, x') obeys the homogeneous equation analogous to Eq.
(2.1) and is adjusted so b, (x,x ') obeys Eqs. (2.2a) or (2.2b).

The decomposition of 6 into a free part and a boundary
part can be made (and exploited) independent of the shape
of the cavity. In order to obtain explicit representations
for 6 and 6, we exploit the symmetries of the sphere:
time translation and rotational invariance. We transform
to frequency space,

h(x, x ', co) = I dt e'"" ' 'A(x, x'), (2.4)

and perform a partial-wave expansion

b,((r, r', co) = icoj—((cor )h( "(cor ), Imco & 0

'(r, r', co) =icoa( ' 'J'((corj)((cor'), (2.10)

where a( must be chosen to satisfy the Dirichlet (D) orD(N)

Neumann {JV) boundary conditions, Eq. (2.7a) or (2.7b),
whence

=icoj((cor& )h( '(cor& ), Imco &0 . (2.9)

The normalization of Al(r, r', co) is determined by the jump
condition at r =r' in Eq. (2.6). Finally, the Feynman
boundary conditions at t = + ao prescribe the way in
which b, ((r, r', co) is to be interpreted on the real axis
(where it has a cut). A complete discussion of the analytic
structure of 4l and Al is given later in this section.

h({r,r', co) is a solution to the homogeneous equation
analogous to Eq. (2.6). It is regular at r =0 and r'=0 and

symmetric in r~r'. It must therefore be of the form

and
a( =h("'(x)Ij((x),

«"=h('" (x)~ii {x)

(2.11a)

(2.11b)

or

b( (R, r', co) =0

N6l (f, l"',co) g
——0 .r=R

(2.7a)

(2.7b)

for Imp~0, where x—=coR. For Imps&0, hl'" is replaced
by —hl

(2)

To summarize, the Dirichlet and Neumann scalar cavi-
ty propagators are given by

b, (x, x ', co) = ico g j((—cor )h('"(cor &
)—

lm

h "'(x)
j((corj)((cor') F( {II)F("(0'),

J({x
(2.12a)

h( (x)(&)'

b, (x, x', co)= icog j((c—or&)h( (cor&) — j((cor)J((cor') F( (O)F( (II')
lm J( (x

(2.12b)

for Im~ & 0. For Imago & 0, i is replaced by —i and hl"' by
I (2)

6((r, r', co) =6((r,r', co*),

h((r, r', co)' =b((r, r', co )
(2.13)

B. The analytic structure of the propagator

The partial-wave cavity propagator, Al, and the free
propagator, 4l, are both real analytic functions of cu, i.e.,
they satisfy the Schwartz reflection relation

I

where mo is real. According to the Feynman boundary
conditions at t =+ ao the physical propagator for real ~ is
given by the limit as co approaches the real axis from
above for Rmo&0 and from below for Reco &0. This is
represented in Fig. 4 by displacing the cuts slightly below
and above the real axis, respectively.

The full cavity partial-wave propagator, on the other
hand, must be a meromorphic function of co in the com-
plex plane, with poles at the (discrete) eigenvalues of the
cavity Hamiltonian. To make this explicit we rewrite Al
using

with singularities on the real axis at values of co which are
eigenvalues of the corresponding Hamiltonian.

The free partial-wave propagator has a cut on the entire
real axis associated with a continuum of unconfined
positive- and negative-energy eigenstates. The discontinui-

ty across the cut is

h((r, r', coo+i@) h((r, r', coo i@)— —
= —2l co+i(Q)OP )Jl(Q)PP'), (2.14)

so

(1)
(~)=jl(~)+inl(~)

6( (r, r', co) =coj((cor & )n((cor & )

nl(X)—co . j ((corj)((cor'),
jl(X)

(2.15)

(2.16a)
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X X X X X
x x x x x

FIG. 4. Position of the cuts in the complex co plane for EI as
given by Eq. {2.9).

FIG. 5. Position of the poles in the complex co plane for b
and 6 as given by Eqs. {2.12).

5( (r,r, co) =cojI(cor )nl(cor )

ni(x) .—co jI(corj)I(cor')
ji (x)

(2.16b)

for large
~

co ~,

0 iar{r —r )
A~(r, r',co)-, e ', Imco&0

2corr
(2.17)

for all co. b, ~
' '(r, r', co) is analytic everywhere except at

the zeros of jI(x) [ji (x)], which are the eigenvalues of the
scalar Dirichlet (Neumann) problem. The residues at the
poles are the properly normalized eigenfunctions of the
appropriate Hamiltonian. The Feynman boundary condi-
tions at r =+oo require the singularities in Ac(r, r', co) to
be displaced: slightly below the real axis for Rem &0 and
slightly above for Race~0. This ie prescription will al-
ways be assumed and is displayed in Fig. S.

In addition, the Neumann propagator possesses a double
pole at ~=0 with coefficient 3/4m. R . The same singular-
ity arises in the timelike component of the gluon propaga-
tor. Its role (or lack thereof) in cavity perturbation theory
is discussed at length in Appendix A.

Finally, we discuss the
~

co
~

~ ao behavior of hl and br.
For definiteness we take Imp~0. The behavior in the
lower half plane is similar. AI is exponentially bounded

except at the point r =r' where it vanishes like 1/co.
on the other hand, vanishes exponentially for large

~

co
~

except when r =r'=R:

2corr
(2.18)

This behavior as co~~ is good enough to allow us to
'Wick rotate co integrations to the imaginary axis.

C. Multiple-reflection expansion

In this and the following section we give a short survey
of the multiple-reflection expansion for scalar propaga-
tors. For details concerning the MRE in a general cavity
we refer to the work of Balian and Bloch" and to Ref. 16.
For derivations of results specific to a sphere (including
the resummation described in Sec. II D below), see Ref. 16.

The MRE for the Dirichlet propagator is given by

6D(x, x ',co)=h (x, x ', co) —2R f dQ [c) b, (x,a,co)]b, (a, x ', co)

+(2R) f dQQQp[c) b, (x, a, co)][mph, (a,P, co)]d (P, x', co)+

As before, a is a point on the surface and we use a shorthand notation for the radial derivative:

(2.19)

B~h (x, a,co):—R, b (x, x ', co) (2.20)

[Although we consider a sphere, everything in this subsection holds for a general smooth cavity if we replace R dQ by
ds and c) by the normal derivative (see Ref. 11).]

Equation (2.20) is not manifestly symmetric in x~x, nor is it obvious that it satisfies the Diriehlet condition as x
approaches the surface. In fact, it is symmetric and it does satisfy the x -Dirichlet condition. In Ref 16, we show it pos-
sible to rewrite Eq. (2.19) term by term in a manifestly symmetric form:

b, (x, x ',co)=b, (x, x ', co) —R f dQ b (x, a, co)B~b (a, x ', co)

+R f dQ dQph (x, a, co)c) b, (a, P,co)c)ph (P, x ', co)— (2.21)

where

f&~ =(c)+)s+f(d~) (2.22)

A demonstration that Eq. (2.21) satisfies the Dirichlet condition on both x and x is given in Ref. 16. We wish to em-
phasize that the correspondence between Eqs. (2.19) and (2.21) is term by term. Therefore the existence of two forms for
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the Dirichlet MRE does not confuse the meaning of the nth reflection. Of course, the usefulness of the MRE depends on
whether or not it converges, which we will discuss below. Even if it does not converge it may be useful if the remainder
after n terms can be explicitly calculated, which is indeed the case in a sphere.

The Neumann propagator possesses an MRE similar to Eq. (2.21),

b, (x, x ',co)=b,'(x, x ',co)+R f dQ 6'(x,a, co)B b,'(a, x ', co)

+R2 f dQQQph (x,a,co)B b, (a, P,co)Bph (P, x', co)+ (2.23)

the only difference from the Dirichlet case being the signs.

D. Summing the multipjke-reAection expansion

Here we show how to relate the expressions for the scalar cavity propagator obtained in the previous two subsections.
The key to summing the MRE is that it is diagonal in angular momentum. It simplifies considerably when we substitute
the partial-wave expansion [Eqs. (2.5) and (2.9)] for the free propagator and perform all angular integrals. The result is a
geometrical series which can be summed to give the correct confined partial-wave propagator hI. Details are given in
Ref. 16 and here we only quote the result,

2ix Jj (corj)I(cor')hI "(x)hI" (x)
h~ (r, r', co) = i co —Jt (cor )hI" '(cor )+ 2

(2.24)
1 —rx [J~ (x)h~ "(x)+J~(x)hI (x)]

for the Dirichlet boundary condition and Imco &0. The multiple-reflection expression for bl (r, r, co) is generated, term
by term, by making a geometrical expansion of the denominator in the second term of Eq. (2.24). Equation (2.24) repro-
duces the partial-wave expansion of b,

~ [Eq. (2.12a)] when one uses the Wronskian identity

jI(x)hI"' (x) jj (x)hI "—(x)=i /x

The corresponding result for the Neumann propagator is

2ix j~(cor)j I(cor')h~ "(x)hI" (x)
b, r (r, r', co) = i co j r—(cor )hI "(cor )—

1+ix 'Ui (x)hI' "(x)+jI(x)h,'"(x)]

(2.25)

(2.26)

(
zr(»

(
(1 . (2.27)

Of course, the MRE does not converge at the poles of A~

where zI ——1. These occur at the isolated, real values of
x,x„I, at which jr(x) =0. There are neighborhoods of each
pole along the real axis in which the MRE does not con-
verge. Thus the MRE is not a useful expansion for the
propagator for real co. On the other hand, the MRE can
be shown to converge everywhere on the imaginary axis.
The only exception is the l=O partial wave which does not
converge at co=0. For the Neumann propagator this re-
flects the double pole at co=0 (see Appendix A). For the
Dirichlet case the MRE does not converge even though
the propagator is nonsingular, just as the geometrical ex-
pansion of 1j(1—x) fails to converge at x = —1. We in-

for Imago & O. Any number of reflections can be singled out
of either the Dirichlet or Neumann propagator by partial
expansion of the denominator in Eqs. (2.24) or (2.26), i.e.,
denoting the denominator as 1 —z and using identities
such as

1 z 1 z'=1+ =1+z+
1 —z 1 —z 1 —z 1 —z

'

etc.
Now that the relation between the partial-wave propa-

gator and its multiple-reflection expansion has been made
explicit, it is possible to study the convergence of the
MRE as a function of x (=coR). Since the MRE for the
Dirichlet [Neumann] boundary conditions is obtained by a
geometrical expansion of the denominator in Eq. (2.24)
[Eq. (2.26)], both converge if and only if

l

tend to evaluate loop integrations over co by Wick rotation
to the imaginary axis, where the MRE converges every-
where except at co =0 for the l=0 partial wave.

K. Short-distance singularities

)&c) b, (a, x ',co), (2.28)

In order to analyze the divergences in Feynman graphs,
we must study the short-distance behavior of the confined
propagators. The MRE is ideally suited for this purpose.
This discussion does not rely on the convergence of the
MRE since it is always possible to single out any finite
number of reflections, and sum the rest analytically.

First, however, we must make clear what is to be meant
by short-distance behavior. We are interested in the ultra-
violet (UV) behavior of confined Feynman graphs. In
momentum space UV singularities can be discovered sim-
ply by counting powers of loop momenta. In (x,co) space,
the UV singularities show up as small

~

x —x '
~

and large
„divergences. We must therefore study leading terms

in 1/
~

x —x '
~

and co. In particular, a term -co
~

x —x '
~

is considered as O(1). In the following discussion, short
distance always refer to this limit of small spatial dis-
tances and large energies.

For x and x ' away from the surface, the only singulari-
ty is the usual 1/

~

x —x '
~

divergence in the zero-
reflection term. When both x and x ' approach the sur-
face new singularities are encountered. First consider the
one-reflection term

b. '(x, x ',co)=+2R f dQ~b, (x, a, co)
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where xi ——(x2,x 3). It is convenient to go to Fourier space
in the variable xj and also rotate to imaginary energy
m=1@4. The free propagator then becomes

b, (x„x', , pi p4) =RP(xi —x'i,p)
xl —xi I IP

~ e
(2.30}

where p=(pi, p~). In this representation, the integral in
Eq. (2.29) becomes a product, and one obtains

where the upper and lower signs refer to the Dirichlet and
Neumann boundary conditions, respectively. C1ose
enough, the spherical surface looks like a p1ane, so to ex-
tract the leading short-distance singularity in Eq. (2.28),
we consider the corresponding equation for the half-space
(HS) xi &0:

EHs(x, x', co)=+2 f d xi', (x,x",~)
xi' ——0

&& b, ( x ",x ', co), (2.29)
X)

2l +1 Pi(cosO)bi(r, r', co) .
1=0

(2.37)

The l summation converges except when both cosO= 1 and
r =r'. The analysis is especially easy when r and r' are on
the same ray and co is kept fixed. (This means that we do
not explore the complete UV divergence. For this we
must resort to the previous formulas. For demonstrating
the presence of a logarithmic singularity in 6, however,
the partial-wave method is convenient and sufficient. )

Thus we study the singularities by setting cosL9=1 and ex-
ploring the singular behavior of A(r, r', I,co) for r-r'.
Since the singularities arise as divergences in the l summa-
tion, we use the large-l asymptotic expansions for the
spherical Bessel functions.

Consider first the free propagator, b. (r, r', I,co). Upon
substituting the asymptotic forms of j1 and n1, we obtain

flection terms, we apply the addition theorem for spherical
harmonics in Eq. (2.5),

h(x, x ',co) =h(r, r', cos8, ro)

EHs(X i,X i,p ) = +4 (X i +X i,p )

or, back in (x,co) space,

AHs( x, x ', co ) = +5 ( x, x ii, co )

where

Xg =Xg —X)X)~

(2.31)

(2.32)

(2.33)

LP(r, r', l,co)-— (2.38)
4m.

/

r r'/—
which coincides with Eq. (2.35} if we take 0=0 and drop
terms -gx.

Next consider the boundary term for the Dirichlet prop-
agator (the Neuman propagator behaves similarly). The
same analysis gives

This result is easily understood. The point x z is the im-
age point of x ', so the one-reflection term in the MRE
simply corresponds to direct propagation from the image
charge. For an infinite plane, this is the whole story; for a
curved surface Eq. (2.32} gives the leading singular
behavior close to the surface.

Going back to the spherical geometry, it is useful to in-
troduce the following variables:

(2.39)

which has a linear singularity only when both r and r' ap-
proach R. The same approach allows us to analyze the
successive reflection terms contributing to 6 . From Eq.
(2.24), we obtain the nth reflection,

' (r, r', I,co) =2cox g j i(corj)i(d'or')Dn ~ 2
" 2l+1 .

1=0 4

2R —r —r'
(2.34a) Xhi"'(x)hi' '(x)[zi(x)]"

(2.34b)

If the angle between x and x ' is 0 and we make the ap-
proximation sin8=8, the zero- and one-reAection terms
for both x and x ' close to the surface are now given by'

and

rx(g2+e )'~2
1 e6 (x, x,co)=-

4~R (rI +g )
(2.35)

eix(g +e )

6 (X,X,CO)~+ (2.36)
((2+g2)1/2

where x =coR and Imago & 0. From Eq. (2.36) one sees that
the one-reflection term is singular only when the two
points coincide and simultaneously reach the surface. The
above singularities in 5 and 6' are the only ones that will
be important in calculating (one-) loop diagrams although,
as will be seen below, there is also a logarithmic singulari-
ty in the two-reflection term.

To analyze the short-distance singularities of higher re-

(2.40)

b, '(r, r', leo)—
4'(R —rr')

b, ' (r, r', i,c0)-+ ln 1a, 2 1 7T

8~R

(2.41}

(2.42)

and 6 '"(r,r', I,co) is finite for n & 2. Equation (2.41}coin-
cides with Eq. (2.36) if we put 0=/x=0. Apparently the
dominant (linear) surface singularity of b, is generated
entirely by the first reflection.

The utility of the multiple-reflection expansion is now
apparent: it is an expansion in decreasingly singular
behavior at short distances. We should mention that the
propagator b. (x, x ', co) will typically appear multipled by
expressions involving wave functions which vanish linear-
ly on the boundary. Thus the surface singularities in 6
do not generate new divergences in Feynman graphs.

for Imago &0. Extracting asymptotic behavior in the same
manner, we find
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and

(y co+i y V )S(x,x ', co) =53( x —x ') (3.1)

(i y a+ 1)S(a,x ', co) =0, (3.2)

where n is on the boundary. An analogous condition
holds when x ' is on the boundary. Throughout this sec-
tion we take Imago &0, unless otherwise stated. The analyt-
ic continuation to Imago&0 is more complicated for the
Dirac propagator and is discussed below. To exploit rota-
tional invariance most fully, we decompose the Dirac
spinor space into a direct product of SU(2) spaces, p space
and o. space, defined by

y =p (8)1,

y=ip o,
y'=p'e 1,

(3.3a)

(3.3b)

(3.3c)

where p and o. are Pauli matrices. In terms of p and o,
Eqs. (3.1) and (3.2) become

and

(p co —p cr V)S(x, x ', co)=5 (x —x ') (3.4)

(p o"a—1)S(a,x ', co)=0 (3.5)

on the boundary.
S(x,x ', co) may be expanded in partial waves employing

the two-component spinor spherical harmonics Pjj (Q)
(the spinor index a generally will be suppressed),

S(x x co)= g Sjll'(r, r', co)ct1jlm(Q)gjl'm(Q ) (3 6)
jll'm

III. THE DIRAC FIELD

A. The cavity propagator

In this section, we analyze the confined Dirac propaga-
tor in the same fashion as the scalar propagator was
analyzed in the previous section. Some technical details
which arise in this section are relegated to Appendix B.
The cavity propagator for a massless Dirac field obeys

The functions f1(cor) are defined as follows:

f~(cor) =j1(cor)8(r' r)+h~'"(c—or)8(r r') . —(3.10)

Strictly speaking, our notation here is not correct, since f~
is a function of two variables. However, only the corn-
bination f~(r)f~(r') occurs so there should be no con-
fusion, and what we have lost in precision we have gained
in compactness and simplicity.

The boundary term Sjll must be of the form

Sj1r( r, r', co) =i co a&~j (x)J'1 (cor)J'1 (cor '), (3.11)

where x =coR, in order to satisfy the differential equations
and regularity requirements. The coefficients azll are 2 X 2
matrices in p space which must be chosen to satisfy the
boundary condition Eq. (3.5). Once again details may be
found in Appendix B. The results for Imago & 0 is

where Sjll is a 2&2 matrix in p space. The lack of cou-
pling between the angular and the p-space dependences of
Eq. (3.6) reflects the fact that the generators of rotations
of a Dirac spinor commute with all p-space transforma-
tions. S is not diagonal in l since orbital angular momen-
tum is not conserved by the Dirac Hamiltonian. The
sums on j, I, and m carry the usual restrictions:

2 2 2 ' ' I=j+ 2 a d —j&m&j. Toobtainaset
of equations for the partial-wave propagators, Sjll, we also
need the completeness condition

5 ~5'(Q —Q') = g P,, (Q)pter (Q ) (3.7)
jim

Sjll can be decomposed into the free partial-wave propaga-
tor plus a boundary term

Sj11.(r, r', co) =S&g (r, r', co)+Sj21 (r, r', co) . (3.8)

We obtain Sz~l from the differential equations and boun-
dary conditions which define the free, Feynman propaga-
tor. This analysis is carried out in Appendix B. The re-
sult, for Imago & 0, is

Szr~ (r, r', co) = ico [511p—+(I' l)p ]f1(co—r)fr (cor') .

(3.9)

Sjll (r r co)=ceo [c,(x)[511p'+(1' l)p ]+d (x)[(1 l)5a—i5—I)p'] Ij—1(cor)jr(cor'»

where

I&) I&)Jj—1/2(x)hj —1/2(x) Jj+1/2(x)hj+1/2(x)
cj(x)=

J, 1/2'(» j+1/2'(»-—
and

(3.12)

(3.13)

dj(x) = i/x
JJ —1/2 (x) Jj+1/2 (x)

(3.14)

and x =a)R.
To summarize, the Dirac cavity partial-wave propagator is given by

S&~1 (r, r', co)= ico [511p —+(1' l)p ]f1(cor)f~ (cor')+—ico Ic (x)[511p +(1' l)p]—
+d (x)[(l l)511 i5Ijp ]. ]j1(cor—)J1'(cor—) . (3.15)
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S. The analytic structure of the propagator

The partial-wave propagators Sjll and Sja are defined in
the lower-half co plane by a generalization of the Schwartz
reflection relation:

half plane is as follows. $&Ir(r, r', co) is exponentially
bounded,

S»(r, .r', co) ——,[5«p +(I' —l}p ]J 7 7 2'
SJ»(r, r', co')=p SJI I(r', r, co) p (3.16) ice(r —r )—i &1 —l )/2

(3.19)

derived in Appendix B. From this it is possible to deter-
mine the nature of the singularities in Sjll on the real axis.

The free partial-wave propagator, Sjll, has a cut on
the entire real axis with discontinuity

S «' (r r coo+ l e ) —S«( r, r ', coo iE)—
2i~o [5«'P +(I i)P ]jt(~or}J}'(~or')

except at r =r', where it approaches a constant. In Eq.
(3.19), l& ——I if r& r——and l& ——1' if r& r' ——Th.e boundary(
term SJIr vanishes exponentially for large

~

co
~

except
when r =r'=R,

lS«(r r co) ——,[2(j —l)5« —i5)},p']J 2jv1"'

(3.17)
tee(2R —r —r') —i &2j —l —l')/2xe (3.20)

The Feynman boundary conditions require this cut to be
displaced infinitesimally from the real axis, as shown in
Fig. 4.

The full cavity propagator has no cut, only poles at the
eigenstates of the Dirac cavity Hamiltonian. The poles
occur at the zeros of the denominators of cj(x) and dj(x):

DJ (x ) =j, ~ r2'(x ) ji+,~,'(x)— (3.18)

which the reader will recognize as the current eigenvalue
condition. The residues of these poles are the properly
normalized cavity wave functions. The Feynman boun-
dary conditions require the poles to be displaced, as shown
in Fig. 5.

The behavior of SJ«(r, r', c0) for large co in the upper
I

Note only the dj(x) term of Eq. (3.15) contributes to Eq.
(3.20). The cj(x) term vanishes faster by a power of 1/co2.
The Dirac propagator is less well behaved at large co than
the scalar propagator reflecting its greater singularity at
small relative time. Nevertheless, the large-m behavior
displayed in Eqs. (3.19) and (3.20) is sufficient to allow us
to Wick rotate co integration in the quark self-energy cal-
culation of Sec. VI.

C. Multiple-reflection expansion

The multiple-reflection expansion for a Dirac propaga-
tor obeying Eq. (3.2) is derived in Ref. 16. We quote the
result,

S(x,x ',co)=S (x, x ', co)+2R f dQ~S (x, cc,co)P S (c7, x ', ca)

+(2R ) I dQ dA«S (x, a, co)P S (cc,g, co)P«S (P, x ',co)+

where

P~ =
2 ( 1+.i y a }

(3.21)

(3.22)

D. Summing the multiple-reflection expansion

As in the scalar case, we substitute the partial-wave expansion, Eq. (3.6) for S(x, x ', co) and likewise for S (x, x ', co)
into Eq. (3.21), and perform angular integrals using orthonormality properties of the PJ~ (0),

SI«(r, r', co) =SJII (r,r, c0)+2R Q S~g, (r,R,co) g [2R PS (R,R,co)P]~I,I,S~~, I (r, r', co) .
ill~ n =0

(3.23)

(3.24)

SJ« is a 2 X2 matrix in p space. It is convenient to represent the I dependence (i =j + —, ) also in matrix form. In particu-
lar, SJ«(r, r', co },given in Eq. (3.9), may be written as

f (cor)
S (r, r', co) = .ice . ,— p (f (cor'), ip'f+ (cor')), —

ip f+(cor) )—

where f+(x)=fj+,&z(x), and the matrix displays the four combinations of I and 1 values associated with each j. SJIr has
yet to be defined when r =r =R. This problem is discussed at length in Ref. 16. %'ith the correct definition of
Sz» (R,R,co) it is straightforward to perform the sum in Eq. (3.23) and obtain

SJ(r, r', co) = —co'x [h""(x)—h'+' (x)] (3.25)
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where x =coR, and

kj(x}= ix—[h"'(x)j (x) h—'+'(xj)+(x)] .

A little algebra using the Wronskian identity

h'"(xj)+(x) h—'+'(xj)(x)=i/x

(3.26)

(3.27)

g Ajj+1/2m (+}hajj +1/2m (+ )

[(j+ ,' )I—'1(2)+it7(x Xx ')&~'(2)], (3.33)

where z =x.x ', and one derives the identities

converts this to the expected form, Eq. (3.12). The MRE
is generated by a geometric expansion of the factor
(I+kjp )/(1 —kj ). Odd reflections are proportional to 1,
even reflections to kjp . As before, any number of reflec-
tions can be separated for special treatment by partial ex-
pansion of this factor.

The convergence of the Dirac MRE depends on the
magnitude of kj (x). If

2j+1
Pjj+1/2ltl (+}kjj+1/2ltl ( 8~ (3.34}

g4jj+1/2 «}4jj+1/2 «)=—2j+1
cT x

8~

which together with the expression for SJ and SJ in Eqs.
(3.15) and (3.25) give the following behavior for r -r':

~

kj(x}
~

& I, (3.28) S (r, r', coso= l, to)—p, —1 p 0 x
41r /r r'/2— (3.35)

the MRE converges, otherwise not. As in the scalar case,
it is easy to show that there are regions on the real-~ axis
in which Eq. (3.28) is not satisfied, but that Eq. (3.28) is
valid and the MRE converges everywhere on the
imaginary-cu axis. The proof is similar to the scalar case
and we omit it.

and for r —r'-R:

S (r, r', I,to)— 1 1

41r (R rr')—
I

S (r r', l,co)- ln 1 —— p o"x .
8~R

(3.36)

(3.37}

E. Short-distance singularities

The confined Dirac propagator is more singular at short
distances than the confined scalar propagator. Further-
more, the structure of the singularities is complicated by
the presence of spin. Our analysis mimics the scalar case.
The leading short-distance singularity is the same as for a
half-space. In the notation of Sec. II E, we have

Equations (3.36) and (3.32) coincide if we take 0=to=0.
Notice that, as expected, the two-reflection term in this
case has a linear rather than a logarithmic short-distance
behavior, as evidenced by the factor m.

IV. THE GAUGE FIELD

S (x1,x'1,p)=(iy'5/Bx1+p y)b, (x1,x'1,p) . (3.29)
A. The cavity propagators

or transforming to (x,co) space,

SHs(x1,x1tto)= ty'S (x —xj1'ttto)

=S (x,xj1,to)iy', (3.31)

which again can be understood in terms of propagation
from an image charge.

Using the same approximation as in Sec. IIE, the one-
reflection term for x and x' both close to the spherical
surface and Imago &0 is

S'(x, x ', to) — itoy y x

—(gR i o xX x—')—"—b, (t, to),
t dt

(3.32)

where y x =y x ', tr = (i /2) y X y, t =R (g +8 ) '/, and
b, (t, to) is given by the right-hand side of Eq. (2.36) (tak-
ing the upper sign).

Higher reflection terms are most easily studied using

the partial-wave expansion with the angle 0 between x and
x' set to zero and co kept fixed. From the addition
theorem for spinor spherical harmonics,

Substituting this in Eq. (3.21) gives

SHs(x, ,x', ,p) = iy'(iy''t3/—Bx, +p y)b, ( —x1,x', ,p),
(3.30)

(P' +to }D( x, x ', co) =5 ( x —x ') I. ,

(V' +co')Dao(x, x ', co) = —5 (x —x '),
(V' +co )g(x, x ',co)= —53(x —x '),

(4.1a)

(4.1b)

(4.1c)

where the the signs reflect well-known metric properties of
gauge theories. Through this section we take Imago&0.
Continuation to Imcg &0 is straightforward a~d discussed
below.

The boundary condition on F&,
n„FI'"=0, (4.2)

is not sufficient to allow one to invert Eqs. (4.1) and must
be augmented by an additional gauge-fixing boundary con-
dition. ' A sufficient, additional condition,

n„A"=0, (4.3)

can be obtained from either the Euclidian function in-

tegral or Lagrangian formulation of the field theory.

We denote the confined vector propagator as

D&„(x,x ', co) in frequency space, we work in the Feynman
gauge and suppress color indices. The time-space com-
ponents, Dok, vanish, leaving Doo(x, x ', co) the propagator
of timelike gluons, and D ( x, x ', to) the (3 X 3 matrix) prop-
agator for spacelike gluons. In the Feynman gauge we
also require a ghost propagator g(x, x ', co). All of these
Green's functions obey inhomogeneous Helmholtz equa-
tions
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The boundary conditions on D induced by Eqs. (4.2) and
(4.3) can be written with the aid of projection operators V LQNG( ~)

1/2J
2J+1 fJ,(cor)YJJ,M(Q)

and

P~~ =X X

P] ——1 —xx

(4.4)

(4.5)

1/2J+1+ 2J+1 f (cor)YJJ+1M(Q)

(4.14)
in dyadic notation,

V JM(co, x) =fJ(cor)YJJM(Q), (4.15)
P~~ D(a, x ',co)=0,

(1+c) )PID(a, x ', co) =0,
(4.6)

(4.7)

c)j)oo( a, x ', co) =0 . (4.8)

where 8 is defined by Eq. (2.20}. Similar conditions hold
when x ' is on the boundary. The boundary condition on
Dao induced by Eq. (4.2) is Neumann D ( x', x ', co ) = i co g—V JM ( co, x )V JM (co, x ')

JMk
(4.16)

where fJ(cor) is defined by Eq. (3.10). We also define vec-
tors U JM(co, x ') in the same way but with fJ(cor) replaced
by jJ(cor). D (x, x ', co) is diagonal in the (TM, LONG,
TE) basis

The ghost boundary conditions are somewhat more diffi-
cult to obtain, ' but are fixed by gauge invariance also to
be Neumann,

and so is D(x, x ', co),

D(xx ', co) =ico g aJ(x)U JM(co, x)U JM(x, x ') .
JMk

(4.17)

B~(c7,x ',co)=0 . (4.9)

+YJLM(Q) Y JL'M (Q) (4.10)

where J, L, and M are summed over the expected ranges:
J=0,1,2, . . . , J—1 &L &J+ 1 (except if J=O, when
only L= 1 occurs), and —J~M &J. We decompose DILL
into a free propagator and a boundary term,

DJLL (r r co) =DJLL (r r co)+DJLL ( co)
0 (4.11)

The free partial-wave propagator is a direct generalization
of the free scalar propagator,

DJLL (r, r, co)= —ico5LL JL(cor& )hL (cor& ), Imco&0,

(4.12)
DJII ~ is diagonal in L because the wave equation is.

The bag boundary conditions on I'" are not diagonal in L
but are diagonal instead in a basis of transverse magnetic
(TM), longitudinal (LONG), and transverse electric (TE)
wave functions. D (x, x ', co) is therefore also diagonal in
this basis. To make use of this we define new basis vec-
tors V (co, x) which are solutions to the Helmholtz equa-
tions, where k runs over the labels TM, LONG, and TE:

' 1/2

y TM ~ J+1V JM(co, x ) = fJ i(cor)YJJ iM(Q)2J+1
' 1/2

fJ+ i(cor )YJJ+ iM(Q)

(4.13)

The ghost and timelike propagators will be largely ignored
for the remainder of this section since scalar propagators
subject to Neumann boundary conditions have been dis-
cussed in Sec. II.

We now turn to the propagator for spacelike gluons de-
fined by Eqs. (4.1), (4.6), and (4.7). We define a partial-
wave expansion employing vector spherical harmonics,
YJIM(Q),

D(x, x ',co)= g DJII (r, r', co)
JLL 'M

The coefficients aJ(x) are adjusted so that D(x, x', co)
obeys the appropriate boundary conditions with the result
that

and

aJ™(x)=hJ '(x)/jJ(x),

aJ (x)=hJ" (x)iJ'J(x),

h'"(x)+xh'" (x)
aJ (x)= jJ(x)+xj J (x)

(4.18a)

(4.18b)

(4.18c)

reflecting Dirichlet, Neumann, and mixed boundary con-
ditions, respectively [see Eqs. (2.11a) and (2.11b)].

It is convenient for later manipulations to rewrite the
boundary term on the basis of spherical harmonics as in
Eq. (4.10). This may be accomplished by introducing a set
of projection operators, QJLL, QJII ~, and QJLL, defined
by

TM
QJ

LONG
QJ

000
QJ ——0 1 0

000

J+1 0 —[J(J+1)]'I'
0 0 0

—[J(J+1)]'J2 0 J
(4.19)

J 0 [J(J+1)]'"
0 0 0

[J(J+1)]'I' 0 J+1
(4.20)

(4.21)

Using these operators the results of Eqs. (4.13)—(4.18) can
be combined into

DJLL'(rir ~) ico[aJ (x)QJLL'+aJ (x)QJLL'
TM TM LONG LONG

+aJ (x)QJIL j]I (&r)JL (&r ) . (4.22)

Note that for J=O only the longitudinal mode contributes
LONGsmce Qoii is the only nonzero projection-operator ma-
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trix element with J=O and L =L'=1. This was to be ex-
pected: there are no monopole modes of a transverse vec-
tor field.

For completeness we record the partial-wave decompo-
sitions of the timelike gluon and ghost propagators, which
are the same,

Dooi=gc=ico ji(cor& )hi (cor& )

~,"'(x)
Ji(corj)i(cor )jl'(x)

(4.23)

The gluon propagator is, of course, gauge dependent. A
gauge transformation will change the form of the longitu-
dinal and timelike pieces of the propagator but will leave
the physical transverse pieces unchanged. Thus our ex-
pressions for the TM and TE pieces in DJLI ~ are, after ap-
propriate manipulation, identical to the transverse propa-
gators quoted by others working in the Coulomb gauge.

DjlL '(r r, co ) =DjLI '(r r co)

DjIL'(r r co )=Djll '(r r co)

(4.24a)

(4.24b)

Consequently, the free partial-wave propagator, DJII, has
I

B. Analytic structure of the propagator

The partial-wave cavity propagators Djl j (r, r', co} and
Djcl (r, r', co) are, like their scalar counterparts, real ana-
lytic functions of co defined in the lower-half co plane by

a cut along the entire real-co axis which is displaced, as in
Fig. 4. The full cavity partial-wave propagator, DJLI, is a
meromorphic function with poles at the values of ~ corre-
sponding to cavity eigenvalues of the TM[jj(x)=0],
TE[jj(x)+xjj(x)=0], and LONG[j j(x)=0] modes. The
poles are displaced, as in Fig. 5. There is a single, impor-
tant exception to this: The timelike and ghost propagators
obey Neumann boundary conditions and therefore have
poles 'for J=O at co=0, because jo(x) vanishes at x=O.
Had we worked in the Coulomb gauge, this effect would
have required special treatment, as in Ref. 4. In covariant
gauges there is no problem: In Appendix A, we show that
the residue of the pole at co=0 in the lowest-order quark
self-energy is proportional to the total color charge of the
state, which for confined systems is zero. We believe this
to be a general property of all Feynman graphs so that it is
consistent merely to ignore the pole at co=0 throughout
the calculation. The interested reader should consult Ap-
pendix A for a careful discussion.

Finally, we note that asymptotic behavior of the con-
fined vector propagator as

~

co
~

~ ao in the complex plane
coincides exactly with that of the confined scalar propaga-
tors.

C. Multiple-reflection expansion

As in the previous sections, we only quote the final ex-
pressions for the MRE. The results for Doo and g are
given in Sec. II C so only D is new,

D i ( x, x ', co ) =D ( x, x ', co) +2R f d Q D ( x, a, co) K i D ( a, x ', co )

+(2R) f dQQQpD (x, a, co)K ~D (a, P,co) K ~~D (P, x ', co)+. . . (4.25)

where

K i=(A, +i) )P)~ —(I+c} )PJ

As explained in detail in Ref. 16, the parameter A, is arbi-
trary. In order to resum the MRE, however, it is con-
venient to choose A. =2.

D. Summing the multiple-reflection expansion

If we substitute the partial-wave expansion for
D (x, x ',co), analogous to Eq. (4.10), into the MRE and
perform the angular integrations, the result is an infinite
geometrical series involving a 3&3 matrix in L space
(L =J—1,J,J+ 1} which is difficult to sum. Knowing
that the fu11 cavity propagator is diagonal in the TM,
LONG, and TE basis, we attempt instead to substitute the
expansion, Eq. (4.16), of D (x, x ', co) in this basis. We are
confronted with integrals of the form

fk ~ a k' kk'd Q~V j~(co, a ) K i V j~ (co, a ) 5jj 5MM Cji (x),
(4.27)

where k and k' range over the labels TM, LONG, and TE

+ [jj(x)hj"(x—)+jj (x)h j"'(x)],

(4.28a)

Cji 2' (x)= ——[jj(x)hj"(x)+jj(x)hj"(x)],

CTE,TE( ) CTM, TM( )

(4.28b)

(4.28c)

and Cqg —2 —0 when k&k'. With this choice of A, , the
MRE, Eq. (4.25), simplifies to three independent geometri-
cal series which may be summed to give the surface term
aj(x) in the (TM, LONG, TE) basis [see Eq. (4.17}]

I

and the vectors, V, are defined in Eqs. (4.13)—(4.15).
If and only if A, =2, then CJ~ is proportional to 5

That is to say, for A, =2 the polarization (either TM,
LONG, or TE) is preserved by reflection. Since A. is, in
fact, arbitrary we cannot assign any physical meaning to
this property; nevertheless it facilitates surnrnation of the
MRE. Setting A, =2, we compute Cz~ 2.

CTM, TM( )
~

( )P (I)(
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+2ixIiJ"(x)[hq"(x)+xhq '(x)]
I+2ixhz"(xj)J(x)+ix [hJ"(xj)1(x)+hJ" (x)jz(x)]

2ix hq"(x)hq" (x)

1+ix [hJ"(xj)J (x)+jib" (x)jq(x)]

(4.29a)

(4.29b)

for Im~ &0. To convert these results to the form we ob-
tained earlier it is necessary to use the Wronskian identity,
Eq. (2.25). The multiple-reflection expansion (with A, =2)
is obtained by expanding the denominators in Eqs. (4.29)
in geometrical series, allowing us to isolate any number of
reflections for explicit, analytic treatment.

The convergence properties of the gluon MRE are simi-
lar to the scalar ME: it converges for all imaginary ~ ex-
cept at co=0.

E. Short-distance singularities

The short-distance singularity structure of the confined
vector propagator D is easily derived from the properties
of the scalar propagators into which it has been decom-
posed. As an example, the leading singularity of the one-
reflection term is given by

D'(x, x ',co)- —(1—2Pii)b, (x, x „',co) . (4.30)

V. FEYNMAN RULES

A. general considerations

With propagators in hand it is now straightforward to
spell out the Feynman rules for a general confined field
theory of scalar, spinor, and gauge vector fields. To be
specific, we restrict our attention to confined QCD with
massless quarks. We ignore the coupling to weak, elec-
tromagnetic or any other unconfined interactions. Restor-
ing masses and external couplings is a straightforward
procedure which will be carried out as necessary in future
papers in this series. We generally omit the counterterm
Lagrangian required for renormalization, although a mass
counterterm is introduced and discussed in Sec. VI.

Unlike propagators, interaction vertices are local func-
tions and consequently are not modified by the introduc-
tion of boundary conditions. It is possible therefore, sim-
ply to take the usual free-space Feynman rules in coordi-
nate space and replace the free propagators everywhere by
their confined counterparts.

For field theories confined to a spherical cavity, the
coordinate-space Feynman rules are not the most con-
venient ones since they exploit neither the time-translation
invariance nor the spherical symmetry. Time-translation
invariance allows us to go over to a mixed (x,co) formula-
tion, trading the time integration at each vertex for a fre-
quency (energy) integration in each loop. In ordinary field
theories momentum integrations in loops replace the spa-
tial integrations at the vertices. In confined field theories
this is not entirely possible. Rotational invariance allows
us to replace the angular integration at the vertices by
summations over the angular momenta around the loop.
However, the radial integrations at each vertex remain.
Conservation of angular momentum yields a Kronecker 5
for the z components of angular momentum, but only a

I

weaker restriction on the total angular momentum j,
namely that the j values at. each vertex add to zero by the
rules for addition of angular momentum.

In ordinary field theory, momentum integrations can be
put into one-to-one correspondence with loops. In a
spherical cavity the same can be done for the frequency
integrations and for the sums over the z components of
angular momentum, but not for the total angular momen-
tum because the restriction on j values flowing into a ver-
tex is not sufficient to reduce the number of independent
j 's to one per loop.

It is now possible to give an "overview" of the Feynman
perturbation theory. The general topology of graphs is the
same as ordinary Feynman perturbation theory. The only
exception to this is the need to distinguish between time-
like and spacelike gluons. Each internal line carries a fre-
quency co, a total angular momentum j, and its z com-
ponent, m. Orbital angular momentum quantum num-
bers, which are not conserved for spinors and vectors, ap-
pear on each end of such lines. Likewise, p-space indices
appear on each end of Dirac propagators and radial coor-
dinates at each end of all propagators. External lines car-
ry a definite co, j, and m into or out of the graph. They
carry orbital angular momentum, which is summed, and
contribute radial wave functions to the radial integrations
at the vertices to which they couple.

Each vertex includes, in addition to a radial (r dr) in-
tegration, a Wigner coefficient (or, for four-particle ver-
tices, a combination of Wigner coefficients) expressing an-
gular momentum conservation, and a "reduced vertex"
factor reflecting the nature of the interaction which de-
pends on the total angular momentum, orbital angular
momentum, and Dirac p-space labels, but not on the z
component of angular momentum.

The sums over internal nz values can be performed ex-
plicitly leaving n-point functions which are spherical ten-
sors depending only on external m values (e.g. , the m
dependence of a three-point function resides in a single
Wigner coefficient). In the following subsections we dis-
cuss the vertices and external line factors which occur in
QCD (Secs. V B and VC), and then summarize the Feyn-
man rules in a form intended for practical use (Sec. V D).

B. Vertices

Here we discuss some general features of the vertices
which occur in QCD, and assemble some results of angu-
lar integrations for later use. The complete vertices are
enumerated with the rest of the rules below.

We work in a Feynman gauge where the effective La-
grangian is given by

,'E„'+" '
—,'(B„A,") ——(8"C, )D—' C

+i gj.y"D„@k, (5.1)

where
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(c)
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QUARK

SPACELIKE GLUON

TIME LIKE GLUON

GHOST

LINES

~ ~ ~ ~ ~ ~ ~ ovsPo ~ eeooooos ~FIG. 6. QCD vertices: (a) quark-gluon, (b) three-gluon, (c)
four-gluon, (d) ghost-gluon.

VE RTICES

D ab gaby ~aha c
p, (5.2)

(5.4)

eff~.t=~~g+~3g+~4g+~gh t

with

(5.5}

sss=g J&&~~"'&l

gf'"(a„~—'„)~~b~

2
g feabf eel a~ b~ pcg vd

4g

(5.6a)

(5.6b)

(5.6c)

(5.6cl)

and the standard graphical notation for QCD interaction
vertices is summarized in Fig. 6. Our notation for vertices
in a spherical cavity is summarized in Fig. 7.

Our major concern here is the procedure for performing
the angular integrations at the vertices. The partial wave
expansions of the propagators reduce the angular integra-
tions at each vertex to an integral over products of three
(or in the case of the four-gluon vertex, four) ordinary,
spinor, or vector spherical harmonics. The specific in-
teraction is reflected by the appearance of factors such as
iy:——crp (at the fermion-spacelike gluon vertex) or 9
(at the spacelike three-gluon or ghost-gluon vertices). An
unavoidable complication of the partial-wave decomposi-
tion is the necessity to assign a "sense" (an arrow) to all
lines, not just fermion and ghost lines as in ordinary field
theory. The sense labels which end of the line carries the
spherical harmonic ( YzM, PJl, or YJLM) and which car-
ries the adjoint spherical harmonic ( YJM, fall, or Y JIM ).
The rules for assigning sense do differ, however, between
gluons, on the one hand, and quarks or ghosts on the oth-
er. The sense arrows for the latter are, as usual, restricted

D„.k ——5 kB„—gT kA„, (5.3)

F„',=ag'„—a~„'+gf'"~„'~:,
f' are the structure constants of the gauge group, and
TJ the generators in the fundamental representation. For
SU(3) Tz ———,A, ,z. Together with the appropriate boundary
conditions, the Lagrangian in Eq. (5.1) implies the propa-
gators given in the earlier sections. The vertices are de-
rived from the interaction part of the Lagrangian

FIG. 7. Lines and vertices for QCD in a spherical cavity.

so that one line "enters" and one "leaves" every vertex.
For gluons there is no such restriction, and the sense of
any gluon line can be chosen arbitrarily. In this subsection
we consider lines with sense chosen for convenience of il-
lustration. The most general cases are enumerated with
the rest of the rules. To simplify notation we introduce a
coordinate-free representation for the spherical harmonics

YJIM ( Q ) = ( Qk
I
L 1JM )

PJl~ (Q ) = ( Qcr
I
l ,

'
jm ), —

Y,M(Q)=(Q
I
JQJM& .

(5.7a)

(5.7b)

(5.7c)

First we consider three-particle vertices. These include
quark and ghost coupling to spacelike and timelike gluons,
and also three-gluon vertices, which may involve three
spacelike, two spacelike plus one timelike, and one space-
like plus two timelike gluons. A three-timelike-gluon ver-
tex does not occur. In general, these vertices are of the
form

V=(12s2J2m2
I OhJ~ I l(s)j)m) ), (5.8)

where 0 is an irreducible tensor operator. We apply the
Wigner-Eckart theorem

( J2 J Ji )
V=( —I)" 'I,j(l2$2J2IIO, ;lllisiA }

(5.9)

to remove the m dependence and define a "reduced ver-
tex." The only vertex operators which occur in QCD are

FJ~ YJL~ 0, and YJL~ V' . Their reduced matrix ele-
ments can be calculated using standard methods,

I)e+l&+J l, j, s (l2 J l,)
(l2sj2IIYJllt, sj, )=

~i2 l J I&o o o[4~(2s+ I)]'~2»
I2 I) L

( 1)I2 t 12 L ll l
(l2 2J2I IYJL, ~Ill& 2 Jl ) ~ 2 2 1 (0 Q QSm.

J2 Ji

(5.10)

(5.11}
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s+& +L (2j, +1)(2J2+1)
(12sJ21IYJL ~

I
llisji ) =( —I) ' 2» l J7T 1+ J1 1

(L l, l, —11 'L
1 O O 0 1, I, —1 1,

l1+1+
Br r

(L l2 ii+1~+'+ (0 0 0 j li ii+1 l2

C}

Br
(5.12)

The spin, s, in Eq. (5.10) may be 0, —,, or 1, while in Eq. (5.12) only 0 and 1 occur since there are no derivative couplings
involving the quarks. The symbols in square brackets are related to conventional 6j and 9j symbols

J1 J2 J3 6 Jl J2 J3= g (2j;+1) (5.13)JJJ=,=, 'JJJ
and correspondingly for the 9j symbols in square and curly brackets.

Four-gluon vertices are somewhat more complicated since there are many ways to couple four angular momenta to a
scalar. The m dependence cannot be put into a single Wigner coefficient. Instead, two are required and they always ap-
pear in the same manner. For example, a vertex with four gluon lines carrying J1. J4 and M1. . . M4 into the vertex
carries a factor

|'J, J 2J '( J, J4
M Mj M M —Mj (5.14)

The coefficient VJ is independent of M and Mi . M4, but depends on J and all other labels (L, L4, Ji . J4, and
color) carried by the gluon lines. In analogy with the Wigner-Eckart theorem, we call VJ a reduced vertex. The four-
gluon reduced vertices fall into two classes: (1) the couplings of two timelike and two spacelike gluons and, (2) the cou-
pling of four spacelike gluons. The reduced vertices are determined by the angular integration of products of four spheri-
cal harmonics (ordinary or vector as the case may be) which we record here for future use. First we define the reduced
vertices VJ and VJ

J) (J,f dQYJM YJM YJL M YJ, M4
—gl M M M)ll M M M)l(

—I) v,"(J, J4 3 4),
JM

(S.ISa)

(Ji J2 J) (J3 J4 J
f d&YJ,L,M, 'YJ,L,M YJ L,M YJ,L,M, = & I M M M II M M M)l(

—1) VJ (Ji ~ ~ J4,Li ~ ~ L4) .
JM

(5.15b)

A straightforward calculation gives

Ji+L4+J
' ' J4 L»L4) =

4~+ 3

(Ji J2 J)(L3 L. » IJ3 J4 J
(2Ji+1)(2J2+I)(2J+1)l&o o ojll(0 0 () jl L

Ji+L2+Ji+L4 fL, L2 Jl fL3 L4 Jl J, J2 J J3 J4 JV"J . . J L, . L4' ' 4 12ir (0 0 oj (0 0 oj L2 Li 1 L4 L3 1

(5.16a)

(5.16b)

The precise role of these reduced vertices in building the
four-gluon vertices will be apparent in the rules which fol-
low.

C. External wave functions

In order to specify rules for external lines in the cavity
Feynman diagrams, we convert well-known expressions
for cavity eigenfunctions into our notation. Color labels
are standard. We suppress them.

Solutions to the Dirac equation in a spherical cavity are

I

labeled by four quantum numbers: a radial quantum
number n, j and m —the total angular momentum and its
z component —and parity. The last of these is often re-
placed by Dirac's quantum number ~. Instead we will re-
place it by 1, the orbital angular momentum of the upper
component of the Dirac spinor. For any value of
j,l =j+—,. The parity of a particle state is ( —1), that of
an antiparticle is ( —1) +'. Thus, for example, the state
with j= —,', 1=0 reduces to the s1&2 mode in the nonrela-
tivistic limit, while the j = —,, 1=1 reduces to the @1~2
mode. The eigenfrequency, co„JI, is the nth root of the
equation
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J't{x„p)—2(j —l)J'I(x„p) =0, {5.17}

where x„jg ——mnJIR, and l=j+ —, when l =j+—,. In this
notation the quark and antiquark wave functions can be
written

g„jt~(x)= QX„Jtp(r)pjt ~(II), (5.18)

where I' is summed over j+—,. The radial wave function
X is a spinor in p space given by

future when the interaction has been adiabatically
switched off, and call them in states and out states, respec-
tively. Our rules apply to the calculation of the unitary
transformation between in states and out states. More
precisely, our rules apply to "S-matrix" elements defined
by

n'

,„„(I . . n
~

1' n');„=2@5 g co; —g co,'

X„jti (r) =N„~tji (to„jtr)[5g p(—I l)5—I)]u, (5.19) XS ( co[J;m;, M; J/ Pl; ),

AalM (x)= gpnJL (P)YJLM(Q),
L

where

/Pi (r) =NW J'L(t0W r)(QJ )JL

(5.22)

(5.23a)

P~L(r) = N~ jL(co~ r)(QJ )J+& L . (5.23b)TM 2J+1 TM ~ TM TM

J
The eigenfrequency conditions are

(5.24a)

and

jJ(co~ R) =0 .

The normalization constants are

(5.24b)

(N ) =R ' (x ) x

(N~™)'=R'(2J+1)x~™jgi'-(x~™),
TE(TM) TE(TM)gw erex~

(5.25a)

(5.25b)

D. The rules

We collect the results of this and previous sections, and
formulate a set of Feynman rules for confined QCD per-
turbation theory. First, however, we must specify to what
amplitudes these rules apply. We consider Heisenberg pic-
ture states which are superpositions of confined but nonin-
teracting quarks and transverse gluons obeying bag boun-
dary conditions on a static spherical surface. Only global
color singlets are allowed. We identify these states as
eigenstates of the QCD Hamiltonian in the distant past or

where u =(0) for quarks for u =(i) for antiquarks. The
normalization constant N„JI is given by

x„j.i —2(j /}(j +——,
'

)
N„( =2R ji (x„t ) (5.20)J J

&njl

The Dirac conjugate wave function, +=+ y, is given by

X„~g (r) =N„jtj ((co„jtr)

Xu [5@+p (l —l)5)),], (5.21}

where u:—u p .
Gluon wave functions are handled similarly with the aid

of the projection operators defined in Sec. IV:

(5.26)
where co,', j, and m label incoming lines and co;, j;, and
m; label outgoing lines. We have suppressed the extra la-
bels (TE, TM; particle, antiparticle; parity and color)
necessary to uniquely specify external lines. The relation
between S and quantities of physical interest is straightfor-
ward and left to the reader. A specific example, the
lowest-order quark self-energy, is described in the follow-
ing section.

Our rules are as follows.
(1) Diagrams Draw .all topologically distinct one-

particle-irreducible graphs using wiggly lines for spacelike
gluons, dashed lines for timelike gluons, dotted lines for
ghosts, solid lines for quarks and the three- and four-
particle vertices shown in Fig. 7. Assign to each graph a
statistical weight factor and a sign due to permutation of
external quark lines, just as in ordinary QCD perturbation
theory. Give all lines an arrow. The arrows on quark and
ghost lines must be consistent throughout the graph (one
quark or ghost entering and leaving each vertex). The ar-
rows on gluon lines are arbitrary.

(2) Labels Each exter. nal (quark or gluon) line carries
energy (co), radial quantum number (n), total angular
momentum (j), z component (m), and orbital angular
momentum (I). External gluon lines are labeled TE or
TM. External quark lines are labeled with l =j+—,

' to
specify their parity. Each loop is assigned a circulating
energy (co) and a z component of angular momentuin (m).
Then all internal lines are given energies (t0) and z com-
ponents of angular momentum (m } consistent with conser-
vation of co and m at the vertices. Note that both m and ~
are interpreted as signed quantities flowing in the direction
of the arrows on all lines. Each internal line is given a to-
tal angular momentum (j). Internal spacelike gluon and
quark lines are further labeled with orbital angular
momentum l and l' at each end. All quark lines also carry
p-space indices, and all lines carry color labels in the
standard fashion all of which will be suppressed
henceforth except where noted.

Each vertex carries a radial coordinate label (r).
(3) Sums and integrals For each . vertex an inte-

gral, f r dr. For each internal line a sum over all al-

lowed j values. For each internal or external quark or9

spacelike gluon line, a sum over all l values consistent with

j (l =j+—,
' for quarks, L =J—1,J,J+ 1 for gluons). For

each loop an integral, f dco/2m, and a sum over all m

values consistent with the current j values. All implicit p
space and color labels are summed as usual.

(4) Propagators. For every internal line with its arrow
pointing from a vertex labeled r' to one labeled r, i times a
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full partial-wave propagator:

quarks [Eq. (3.15)]:
spacelike gluons [Eqs. (4.11)—(4.22)]:
timelike gluons [Eq. (4.23)]:
ghosts [Eq (4.23):

i'll (r, r', ~),
iDJLL (r ~r

cv)
iD rig(r, r ', tv ),
i'(r, r', cv)

(see Fig. 8). Depending on the circumstances these may be
decomposed into free and boundary parts, or any number
of reflections and a remainder.

(5) External lines Q.uarks. For each external line
entering the graph (incoming quark or outgoing antiquark)
carrying n, j, l and l', a wave-function factor X„jtt (r), and
for each line leaving the graph (outgoing quark or incom-
ing antiquark), a factor X„jtt (r) =X„jttp [see Fig. 9(a)].3

Gluons. For each external TE gluon carrying n, J, and
I., a factor P~~(r). For each external TM gluon, a factor
/~~i(r) [see Fig. 9(b)].

(6) Quark gluon a-nd ghost gluon -vertices For e.very
such vertex in which the gluon is incoming, a factor

j ~ j
( 1 )

2 2J —m2 Mm, j
times a reduced matrix element given in Figs. 10 or 11,
where the labeling of angular momenta is given.

If the gluon is outgoing replace M by —M and include a
factor ( —1)J,where S= 1 for a spacelike gluon
and J—I- —S=O for a timelike gluon.

(7) Three gluon verti-ces Three ty.pes occur: three-
spacelike, two-spacelike —one-timelike, and one-
spacelike —two-timelike. In the first and last cases the ver-
tex must be decomposed (keeping the labels on the legs
fixed) as in Fig. 12 according to the leg on which the
derivative acts (marked with a bar) and the leg with which
the derivative is contracted (marked with a dot). For each
vertex in which all gluons are incoming there is a factor

EXTER NAL LINE. S

(0) QUARKS

INCOMING QUARK or OUTGOING ANTIQUARK

r

p
I xnjggt (r ) &q. (5.!9)

OUTGOING QUARK or INCOMING ANTIQUARK

r

pl Xnjpp' ( r) Eq (5 21)
njp

(b) GLUONS (INCOMING or OUTGOING)

TE GLUON

TM GLUON

TM TM. TM
4'nJL (6) = N&J jL(M&J r)

«[/J+I spJ+JJsL&~j
FIG. 9. External lines.

(~3 J. Jil
!

M3 MP M(

times a reduced vertex given in Fig. 13, where the ordering
of angular momenta is defined.

If the vertex involves any outgoing gluons, for each out-
going line change M; to —M; and include a factor
( —1) i i i as for the quark and ghost vertices.

(8) Four gluon vertices-Two types. occur: four-

] mQ)
iS;pp (r, r', u)) E'q. (3.15)

LI
iDJLLt (r, r', u) Eqs. {+.j6)

{o.zz)

gT&; p (l2 '~2 ]2ll YJ o II ~i

Eq. (S.[i)

rl JM~ r
IDppJ (r, r', cu) Eq. (4.p5)

Ja
I

I

I

(0)

igT„',. p (2 '/z j, (IYJ II ~, '/2 &I)

Eq. (5.[o)

4 o o oooo o ~ ~ oojtooooo oo ~ ~ oo ~ «I

JM
ig (r, r', ur) Eq. (4.23)

FIG. 8. Cavity propagators. Equation numbers refer to loca-
tion in the text of explicit expressions for the propagators.

FIG. 10. Reduced quark-gluon vertices: (a) quark
—spacelike-gluon, (b) quark —timelike-gluon. i, k, and a are
color indices. Equation numbers refer to location in text of re-

duced matrix elements.
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'. Q

abc
I9~ ( JPOJ2 II~JL' 7 II J) 0 &j)

Eq. (S.12)
—igf ( —1) (Lgi JP II Yg L

-7 I Ll 1 Jt)
Eq. (5.I2)

b . '

J, cu

I

Ic

I

0

~ Q

9f' '~~(J~0J~IIYJ II &(0&) )

Eq, (5.IO)

cuq, Jq

b )

Y
I

f

g~ (u, u~) ( —i) (Lz$ J&II Y& II L) 1 J()
Eq. (S.IO)

(b)
FIG. 11. Reduced ghost-gluon vertices: (a) ghost —spacelike-

gluon, (b) ghost-timelike-gluon. Equation numbers refer to loca-
tion in text of reduced matrix elements.

—igf ( —1) ( Jgo JP I) YJ L -V II Jl 0 J()
Eq. (5.I2)

spacelike and two-spacelike —two-timelike. The former
must be decomposed (keeping the labels on the legs fixed)
as in Fig. 14, according to which pairs of legs are con-
tracted over spatial indices. For each vertex there is a sum
of the form

(c)
FIG. 13. Reduced three-gluon vertices: (a) three-spacelike, (b)

two-spacelike, one-timelike, (c) one-spacelike, two-timelike.
Equation numbers locate reduced matrix elements in text.

times a reduced matrix element given in Figs. 15.
As in the three-gluon vertices, if any vertex involves any

outgoing gluons, for each outgoing line change M; to
—M, and include a factor ( —I ) i i i

(9) Loops. A factor ( —I) for every ghost or quark loop.

VI. THE QUARK SELF-ENERGY

As an application of the rules and methods developed in
the previous sections, we outline the calculation of the
lowest-order quark self-energy in Feynman gauge QCD.
At the end of the section we comment on the correspond-
ing calculation for gluons. The contributing graphs are
shown in Fig. 16. To isolate and renormalize potential ul-

(Q)

(o)
FIG. 12. Decomposition of the three-spacelike-gluon vertex

(a), and the one-spacelike two-timelike gluon vertex (b), accord-
ing to which leg is differentiated (marked with a bar) and which
leg is contracted with the derivative (marked with a dot).

FIG. 14. Decomposition of the four-spacelike-gluon vertex
according to which legs are contracted.
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Jpb

Jl a

Jgb

(b)

Jpc

Jqd

Jpc

J4d

p ( ~
eac

~
edb ~cad t ebc

)

x VJ {Ji Jg, Li Lg)

Eq. (5.tr b)

jgp ( teac tedb ~cad ~ebc)

x V~ ( J) Jq, L(, L~)

Eq. (~.i~ a)

vious. Our analysis of the quark self-energy is divided
into three parts. First we study X„zl for both massless and
massive quarks. For massless quarks we show that X„jl is
finite and unambiguous. For massive quarks we show
that X„jl is logarithmically divergent and that the loga-
rithmic divergence can be absorbed into a state-
independent renormalization of the quark mass. The re-
normalized quark mass obeys the same renormalization-
group equation as in QCD without boundary conditions.
Second, we show that X„jl is finite. Third, we provide an
explicit expression for X„jl ready for numerical computa-
tion. The results of numerical calculation will be present-
ed elsewhere.

0A. r
The contribution of free propagators to the quark self-

energy is given by

X'.Jt =ig f d x d x'dt's. jt(x, t)y&T'So(x, x ', t)

FIG. 15. Reduced four-gluon vertices: (a) four-spacelike
gluons, (b) two-spacelike, two-timelike gluons. Equation num-

bers locate reduced vertices in text.

traviolet divergences, we decompose both the quark and
gluon propagators into free and boundary terms:

S=S +S,
D =D '+D,

(6.1a)

(6.1b)

Doo =Boo+Boo . (6.1c)

Likewise, we decompose the self-energy, Xnjl, into two
pieces

0
~njl ~njl +~njl ~

where X„jl contains only free propagators and X„jl con-0

tains the rest. It turns out that all divergences lie in X„jl.
It can be shown that X„jl is finite, although this is not ob-

X y„T'P Jt(x ', 0)D""(x,x ', t), (6.3)

where the spatial integrations extend only over the inside
of the cavity. It is convenient to analyze this contribution
in momentum space. We define a Fourier transform of
the quark wave function,

df dp eipxy( )
t~o

(6'4)

Xg„,t(p)5(p —co„jt), (6.5)

where X (p, m) is the free-space, lowest-order self-energy
in Feynman gauge, and m is the quark mass. Xo(p™~s

logarithm divergent and must be cut off. Employing
Pauli-Villars regularization, we obtain '

Some important properties of P(p) are given in Appendix
C. We substitute the usual momentum-space representa-
tions of S and D ""along with Eq. (6.4) into Eq. (6.3).
The result is

~'.,t= f d'pP;t(p)~'(p m)

njjm

Lp

j'm'

&o

njgm

X (p, m) = InA /p — (p —m)lnA /p
77 3'
4a, f dz[m —p(1 —z)/2]

)& ln p (1—z)

m z —p z(1 —z)
(6.6)

nj4rn

JM

r 0

/

(b)

njl m

As shown in Appendix C, the quark equation of motion
and boundary conditions yield

f d'p 4„,,(p)(p™)y„,,(p) =0, (6.7)

so the second term in Eq. (6.6) gives a cutoff-independent
contribution to X„jl.

For m=0 the first term in Eq. (6.6) is zero and we are
left with a cutoff independent and finite result for X„~l,

f d'p4;t(p)pl+'N. Jt(p+(p' ~.Jt) (6g)

FICx. 16. Lowest-order diagrams for quark self-energy due to
interaction with (a) spacelike gluon, (b) timelike gluon. coo=co &I.

(the wave functions P„jt fall sufficiently rapidly with
~ p ~

to make the integral convergent).
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It should be emphasized that the result of Eq. (6.8) is
not only finite but unambiguous. The quark self-energy in
free space is linearly divergent and therefore subject to a
possible finite ambiguity depending on the routing of mo-
menta. The correct result, Eq. (6.8), is dictated by the
Ward-Takahashi identity linking X to the vertex function.
Calculations of the confined quark self-energy which do
not handle the short-distance singularities analytically
must be incorrect for this reason.

If the quark mass is not zero, X„jg is divergent and must
be renormalized. This may be done by adding a state-
independent counterterm to the Lagrangian,

(6.9)

cxs m
ng2/'p2 (6.11)

where p is an arbitrary renormalization point, we can can-
cel the logarithmic divergence in Eq. (6.6). (We could of
course equally well have started with a Lagrangian with a
bare mass m0 and then defined a renormalized mass m by
m =mo —5m. ) Combining Eqs. (6.6) and (6.11) gives

This will give rise to a state-dependent contribution to the
quark energy,

~. i=~m f d'p4. ,v(p)4;i(p» (6.10)

so by taking

E„I=E„&I(.m)+ d p P„z~(p)(p 4m)g—„ji(p)lnp !pnjl nj 3m

s 3
— ' p(1 —z) p (1—z)f d p P &~(p) f dz m — ln

2 2 gnjl(p)+~nji
3~ 2 m z —p z(1 —z)

L

(6.12)

where E„JI——(co„jt +m )'~ is the zeroth-order energy and
0

P =~nJI
E„JI must be independent of the arbitrary renormaliza-

tion point p:

dE BE dm BE
(6.13)

dp Bp dp Bm

This is guaranteed by the renormalization-group equation
obeyed by m,

B. The finiteness of X„jq

To prove that X„J~ is finite, we proceed in two steps.
First we argue by power counting that contributions with
two or more reflections in either propagator are finite.
Second, we show that the most divergent term in the
remaining three contributions is finite.

Let X'„JI'"' denote the contribution to X„JI with m and n
reflections in the quark and gluon propagators, respective-
ly. Forgetting about spin and external wave functions, we
consider

d lnm s
d lnp

(6.14) '"'- f des f d xd3x'(yoco+iy 7)

which follows from Eq. (6.11), and the fact that the bare
mass is independent of p, and by the relation

0
dEnj( d'p 4. i(p)((.ji(p) . (6.15)

f d p P„jl(p)g„ji(p)lnp /p =0

Note it is not possible to define a quark mass renormalized
"on shell" because cavity QCD does not possess any
single-quark states. Nevertheless the quark mass is de-
fined unambiguously both in principle and in practice by
Eqs. (6.12) and (6.14). To make this clear imagine a fit to
the hadron spectrum taking cavity QCD to order a, .
First one must choose p, then fit m. The fit will be in-
dependent of p up to 0 (a,2) corrections, but the value of
m will depend on p according to Eq. (6.14). As in ordi-
nary perturbative QCD the O(a, ) differences between
different renormalization schemes can only be settled by a
full O(a, ) calculation. In the absence of such a calcula-
tion there is an arbitrariness associated with the choice of
p. We suppose that, as in asymptotic QCD, higher-order
corrections will be minimized if p is identified with some
natural scale in the problem, e.g., by choosing

Xb, (x, x ',co)h"(x, x ', ro) .

(6.16)

so

f d xd x'- f dg f ~de f d8 (6.17)

X""-f dg f ~dg f do' f dx xlng+—

—x(
l g l +g')

X

(6.18)

r""-f dg f" '
dg f de' f "dx x+—'

To avoid unnecessarily long equations in this section we
will use a rather abbreviated (but sufficient) notation: we
use the sign —to mean leading singular behavior up to
constants and signs, and up to y matrices and relative
signs between different terms. In the notation of Sec. II C:
b, -(g +82) '~ and 6 -in/. The only possible singu-
larities occur close to the surface where,

when analyzing the self-energy of a state with quantum
numbers n,j,l.

,— (
I ~ I+a)

&& in/

(6.19)
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where s =R (21 +8 )'r and we transformed the co integra-
tion into an x =icoR integration via Wick rotation. Sim-
ple power counting now shows that both X' ' ' and X' ' '

are finite. Obviously, terms with more than two reflec-
tions~re also finite. The crucial convergence factor

~dq-g comes from phase space. This factor will

be present also in the terms X„JI,X„J~, and X„JI, so al-
gjV2 ~ (1,0) (0, 1) (1,1)

though the propagators in these terms have the same lead-
ing singularities as in X„'JI ' the total term is one power less
divergent. One thus concludes that the one reflection
terms are potentially logarithmically divergent. We now
show that in fact no divergences are present in these terms
because of (i} the remaining translational invariance in the
directions parallel to the surface and in the time direction,
and (ii) the property, 11(x)g(x)=0 for x on the surface,
obeyed by the cavity wave functions.

It is convenient to use the (x,p) representation which
corresponds to computing X in an infinite half space.
This procedure will suffice for the leading divergence.
[The reader who is unhappy about momentum-space argu-
ments can use the explicit asymptotic (x,01) expressions in
Eqs. (3.32) and (4.30) to construct the proof. This method

I

is much more tedious. ] First consider X'„ji ' and for clari-
ty put xi ——r,

R R
X„'j'1 '- f d p f dr f dr'P„zj(p, r)X"01(r,r',p)

where

Xfnj((p r) i (6.20}

X"0'(r, r', p)- f d qy&S'(r, r',p+q)

Xy"6 (r, r', q) . (6.21)

By using Eqs. (3.30), it is easy to show that the (p-
independent} leading singularity is given by

X" '(r, r',p)- d qh'(r, r', q)b, (r, r', q) . (6.22)
r

In deriving Eq. (6.22}, translational invariance enters via

f d q q yf (
l q l

) =0. Substituting the explicit expres-
sions, Eqs. (2.30) and (2.31) in Eq. (6.22), the q integration
can be performed, and using the variables g and 21 and
Fourier transforming back to (x,co) space, we finally get

gr~2&.j~i f,d xi—d x i f d0 f ~ d2)it;~(x)g;1(x ')/(g+l 21
l

')' (6.23)

As expected, we gain one power of convergence from phase space, but the integral still looks logarithmically divergent.
However, for x close to the surface, it is easy to show p„ji (x )g„jt (x )-g, so X'„ji ' is finite.

Using the same technique one can easily convince oneself that the same holds true for X„'JI"and X„J~". This completes
the demonstration that X„JI is finite.

C. The form of X„J~

Having established that X„JI is finite, we use the Feynman rules from Sec. V to evaluate the two graphs in Fig. 16. The
one with a spacelike gluon gives

X„'~ji""'"'=i f f r, dri f r2 dr2 g J„jii,(r, )(gT'p )

x( —1)j -l I, l(l, ,'jllYJL, ~ill; —2j')is,, (r„r—„~)
~ / g

X( —1) " 'I, ~l(12' —,'j'llYJL ~ ~rlli2 —,j)(gT p )

XX jll (r2)&ILL L (rl r2 0~0 (6.24)

where all internal j's (i.e., J and j') and m 's (i.e., M and m') as well as all l 's (i.e., li, l2, li, l2, L1, and L2) consistent
with angular momentum conservation are summed. For notational simplicity we put co„JI——co0. The quark and gluon
propagators are labeled generically in this equation. To construct X we sum over contributions from S D, SD, and
SD as defined in Eq. (6.1). The color algebra and sums on m can be performed

X space1ike 2(2 ~ + 1 )
—1

nial 3

x f f ri dr i f r2 dr2 + 5(jJj')X„jii {ri )

Xp S.,i, 1, (r l, r2, CO)p Xnj/1 ( 2) JL,L ( 1, 2, 0— )
2 2

(6.25)
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where —', comes from the color sum, and 5(jJj') enforces
the "triangular" condition that j' and J must be able to
couple to j. The summation in Eq. (6.25) includes all al-
lowed j and I values.

As stated, we wish to perform the co integration by
Wick rotating to the imaginary ~ axis. The integrand in
Eq. (6.25) has poles in the complex plane as shown in Fig.
17. Note that the poles in D have been shifted by coo. Be-
cause of this a number of poles in the upper half plane
may have been shifted to the right of the imaginary axis.
For this to occur it is necessary that coo& 2.08/R, which is
the energy of the pole in DJ" (r, r', co) closest to the imag-
inary axis. For quarks in the ground state coo ——2.04/R
and no poles cross the imaginary axis. We will confine our
attention to this case in the remainder of the section.

To rotate the contour we must show that the circle at
infinity in the complex co plane can be ignored. From
Eqs. (2.17},(2.18), (3.19), and (3.20), it appears that the in-
tegrand in Eq. (6.25) is exponentially damped at large
~co~ except when r=r', for free propagators, or
r =r'=R, for boundary terms. These possible problem
points have zero measure in the r integrations and there-
fore are benign. As an example, consider the case of the
free-gluon propagator multiplying the quark boundary
term for Imago&0in the limit ~co

~

~co,
i~(2R —r —r')+ice(r —r )S(r, r', co)D (r, r', coo co)-——e

CO

(6.26)

X X X
~ ~

~ 0
X X X

FIG. 17. Singularities in the complex co plane corresponding
to the graph in Fig. 16(a). Dots and crosses denote poles in
SJI I (r&, r2, m) and DJI L (r&, r2, coo—co), respectively.

I

Since the behavior near r =r'=R is our only concern we
look only at

ice(2R —r —r')+iso(r —r )dr' dr —e
0 0

(6.27)

The contribution of the circle arc at infinity therefore van-
ishes like 1/~coj . The same analysis can be carried
through for the circle arc in the lower half plane.

We are thus justified in rotating the contour to the
imaginary axis,

'„~jl""= . f f ri dri f r2 dr2+5(jJj')Pnjll (ri)

XP S ,l, l, (r„r2,i&i)p. Xnjll, (r2)DJc, z,(ri, r2, ~0 ig)—
&&( —1) '(ii 2 jllYJi, '~llii 2 j )(i22 j IIYJc2 ~lli2 2 j)

(6.28)

where we have put co=i' and a, =g /4'. The same steps applied to the timelike-gluon diagram in Fig. 16(b}yields

dg
3(2j+1) —~ 2m. f rl dri r2 dr2&8(jJj'»njll (rl)PlJ

'P S'1'1'(r 1 r219)P +njll (r2)DOar(rl r2i"0 19)J SJ

x( —1"+'(ii
2 jll'Jlli'1 —'j')(i2 z j'll'Jlli2 z j) . (6.29)

Note that the pole at co=0 in the ™elikepiece of the
gluon propagator always crosses the imaginary axis. In
rotating the ~ contour to the imaginary axis, we pick up
the residue at this pole. However, in accordance with the
discussion in Appendix A this contribution to X is to be
dropped. Equations (6.28) and (6.29) are our final results.
Further evaluation must be numerical

To reiterate, Eqs. (6.28) and (6.29) should not be
evaluated for the full quark and gluon propagators. In-
stead, the zero-reflection term must be separated out and
evaluated analytically. The convergent remainder can be
evaluated using the above expressions.

D. The gluon self-energy

= f d' Ap'*(p)II', , ( p)A' (p)8(po (6.30)

where the index TE(TM} is suppressed. In the
dimensional-regularization scheme, H)J(p) is given by

The corresponding calculation for the gluon self-energy
presents new problems. The graphs in Fig. 18 give the fol-
lowing expression for the no-reflection contribution to the
gluon self-energy:
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..P' ~ ..
—4i 000000 OOO & r OIPO000000

FIG. 18. Graphs contributing to the 0 (a, ) gluon self-energy.

f d xA (x, x ',co)=
CO

The residue of the pole is independent of x ' and, by sym
metry, of x. To obtain the residue, separate out the pole,

2

II,&(p) = (p;p~ —Q,ip. ) ——+ln z (6.31)

(x, x ', co)= +b, (x, x ', co),
CO

where 6 is not singular as co=0. Substituting into Eq.
(A3) and integrating over x ' we find

where p is an arbitrary mass scale and the presence of a
pole 1/e signals a logarithmic singularity. In contrast to
the quark case, the equations of motion do not imply that

f d'S W'(p)(p, p, —g,jp')WJ(p)=O.

In fact, it is not hard to show (using methods similar to
those in Appendix C) that II~, as given by Eqs. (6.30) and
(6.31), is not well defined. The deep reason for this trou-
ble is most likely that by using free propagators we violate
gauge invariance which is responsible for converting the
naive quadratic divergence in the gluon self-energy into a
logarithmic one.

The divergence in H~ is consistent with the result of a
similar calculation of the photon self-energy in confined
scalar electrodynamics in Ref. 26. There it was shown
that after defining a suitable regularization procedure, the
divergent term in IIJL is found to cancel against divergent
terms in the one- and two-reflection contributions, leaving
s finite result. Our belief is that the same thing will hap-
pen for QCD in a sphere, i.e., when we include the reflec-
tion terms (and thus restore gauge invariance) the gluon
self-energy will be finite.
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APPENDIX A: THE POLE AT co=0 IN Doo(x, x ', m)

n.Eds =1,
is not consistent with the Neumann condition, Eq. (A2).

This singularity afflicts the propagator of timelike
gluons and the ghost propagator in QCD. [Although
longitudinal gluons also obey Neumann boundary condi-
tions, the propagator is saved from this affliction by its
vector character as can be seen by inspection of Eq.
(4.14).]

Left unregulated, the singularity at co=0 would make
individual Feynman graphs infinite. For example, the
timelike gluon contribution to the lowest-order qq interac-
tion energy, Fig. 19, carries no energy, so co=0. This in-
finity cancels against an infinity in the quark self-energy.
To allow us to manipulate the graphs it is necessary to re-
gulate the singularity. The obvious way is to introduce a
mass, o., which is subsequently taken to zero,

3 . 3 1~ 11m
4mB a) ~ o Smg3 ~2—o-2+jan

:—K(cr, co) .

Now consider the contribution of the pole at m=0 to
the lowest-order energy shift of any hadron. We keep o.
finite throughout the calculation and let it pass to zero at
the end. From exchange graphs such as Fig. 19, we obtain

where Vis the cavity volume, 4m./3R for a sphere.
The physical origin of the singularity lies in Gauss's

law. Identifying E with —VP, Eq. (Al) reduces, when
co~0, to Gauss's law with a point charge at x ', the in-
tegral form of which,

Here we analyze the pole at co=0 in the propagator for
tirnelike gluons. We discuss its origins and show that it
can be consistently neglected in the lowest-order self-
energy for quarks in a cavity provided the state is a color
singlet. We believe this to be a special case of the general
result that this pole is to be systematically neglected in all
cavity calculations involving color-singlet states.

The pole arises in the Neumann propagator because the
Helmholtz equation

&&J(cr) ~g T TJ. f d xd3x'P (x)g(x)

X@ (x')P(x')X(cr, co)

Q)o

(V +co )lP(x, x ',co)=5 (x —x ')

becomes inconsistent with the boundary condition

(A 1)
Doo ( X, X, ~ =0}

X '~

n Vb (x, x', co)
i

=0 (A2)

as co~0. To see the pole integrate Eq. (Al) over the cavi-
ty using Eq. (A2),

FIG. 19. 0 (a, ) contribution to the quark-antiquark interac-
tion energy from exchange of a timelike gluon.
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3g T' 'T
4 R

where p =1. S is defined by Eq. (3.4) and appropriate
boundary conditions at r, r'= oo. Substituting Eq. (81), we
find

From the self-energy graphs, we obtain

bE;(o) ~g (T; ) f f d x d x'Pt(x)iS(x, x ', co)2'
)&y P(x ')E(o,co; —co),

cd —o'V'A =5 (x —x'),
cd +o..V'A =0
E'~A' —o. .VA =0,
icgA —o'VA '=0 .

(83a}

(83b)

(83c}

(83d)
(A10)

where co; is the energy of the external line. S(x,x ', co)
contains a singularity at co =co; —i e with residue
tP(x)g(x '). The co-integration contour is pinched near
m=co; and is best performed closing in the upper half
plane around the pole in E(o,co; —co) at co=co; cr+i—e
leaving

3 2

bE;(o) ~ — g, , T f d'x d'x'gt(x)g(x)
8n.R o.

Xg (x')g(x') (A 1 1)

38' a
(A12)

All other contributions to b,E;(cr) are finite as o~0. For
a given cavity state, Eq. (A9) is to be summed over all
pairs and Eq. (A12) over all quarks with the result that

KE(cr)= — (T ), (A13)
8+R o.

The Ia "I obey analogous equations without any source.
The first step is to construct the free propagator. From

Eqs. (83a) and (83b), we obtain
I'

(co +V )A =co5 (x —x '), (84)

o'V'
A3

CO

(85)

Equations (83c) and (83d), together with the Feynman
boundary condition at r, r'=co, give A =A'=0. It fol-
lows immediately from Eq. (84) that

Ajll (r r' 'co) = ico fi(co—r)fi (cor'}fin'

where fi(cor) is defined b~ Eq. (3.10). For definiteness we
take r & r', so fi(cor) =h~' '(cor) and fi (cor') =j i (cor') The.
operator I =o"7/co obeys [I,J]=0 and II,PI =0, where
P is the parity operator. Furthermore, in the space of
spinor solutions, gi(cor)gji (0), to the Helmholtz equa-
tion, I = —1. From these properties it is easy to show
that

where

(T') = gT,
2

(A14)

Igi(cor)gji~(Q)=(l 1)gI(cor)P.I.—(0) (87)

in Eq. (87), l is defined by l =j+—,
' when l =j+—,. Using

Eq. (87), Eq. (BS) becomes

is the quadratic Casimir constant of color SU(3).
(T ) =0 for color singlets, completing our argument that
the pole at co=0 in D00 does not contribute to the self-
energy to this order.

APPENDIX B: CAVITY DIRAC PROPAGATOR

We wish to construct the partial-wave expansions for
the free Dirac propagator S (x, x ', co) and the boundary
term S(x, x ', co). We work in the upper-half co plane. It is
convenient to expand both in partial waves and in p space:

3

S (x, x ', co) = g p"A "(x,x ', co)
k=0

Ajg (r, r', co) = ico (l' l)f~(cor )fI—(cor') . — (88)

o.xa ' —Ia 3=iA 3,
(89)

when r =R. Because S obeys the homogeneous Dirac
equation each of the components, a ( x, x ',co) is a solution
to the Helmholtz equation. Regularity at r=0 and r'=0
requires

This completes the derivation of Eq. (3.9).
To determine the boundary term S, we must impose the

boundary condition Eq. (3.5). In terms of the IA "I and
{a I we find

o. .xa —a =A0 2 2

3

g p"Ajii (r, r', co}Pji (0)
k =0 jll'm

Xgjc (Q'), (81)

ajar (r, r', co) =Cj~gj /(corj)I (cor') .

The operator o'x merely interchanges I and I:

o"xPji

(810)

3
S(xix'ico)= g p"a"(x,x', co)

k=0
3

g p"ajii (r, r', co)Pjt (0)
k =0 jll'm

XgjP (&'), (B2)

Combining our results for A" with our parametrization for
a" and with Eq. (811),we obtain a set of equations for the
Cjn from the boundary condition, Eq. (89):

C 1}ji-(x)+C,iiji(x) =ico (l' l)h(' '(x), —

C I}j&(x)+iCjgji(x)= co 57/ hi '(x—) . '
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Two additional constraints on the C follow from Dirac's
equation:

a = —Ia

11(x)=0, r )R . (C4c)

To be precise, define a continuous function %(x) which
obeys Eqs. (C4a) and (C4b), but no Eq. (C4c). Then

a '= —ila0,

or, with the aid of Eq. (87),

Cjti ——(1—1)C,.l}, ,
2 = 3

Cjtt =i(l l)C—1}, .1 ~ 0
(813)

g(x) =8(R —r)%'(x) .

It is easy to see then that

(coy +iy V m)p—=iy xql5(r —R),
so I, defined by Eq. (C3), becomes

(C5)

(C6)

S(x, x,co)('/co —l y'V ) =5 ( x —x ) (815)

Equations (812) and (813) may be solved simultaneously
for CJII with the result that

C tt =ice d (x)(l l)5—tt,
Cjtl ——co dh(x)5}-i, ,

2

(814)
Cjtt ice c——(x)(1' 1),—

Ctt =leo cj(x)5tt

where cj(x) and dj(x) are defined in Eqs. (3.13) and (3.14).
This completes the derivation of Eq. (3.12).

Finally, we turn to the problem of defining S(x, x ', co)
in the lower-half co plane. In addition to Eq. (3.1),
S(x,x ', co) also obeys

I= f d xg(x}iy xg.(x}5(r—R), (C7)

X 5ii — p (1—l)5}}, u,X

&+A,
(C9)

where A, =mR, x =x„jv, g=rlR, and a=(x +A, )' . x„ll
is the nth nontrivial, positive solution to

which vanishes as a consequence of Eq. (C4b). Fourier
transforming, we obtain Eq. (C2).

For quarks with mass m, the cavity wave functions in
Eqs. (5.18) to (5.20) are modified to

(x)= QX„jti (r)Pjt (0),
I'

X jll (r )=N„ljll (xg)

If we take the conjugate of this equation and multiply by

y on both sides, we obtain
jl(x) — jl(x) =02(j —l)x .

a+A,
(C10)

(y co*+i y V)y S (x', x,co)y =5 (x —x') .

The uniqueness of the Dirac propagator requires

(816}
and Xn) I ss given by

cc[cr—2(j —l)(j+ —,
' )]+A,

N„jl 2R jl (x)——
X

(Cl 1)

y S (x ', x,co)y =S(x,x ', co*) . (817)
Using the addition theorem

Expanding in partial waves and replacing y by p, we ob-
tain Eq. (3.16). e''"5 ~=4mgi'jl(Pr)ltji .

(&~)P~+~ (& ),
jim

(C12)

APPENDIX C: CAVITY DIRAC WAVE FUNCTIONS
IN MOMENTUM SPACE

The cavity quark wave function g(x)e '"' obeys

(i el m)$=0—
both inside and outside the cavity. Its Fourier transform,
p(p), does not obey (p —m)l}}(p)=0 (p =co) because of the
discontinuity in P(x) at the surface. The proper Fourier
transform space analog of Eq. (Cl) is

f d'p P( p )(p —m)P( p ) =0 . (C2)

where the sum is over all allowed j, I, and m values, the
Fourier transform is performed by using the orthogonality
of the spinor spherical harmonics, and the integral,

1

ti(x,y) =—f u du jl(xu)jl(yu)

1
, [yji(x)ji-i(y}—xji(y}ji i(x)] .

X

The result is identical in form to Eqs. (C8) and (C9), and
reads

To derive Eq. (C2), consider 4' jl (P} g 0 jll'(P)kjl' (+p } (C14)

I= f d x P(x)(y co+—iy V —m)g(x) .

Note that ill(x) obeys

(coy +i y. V' —m)@(x)=0, r ~R

(ix y+1)ill(x)=0. , r =R

(C3)

(C4a)

Cnjir(p}=R &2/7r( i)'Njltl(xpR)—
c

X 6g — p (l —/)6p. u
X

&+A, I' (C15)

(C4b) [note the Eq. (C13) holds for 1=0 ifj i
—— no is used—].
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