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Conservation laws in the monopole-induced baryon-number-violating processes
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Monopole-induced baryon-number-violating processes are analyzed using the conservation laws
for the ordinary and the chiral charge densities. It is shown that in the strictly massless limit reac-
tions of the form u &+M~u 2+d3+e++M are ruled out by these conservation laws. This, howev-
er, does not mean that the baryon-number-violating processes are suppressed, since reactions of the
type u &+u&+M~d 3+e++M may take place even if the incoming u

&
and u& do not have any ap-

preciable overlap in their wave functions. The role of the Adler-Bell-Jackiw anomaly in the baryon-
number-violating processes is investigated. It is shown that the baryon-number violation takes place
because of nontrivial boundary conditions at the monopole core, and is independent of the existence
of the Adler-Bell- Jackiw anomaly. We may have chirality-conserving as well as chirality-
nonconserving baryon-number-violating processes. It is also shown that the inclusion of extra
Coulomb energies, e.g. , weak or electromagnetic Coulomb energies, cannot qualitatively change the
baryon-number-violating effects.

It has been pointed out by Rubakov' and Callan ' that
grand-unification monopoles of the 't Hooft-Polyakov
type may catalyze baryon-number-violating processes at a
strong-interaction rate. Two different but equivalent ways
have been proposed to understand the process. Both ap-
proaches focus on the J=0 partial-wave amplitude for a
fermion in the presence of a monopole. In the first ap-
proach, '* one shows that the theory reduces to a massless
Schwinger model, which can then be exactly solved, and
one finds a nonzero vacuum expectation value for a
baryon-number-violating condensate. In this approach,
the helicities carried by various fields in the condensate
may be read out in a straightforward manner. However, it
is not easy to see the kinematical constraint, which allows
only a definite helicity state of a particle to be ingoing,
and the opposite helicity state to be outgoing. Also, the
mechanism of baryon-number violation is not clear in this
picture. In the other approach, the theory is mapped
onto an equivalent boson theory, and fermions are
represented as solitons in these boson fields. In this pic-
ture, it is straightforward to see how the helicity state of a
particle is related to whether it is ingoing or outgoing.
One can also construct a time history of a process involv-
ing initial- and final- state solitons, which looks like a
baryon-number-violating scattering process. But in this
picture we do not get any constraint on the helicities of
the initial- and final-state particles, besides the kinemati-
cal constraints. As a result, it is not immediately clear
from this picture which scattering processes are allowed,
and which are not. In particular, the process
one fermion + monopole ~three fermions + monopole,
which may be ruled out by combining the results of the
first approach with the kinematical constraint on the heli-
cities, does not seem to be ruled out by the second ap-
proach.

In this paper we work in the soliton approach, and show
that the effective boson theory has some exact conserva-
tion laws. The conserved quantities are related to the
chiral and the ordinary charges in the original fermion
theory. We show that of the four ordinary charges and

four chiral charges that can be constructed out of the fer-
mionic fields, three ordinary charges and one chiral charge
are exactly conserved, one ordinary charge and two chiral
charges are locally conserved, but may flow into or out of
the monopole core, and hence are globally nonconserved,
and one chiral charge is locally and hence also globally
nonconserved due to the anomaly. Using the four exact
conservation laws, one may rule out many processes, in
particular the process u ~~+M~u zz +d 3L, +eL++M,
where the initial- and the final-state fermions are free in-
going and outgoing waves, respectively. However, this
does not imply suppression of baryon-number-violating
processes, since, as we shall show, reactions of the form
u &&+u2&+M~d3L +eL+, +M may take place even if the
ingoing ui and u2 do not have an appreciable overlap in
their wave functions, as opposed to the claim by Gross-
man et al.

Using our formalism we can trace the origin of baryon-
number violation. We show that the baryonic charge is a
linear combination of charges, some of which are exactly
conserved, and some of which are nonconserved at the
boundary. Thus the nonconservation of the baryonic
charge comes solely from the boundary conditions and has
nothing to do with the anomaly. In reactions of the type
u $g +u2+ +M d3L, +el„+M, the baryon number, as
well as the total helicity, is nonconserved. Hence both the
nontrivial boundary condition at the monopole core and
the anomaly are responsible for this process. However,
there also exist allowed reactions of the form u&z+d3L,
+M~uzz+eL+, +M, where the total helicity carried by
the initial- and the final-state particles are the same. The
anomaly plays no role in such processes. As far as our
knowledge goes, this type of helicity-conserving processes
were first noted by Seo, who has given a list of all the
possible baryon-number-violating processes. All the pro-
cesses listed by him obey the conservation laws that we
shall discuss below. We, however, do not agree with his
claim that the nonconservation of the baryon number
takes place in an extended region around the monopole,
rather than at the monopole core. This may be just a
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matter of semantics.
Using the same conservation laws, we find a sufficient

condition to be satisfied by a charge in order that the
violation of the charge is not catalyzed by a monopole.
We also show that the effect of including any extra
Coulomb interaction, due to the presence of other gauge
fields, cannot qualitatively change the results of Callan
and Rubakov, if the generator corresponding to the extra
gauge field commutes with the SU(2) subgroup in which
the monopole lies. Hence the inclusion of these energies is
irrelevant for a qualitative analysis. This again contra-
dicts the investigation by Grossman et al. Thus we con-
clude that the monopole catalysis of proton decay takes
place at a typical strong-interaction rate.

Let us consider a system of SU(2) monopole with two

Dirac doublets of massless fermions (» ) and (» ). For
d t'

SU(5) monopoles we shall identify these doublets with (
'

)

and (,' ). As was shown by Callan, in the J=0 partial-

ity

wave amplitude the system may be described by an
equivalent boson theory of four scalar fields @1, N2, Ql,
and Q2, with the Hamiltonian

Operators in
the original

theory ( 4~r ' X )

X,y X,

0;yYe;

X,y'y'X,

Operators in
the boson

theory ((v m )
'

&( )

N,' (r, t )

—Q {r,t)

II;(r, t )

P;(r, t )

yf.
P;(r, t)

0~ yy'0

g;x yy'X, '

—@;'(r, t )

—Q (r, t)

TABLE I. Operator correspondences of various charge densi-
ties and current densities in the original theory and the effective
boson theory. In this table, the upper (lower) component fields

g; X;) refer to the eigenstate of the generator x.T with eigen-
value + 1 (—1).

2II=f dr —, g(H; +P,2+4,. +Q,. )
i = 1

+ (~ 1+@2+Ql+Q2)'
r

C;(r =0)=Q;(r =0),
4,' (r =0)= —Q (r =0) .

(2)

where c is a constant. Here II; and P; are the momenta
conjugate to &0; and Q;. Various fermion field bilinears
may be expressed in terms of the fields 4;, Q;, H;, and P;
in the effective boson theory. Table I summarizes the
operator correspondences for all the charges and the radial
currents.

The fields 4; and Q; satisfy the boundary conditions

There are altogether four ordinary charge densities and
four chiral charge densities listed in Table I. We calculate
the commutator of each of the eight charges formed out
of these charge densities, with the Hamiltonian, to see
which of these charges are conserved. When we use the
boundary conditions (2), and the extra constraint that
&Pl+ Q, +42+ Q2 must vanish at r =0 in order to keep
the total energy finite, we find that the following charges
are conserved:

Sl ——f 4nr dr(ply $1+Xly Xl )=f (41 —Q', )dr/~m, .

S,=f, 4n "dr(y2y'y2+r 2y'X2) =f (e,—Q; )dr/~,

S3——f 4nr dr+ (py g; —X;y X; ) =f (&V, +@&+Q', +Q2 )dr/v ~,
I

S4 ——f 4mr dr(plyYpt+ ply 'Y gl —tyYA —$2yY+2) = fo (Hi +Pl —H2 —P2)dr/~~

The following charges are nonconserved only through the boundary terms:

Xl ——f 4vrr dr(fly g, —J,y J, g/r2y $2+$2—yoy2) =f '(4', +Q', —42 —Q2 )dr/ m',

&1 ~(@1+Ql @2 Q2) I r=o ~

X2 ——f (fly y $1—Xly y gl )4~r dr =f (II1 Pl )dr/V @, —

&2 "(+1—Ql )
I .=O

X,=f "(y y y y Xyoy5X )4~r2dr= f (H —p)dr/v ~, —

+3 (~2 Q2) I =o
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Finally, the charge

Ll ——f (tel) VQI+XI3 1 XI+f2 Y f2+X2 1 X2)4»r dr =f (HI+PI+H2+P2)dr/Mm.

fails to commute with the Hamiltonian because of the
presence of the Coulomb term. This is the effect of the
anomaly. Conservation of S1, S2, and S3 implies the con-
servation of total number of fermions of type 1, the total
number of fermions of type 2, and the total T3 charge,
respectively, where T3 is the unbroken generator of the
SU(2) subgroup. Conservation of S4 ilnplies that the total
helicity of particle type 1 minus the total helicity of parti-
cle type 2 must be conserved. Note that of all the chiral
charges, only I.1 fails to be conserved because of the
anomaly. The above conservation laws may also be de-
rived by using the equations of motion, or by using the
current conservation law (BoJ +B„J"=0or proportional
to the anomaly).

As was pointed out by Callan, fermions may be
represented by solitons in the fields @; and Q;. Solitons
corresponding to various fermions are shown in Fig. 1.
Let us consider the soliton corresponding to the field g;.
lf it moves with a constant velocity v (v &0 if it moves
outward), we have

v = —f 0&;dr/~i= —f H.;dr/v»,

which shows that the helicity of a particle is determined
by whether it is moving outward or inward. We can write
down the following general rule:

41 41R

1R
= x +

+21.
—I'LL

~1R It'2L

c +

(12)
and then reduce the theory to an effective boson theory in
terms of the primed variables. The following reactions are
then equivalent:

conserved. We shall now look at the system at the classi-
cal level and study its time development. In (8), the
charges N2 and N3 fail to be conserved, although N2 —N3
is conserved. As noted in Eq. (4), this violation must be
accompanied by a nonzero value of (@'I—Q I + 4Ilz —Q2) at
the origin. In reaction (9), on the other hand, N2 and N3
are conserved, but N1 is violated. Hence this must be ac-
companied by a nonzero time derivative of 41+Ql —42
—Q2 at the origin.

We show the time sequences for reactions (8) and (9) in
Figs. 2 and 3, respectively. The reader can verify that the
charges N1, N2, and N3 are nonconserved only at the
boundary in the time sequences described in Figs. 2 and 3.
Conservation of these charges at finite r forces the indivi-
dual fields to carry fractional helicity. Although the two
scattering processes look very different, they basically take
place through the same mechanism. In fact, we may de-
fine

helicity= —sign of the T3 charge& U . (7)
FAIR + I)j2R +M ~PIL +42L +~

%'ith all the conservation laws and helicity constraints
in mind, we may write down the following allowed pro-
cesses:

=PIR +~1R +M~~2L + It2L +~
VIR +~IR +M~ P2L ++2L +~

PIR +(('2R +M~AIL +42L +~ ~

PIR +~IR +~~$2L ++2L +M y

PIR +42L +~~~ IR +~2L +I ~

etc. A process of the form

(9)

(10)
Time =0

4&I

=PIR +42R +M~02L + t( IL +M

Qz

AIR +M~lt2R + t('IL +42L +M fQIdx =0 fQdx=0

is not allowed by the conservation of S4. In fact, for the
process It IR+M, there is no final state of the form M +
free fermions, which is allowed by all four conservation
laws. It is interesting to see what happens when we have
only a J=0 right-handed 1(1 in the initial state. We shall
come back to this question later.

Let us now investigate reactions (8) and (9) in some de-
tail. All the conservation laws that we have derived so far
are valid in the true quantum-mechanical sense, i.e., the
matrix element of the operator between any two states is

0& f@,d x& ~jr
Time = 2

0&f@,dx&~»
Time =3

0&fCPx& J~

0&f4 dx&~~

Q,

0 &fQdx& —J» 0&fQdx & —~
Qz

1

0 fQ, dx ~n 0 fQ dx

Qz

—~~& f+,dx&0

Time =4

-~&fe,dx&0 0&fQ,dx&j 0& fQ dx&~vr

Qz

JQ,dx —0 fQ dx —0

X,. X
I

FIG. 1. Solitons corresponding to various fields.

FIG. 2. Time development of the process @,R +$2R
+ M 41L+42L+~.
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Time =0
4&,

0& f4,dx &~»
Time = 2

fC,dx=o

-~~ &f4' dx &0
2

fQdx= J

0&fQ dx &t»

Qz

fQdx =0

Qz

l
-~i &fQ dx & 0

2

Qe

Let us now go back to the reaction fiz +M. Any final
state involving free outgoing fermions, that carries the
same S4 charge as the initial state, must leave a net S&, S2,
or S3 charge at the monopole, which then spreads over an
infinite radius around the monopole core. Thus in this
case it is not possible to get a final state of the form
monopole + free fermions. We can still gain some
knowledge about baryon-number nonconservation in this
process by doing a classical analysis of the reaction. This
time we do not know what the classical final state is, we
must actually solve the equations of motion to find the fi-
nal state. We define

0&f4,dx&~»

Time=5

f@,dx =0

-~sr & JC dx& 0 0& fQ,dx&~

f Q,dx =0

j &fQ,dx&0

Qz

A =(C'i+@2+Qi+Qp)/2,
B=(@,+4,—Q, —Q~)/2,

C =(@i—~'z+ Qi —Q2 }/2,
(@1 @2 Ql +Q2)/2

(16)

FIG. 3. Time development of the process /is + X is
+ M~42L + +2R +M'

B, C, and D satisfy the free field equations of motion. A
satisfies the equation

A —A"= (4c/—r )A .

The boundary conditions on the various fields are

A(0) =0, A'(0) =0,
B(0)=C'(0) =D(0)=0 .

(17)

and hence in terms of the new boson fields reaction (8}
will have the time sequence of Fig. 3, whereas reaction (9)
will have the time sequence of Fig. 2.

The point we want to emphasize is that both reactions
(8) and (9) take place via the combined effect of the anom-
aly and the nontrivial boundary condition at the monopole
core, even though reaction (8) is just a helicity-flip ampli-
tude. This can be easily seen by noting that both reactions
(8) and (9) violate conservation of charges (N2+N3 and
Ni, respectively) which are anomaly free, and hence must
flow into the monopole core.

For an SU(5} monopole, reaction (9}reduces to

(18)

With these boundary conditions and the equations of
motion, we may study the scattering of solitary waves in
A, B, C, and D fields. The result has been summarized in
Fig. 4. Of these, the solitary waves in B, C, and D travel
with the velocity of light all through (since they are free
fields) and come back undistorted. The solitary wave in A,
on the other hand, may suffer a time delay and may also
be distorted by scattering. For the present purpose, we
may neglect both these effects.

We may now construct the initial and final states of any
scattering process by superposing the various diagrams in
Fig. 4. This is allowed, since the equations of motion are
linear in the fields. In particular, we may verify the
correctness of reactions (8)—(10) using these diagrams. If
we now study the scattering of a 4& soliton from the core,
we get the final state shown in Fig. 5. We find that the
scattering process conserves all the charges S&, S2, S3, and
S4, but the outgoing solitons carry half fermionic charge.
Although this analysis does not tell us what are the possi-
ble final states, we can interpret the classical result as a
time evolution of the expectation values of different opera-
tors in a given state. Note that (AB) is nonzero in this
scattering, where B is the total baryonic charge outside the
monopole core.

(14)d3g +eg +M &2L, +&]L,+~

which violates baryon number. The origin of this viola-
tion may be understood by noting that the baryonic charge

(15)

is violated through the boundary terms.
For reaction (10},L i is conserved and the process takes

place even if we switch off the anomaly term [set C =0 in
(I)] without changing the boundary conditions (2). This
can be seen easily by noting that for reaction (10), the
Coulomb term vanishes identically at all times at all
points in space, if the two incoming particles travel to-
gether. This clearly shows that it is the nontrivial boun-
dary conditions at the core, rather than the anomaly,
which is of fundamental importance in the baryon-
number-nonconserving processes. Constructing the time
sequence for reaction (10) is left as an exercise to the
reader.

A
i

—/ /=

C

FIG. 4. Classical scattering of A, B, C, and D solitons from
the core.

J4»r'«( giy'pi+$27 Q2—+23 +2)/3

Ni+S3 1+Si +—(S3 Ni)—
2 6
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Qp

Qa

Flax. 5. Classical scattering of l( ~R from the core.

We can probably get a clearer picture in the classical
analysis by giving the fermions a small mass. The mass
term will eventually drive the N; and Q; fields at r =0 to
be integral multiples of v m. . In this case S& is not con-
served, and we may have final states of the form
monopole+ free fermions. But we are going to argue now
that it is the massless limit which is more relevant for pro-
ton decay. It is clear from the way we constructed Fig. 5
from Fig. 4 that if we have incoming l(tR, $2R separated

I

by a distance, we shall still get t)~tL, $2L in the final state,
only the final-state solitons are now spread out over a dis-
tance (two-step solitons). This is true for any reaction of
the form two fermions + monopole~two fermions
+ monopole. Thus, for example, in the reaction

l4 ig +Qpg +Myel +d3L +M, even if the two incoming
u quarks have a small overlap in their wave function, we
still get a baryon-number-violating process. If the quarks
have mass m, we expect this to happen so long as the two
incoming u quarks are separated by a distance less than
m ', since we expect the mass term to become operative
only if we wait for a time of order m '. This shows that
the massless limit is probably a good approximation for
monopole-induced proton decay, since the radius of the
proton is small compared to the Compton wavelength of
the quarks.

Let us now turn to study the effect of introducing extra
Coulomb interactions. What we mean by extra Coulomb
interactions is the following. In SU(5) gauge theory, for
example, we have three other diagonal generators, besides
the unbroken generator Ts belonging to the SU(2) sub-

group in which the monopole lies. They are

0 0

1

2

1

2

1

2

1

2

1

2

1

2

(19)

Ci I dr[A(r, t)] Ir (20)

Ci being a constant. A (r, t) may be calculated at any time
t by summing the total T charge lying between the origin
and a distance r from the origin, with the total T charge
that has flown into the origin in the time —00 to t. Both
can be calculated in terms of the fields 4;, Q;, II;, and P;,
using the expressions for the charge densities and the radi-
al currents from Table I. The radial current at r=0 turns
out to vanish for all the three generators. The charge den-
sities, on the other hand, may be expressed in terms of the
fields N,', Q, 4;, and Q;. Finiteness of the f4;,

;, and terms in H requires that in the

There are massless gauge bosons associated with these
generators. [The last generator does not have a massless
gauge particle associated with it if the electroweak SU(2)
is broken. But we must include its effect at a distance
&m„ i,

'.] The presence of these gauge bosons will in-
troduce new Coulomb energies in the Hamiltonian, and if
they produce an energy barrier that destroys the scattering
solutions that we constructed before, we may lose the
baryon-number-violating effect. We shall show that this
can never happen.

Let us consider the Coulomb energy contribution from
a particular generator T. If A(r, t) be the total T charge in-
side a sphere of radius r, the extra Coulomb energy contri-
bution to the Hamiltonian is given by

I

original solution, without the extra Coulomb energies, any
time or space derivatives of the fields are bounded by

~r —1 /2+ e (21)

near the origin. e is a positive constant. Then A(r, t) is
bounded by

A(r, t) &K'r'~ + (22)

which guarantees that the extra Coulomb energy (20) will
always be finite if we evaluate it using the original solu-
tion for the fields. In other words, the extra Coulomb en-
ergy cannot produce any infinite energy barrier to the
baryon-number-violating processes.

The key point to the above conclusion is the vanishing
of the radial T current at the core. This may be under-
stood as follows. From Table I and the boundary condi-
tions (2), we may conclude that

(7iLx l QiL ++ LX ~YiL )
I

=o=0'
) =1,2

(giRx VAR ++iRx 7XR) I
r=o' (23)

which implies that the total flow of fermionic current into
the origin for any SU(2) doublet must vanish independent-
ly for the left-handed, and the right-handed parts. Loosely
speaking this implies that an ingoing g;LiRl into the core
must be accompanied by an outgoing 7;I ~~] and vice ver-
sa. Now, all the generators of the extra Abelian subgroups
commute with the full SU(2) subgroup in which the
monopole lies. Hence, two members of the doublet must
always carry the same T charge, and the total T current
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into the origin must necessarily vanish.
The presence of these extra Coulomb interaction terms,

however, may produce anomalies in the currents N1, %2,
and X3 (but, not in the conserved currents S;), and hence
produce a new source of violation of these currents. '

We may use the above result to find out which charges
can be violated by monopole catalysis. As we have just
seen, any charge, which commutes with the full SU(2) sub-
group, must necessarily be conserved. On the other hand if
T3 is the unbroken generator of the SU(2) subgroup, then
the total T3 charge must also be conserved (conservation
of S3). Thus if any charge can be expressed as a linear
combination of T3 and another charge, which commutes
with the full SU(2) subgroup in which the monopole lies,
then the monopole cannot catalyze the nonconservation of
that charge.

In conclusion, we may state the following results:
(1) In the scattering of fermions from the monopole, the

conservation of Si, S2, S3, S4, defined in Eq. (3) must be
satisfied. They imply conservation of total number of par-
ticles of type 1 (e and d3), total number of particles of
type 2 (u i and uz), total T3 charge, where T3 is the unbro-
ken generator of the SU(2) subgroup in which the mono-
pole lies, and the total helicity carried by particles of type
1 minus the total helicity carried by particles of type 2. In
counting the number of particles of a given type, we
should count —1 for antiparticles, whereas, in counting
the total helicity carried by particles of a given type, we
should count —1(+1) for left- (right-) handed particles,
irrespective of whether they are particles or antiparticles.
Some of the allowed reactions are

& 1R+&2R+M eI++d 3L+M

+M2R+M u 1R +d 3L +M,

etc.
(2) The nontrivial boundary conditions at the monopole

core are important for any scattering, including the

helicity-fhp ampli«de g, z + g2z + M~1(,L + gzL + M.
This process violates the conservation of chiral charge S3,
which is free from anomaly, as well as the chiral charge
Lit defined in Eq. (S), which is anomalous. Hence this
process can take place only if the charge S3 flows into the
monopole core. In fact, there exists helicity-conserving
processes like eL +&2R + M~~1R + d3L+M
anomaly does not play any role, since the charge L1 is
conserved in this process.

(3} We have shown that processes like u i~ + M~ u2L + eL++d 3L+M are not allowed in the limit where
the quarks are massless. This does not imply the suppres-
sion of baryon-number-violating processes, since in the
massless limit processes like u 1R+u 2R + M~eL+
+d3L+M do not have suppression, even if the incoming
u1 and u2 quarks do not have any appreciable overlap in
their wave function. Another reaction, which is ruled out
by the conservation laws, is u 1R + ~2R +M~ U1L
+U2L +M.

(4) We have shown that if any charge, free from anoma-

ly, can be expressed as a linear combination of the diago-
nal generator of the SU(2) subgroup, and another charge,
which commutes with the generators of the full SU(2) sub-

group, then the conservation of that charge cannot be
violated by monopole catalysis. [Here the SU(2) subgroup
refers to the subgroup in which the monopole lies.]

(5} We have shown that the inclusion of the extra
Coulomb energy, due to the interaction of the matter
fields with the other diagonal massless vector fields of the
full grand unification gauge group, cannot qualitatively
change the results of Rubakov and Callan, although it
may certainly affect the quantitative result. This result is
true for any grand unified theory, so long as the genera-
tors corresponding to the extra Abelian gauge fields corn-
mute with the full SU(2) subgroup in which the monopole
lies.
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At any space-time point, the fields P; and X; refer to the eigen-

states of the unbroken U(1) generator with eigenvalues + 2

and —2, respectively. In the standard spherically symmetric

gauge, i)j; and P; may be expressed in terms of the two-

component spinors g;(r, t) as

g;(r, t)= z(I+r cr)g;(r, r), .

y;(r, r)= ,'(I r" rr)4;(r, r) . ——
I wish to thank A. S. Goldhaber for a discussion on this point.


