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In this paper we find the asymptotic behavior of the fixed-angle on-shell quark-quark scattering
amplitude in non-Abelian gauge theories in the limit of very large center-of-mass energy V s. We
sum the perturbation series to all orders in the coupling constant and all powers of lns, but ignore
terms which are suppressed by a power of s order by order in perturbation theory. In the s ~ Oo lim-
it the amplitude vanishes as exp( —a lns ln lns), where a is a constant. The phase of the ampiitude is
shown to be free from infrared divergences. Hence the phase is a perturbatively calculable function
and may provide important tests of QCD.

I. INTRODUCTION

In a previous paper' we showed how to systematically
sum up all the logarithms that appear in the calculation of
the asymptotic behavior of the Sudakov form factor in
perturbation theory. In this paper, we generalize the ap-
proach to calculate the asymptotic behavior of the elastic
quark-quark scattering amplitude in the s~ oo, s/t-fixed
limit. This method can also be applied to calculate the
asymptotic behavior of a process with more than four
external quarks, in the limit p;.pj ~ oo for all external mo-
menta p;, pj (except for i =j), p; =m, and the ratio
p; pj/p;"pj fixed. In these calculations, we include all
powers of the coupling constant g and all powers of loga-
rithms of the external energy variable Q, but neglect terms
which are suppressed by a power of Q, order by order in
perturbation theory.

The asymptotic behavior of the qq~qq (and qq~qq)
amplitudes has been of interest in the recent past. They
appear as subdiagrams in hadron-hadron elastic scattering
amplitudes in the Landshoff diagrams. Order by order in
perturbation theory, Landshoff diagrams give contribu-
tions which are asymptotically larger by some power of s
than the quark-counting result of Ref. 3. It was, however,
argued that such contributions involve near on-shell
qq~qq and qq~qq scattering amplitudes as subdiagrams
and these are suppressed due to the exponentiation of the
Sudakov double logarithms in the form exp( —2 ln s), A

being a constant and s the square of the total center-of-
mass energy of the qq or the qq pair. Duncan and Muell-
er, on the other hand, have argued that the actual hadron-
ic elastic scattering amplitude is neither fully determined
by the quark-counting rule, nor the power law given by
the Landshoff pinch singular point, but by some function
intermediate between the two. In order to find out the
correct asymptotic behavior, we must sum up the Sudakov
double logarithms in a systematic fashion. Calculation of
the asymptotic behavior of the qq~qq or the qq~qq am-
plitude may be considered as a first step towards this pro-
cess. In fact, the result of this paper supports Mueller's
conjecture about the asymptotic form of the wide-angle
hadron-hadron elastic scattering amplitudes. Recently, it
has also been pointed out by Pire and Ralston that the os-
cillation of the experimental value of the elastic hadron-

hadron scattering cross sections about the quark-
counting-rule prediction, as observed by Brodsky and
Lepage, may be due to the s dependence of the phase of
the qq~qq and qq~qq amplitudes. In this paper, we also
find out the s dependence of the phase in s~ Oo limit. We
show that the phase is free from infrared divergences.
Hence, they are perturbatively calculable and may provide
important tests of QCD.

The asymptotic behavior of the scattering amplitudes,
in the limit considered in this paper, was calculated by
several authors in QED and QCD in various approxima-
tions. On the basis of their calculations up to a few or-
ders in perturbation theory, Cornwall and Tiktopoulos,
conjectured that in the leading-logarithmic order the am-
plitude for such a process goes as

exp
2

QC„ ln (s/m
32~'

where C„ is the value of the quadratic Casimir operator
for the representation to which the vth external particle
belongs. Note that the amplitude goes rapidly to zero as
S~ Oo.

The amplitude under consideration is infrared diver-
gent. In actual hadron-hadron scattering amplitudes, the
color-singlet property, and the finite size of the hadron
provide the necessary infrared cutoff. In our calculation,
we must somehow simulate this cutoff. In the case of
Abelian gauge theories, we can regulate the infrared diver-
gence by giving the gluon a finite mass, since this is a
gauge-invariant regularization procedure. This does not
work in non-Abelian gauge theories, since the theory with
massive gluons is not gauge invariant. Another way of re-
gulating the infrared divergence is by keeping the external
fermions off-shell by a fixed amount. This procedure,
however, is not gauge invariant either in Abelian or in
non-Abelian gauge theories.

There exists, however, a gauge-invariant way of regulat-
ing the infrared divergences in non-Abelian gauge
theories, e.g., by dimensional regularization. We keep the
external particles on-shell and work in 4+@ dimensions.
The reader may wonder whether the result in 4+@dimen-
sions has any physical relevance. It will become clear later
that our result (6.5) for the scattering amplitude is not
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sensitive to the way we regulate the infrared divergences in
our theory, provided this is a gauge-invariant regulariza-
tion procedure, and we keep the external particles on-shell.
Thus, had there existed another gauge-invariant regulari-
zation procedure for non-Abelian gauge theories, we
would have gotten the same final form (6.5), where the re-
gulator R now stands for the new regulator. (The
infrared-divergent functions f2, C, and A; will now have
different forms, but these functions are independent of s.
The functions y„ f~, and A, , which depend on s, but are
free from infrared divergence, will have the same func-
tional form. ) For hadron-hadron scattering there exists an
infrared regulator, which is the off-shell behavior of the
quarks inside the hadron. This is roughly determined by
the inverse of the transverse size of the hadron. It was,
however, found by Mueller by explicit one-loop calcula-
tion that when we add all the relevant diagrams, the
relevant regions of integration which contribute to the am-
plitude is

~

l
~

&Xs, where X is an integration variable
which runs from I /s to 1, and l is the momentum of the
internal gluon. Thus, in one-loop order, the effective regu-
larization rr~ay be obtained by giving the gluons a mass
v'Xs (or by cutting off the gluon momentum at I -Xs)
and setting the external particles on-shell. This is precise-
ly the type of regularization for which we expect our re-
sult to be valid. We expect that when we consider all the
higher-order diagrams in the hadron-hadron scattering
amplitude, this general feature will remain valid, i.e., in
the first approximation the full hadron-hadron scattering
amplitude may be expressed in terms of four-quark ampli-
tudes, where the infrared divergences in these amplitudes
are regulated by cutting off the internal gluon momenta at
l -Xs in some complicated way, so as to preserve the
gauge invariance of the amplitude. The result (6.5) may
then be used to analyze the contribution from this part.
There will, of course, be nontrivial corrections to this re-
sult, and we hope, with the method developed in this pa-
per, we shall be able to systematically compute those
corrections in the future.

In this paper we shall show that the suppression of the
amplitude in the s —+ao, s/t-fixed limit, due to the ex-
ponentiation of the double logarithms, persists even when
we include the effect of all the nonleading logarithms, but
the ln s term in the exponential is replaced by a term pro-
portional to lns lnlns, due to the asymptotic-freedom ef-
fect. We also give an algorithm to make systematic
corrections to the above result. The paper is organized as
follows. In Sec. II, we describe the kinematics of the
problem. We work in the c.m. frame and in the axial
gauge. In Sec. III, we analyze the amplitude using a
power-counting method developed by Sterman' and ex-
press it as a sum of four independent amplitudes, each of

which is a convolution of the eight-quark Green s function
and a hard core (with four external quarks), all of the
internal lines of the core being constrained to carry mo-
menta of order Q. In Sec. IV, we show that each of these
amplitudes may be expressed as a product of wave-
function renormalization constants on external lines and
an amplitude I;, which is free from collinear divergences.
Each of these I s may be expressed as a convolution of a
regularized eight-quark Green's function and a hard core
with four external quarks. In Sec. V we derive a set of
differential equations involving I; s, and show that the
coefficients of these equations may be analyzed by using
renormalization-group equations. The differential equa-
tions for the I s may then be solved and the solution
gives us the asymptotic behavior of I;. In Sec. VI, we
find the asymptotic behavior of the wave-function renor-
malization constants, using the method of Ref. 1. Com-
bining this with the asymptotic behavior of the I; s, we
find the asymptotic behavior of the full amplitude. We
summarize our result and its possible applications in Sec.
VII.

For skeptic readers, who may object to the use of the
axial gauge in the analysis of the problem, because of the
extra singularities in the axial-gauge propagator, we men-
tion here that the analysis may also be carried out in the
Coulomb gauge in a similar way.

II. KINEMATICS, GAUCHE, RENORMALIZATION

pb =((Q +m )'~,0,0, —Q),
p, =((Q +m )',O, QsinO, Qcosg),

pg ——((Q +m )',0, —Q sin8, —Q coso) .

(2.1)

We denote the color indices and helicities carried by the
external particles by a, b, c,d and s„sb,s„sd, respectively.
We define

s =(p +pb) =4(Q +m ),
t =(p, —p, ) = —2Q (1—cosO) .

(2.2)

(2.3)

Thus, we can take the s~ ao, t/s-fixed limit by taking
the Q~ao limit at fixed 0. We shall be interested in the
dependence of the amplitude on Q.

We work in the axial gauge, where the gluon propagator
takes the form

In order to find the asymptotic behavior of the qq~qq
amplitude in the s —+ Oo, t~ ao, s/t-fixed limit, we choose
a frame in which the incoming quark momenta p„pb and
the outgoing quark momenta p„pd are given by

p, =((Q +m )'~,O, O, Q),

iN"tt(k) j(k +i@—)=5 it[ i/(k +i@)][g"" (—kl'n "+k"n")P(1/—n k)+n k&k"P(1/n k) ],
where

P(1/n. k)"= lim[l/(n k +ie')"+ I j(n k ie)"]/2 .—
g~o

(2.4)

(2.5)

Here p, v are the Lorentz indices and a,P are the color indices in the adjoint representation. n is any spacelike vector.
For reasons which will become clear later, we shall keep n in the plane ofp„pb, p„and pd.
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We regularize our theory by dimensional regularization. We use the physical mass of the quark as the renormalized
mass parameter. For other counterterms, we use the minimal-subtraction scheme. If G(p„pb,p„p~) is the sum of all
Feynman diagrams contributing to the amplitude, including the self-energy insertions on the external lines, the amplitude
is given by

+(p )(P ~)[Z2(P )] @Ed )(Pd )[Z2(pd )] G(p pb p Pd )

)&[ZP(P, )] ' (P, ™)u(P,)[Z 2(P b)]
' (Pb™)u(Pb), (2.6)

where the Z2's are the external wave-function renormali-
zation factors. In Eq. (2.6), we have left out all the Dirac
indices. In the axial gauge, Zz(p) may have nontrivial
dependence on p through the combination n.p. In fact, we
shall see that the double-logarithmic contribution comes
solely from the Zz's in the axial gauge.

As mentioned in the Introduction, we regularize the in-
. frared divergences by dimensional regularization, although
our result is valid for any gauge-invariant regularization
procedure. We shall denote the infrared regulator by R.
Thus the R ~0 limit corresponds to the infrared-divergent
limit. In the dimensional-regularization scheme we work
in 4+a dimensions. We first compute the ultraviolet
counterterms by working in 4—e dimensions, and then
analytically continue the results to 4+m dimensions. This
removes all the ultraviolet divergences from the Green's
functions, in particular, all the off-shell Green's functions
are finite in the a~0 limit. As long as we keep e finite
and positive, all the on-shell Green's functions are also
finite, since in 4+e dimensions there are no infrared
divergences in the on-shell amplitudes. The infrared
divergences now appear as poles in e in the on-shell ampli-
tudes in the @~0 limit. Hence, in this scheme the in-
frared regulator R may be taken to be e. This method of
regularizing the infrared divergences is both Lorentz and
gauge invariant.

The diagrams that contribute to the process considered
may be divided into two classes, one in which the line car-
rying momentum p, is the continuation of the line carry-
ing momentum p, and the line carrying momentum p& is
the continuation of the line carrying momentum pb, and
the other where the situation is reversed. The sum of all
diagrams in each class is separately gauge and Lorentz in-
variant, thus we may analyze each of them separately.
For definiteness, we shall carry out the analysis for the
sum of diagrams belonging to the first class. The second
class of diagrams may be analyzed in an exactly similar
way.

III. A CONVOLUTION FORM FOR THE AMPLITUDE
In this section we shall analyze the important regions of

integration in the loop-momentum space which contribute
to the amplitude in the leading power of s and express the
amplitude as a convolution of a central hard core and an
eight-quark Green's function. To do this, we make use of
a power-counting method developed by Sterman. ' If p is
any of the momenta p„pb, p„or p~, we say momentum k
is parallel or collinear to p if

I

We shall say a momentum is soft if all its components are
small compared to Q, whereas a momentum k is said to be
hard if all its components are of order Q.

It can be seen from the power-counting argument of
Sterman' that the regions in loop-momentum space that
contribute to the amplitude in the leading power in Q
must have the structure shown in Fig. 1. Here J„Jb,J„
and J~ are blobs containing lines parallel to p„pb, p„and
p&, respectively. The blob marked H contains hard lines
only, whereas the blob marked S contains soft lines only.
All the gluon lines connecting the blob S to the jets are
also soft. These soft-gluon lines may attach to the jet lines
through elementary or composite three-point vertices only.
Here, by a composite three-point vertex we mean a subdia-
gram with three external lines, all of whose internal lines
are hard. The soft blob S contains connected as well as
disconnected diagrams.

With the knowledge that we gain from Fig. 1, we shall
make a topological decomposition of a general graph con-
tributing to the amplitude. First, we shall give a few defi-
nitions. A subgraph of any graph is called a four-quark
subdiagram if it satisfies the following two properties: (1)
it has two incoming quarks, two outgoing quarks, and no
gluons as its external lines, and (2) the full graph may be
topologically decomposed in the form of Fig. 1, with the
subgraph as its central hard core. We also define a gluon
subdiagram to be a connected subdiagram, with only
gluons as external lines, the external gluons being attached
directly to the quark lines ac or bd. Figure 2 shows exam-
ples of four-quark subdiagrams and gluon subdiagrams.
If there are n such gluon subdiagrams in a given Feynman
diagram, we denote by k ~, . . . , k„ the momenta
transferred from the ac quark line to the bd quark line by
these n subdiagrams. These momenta must satisfy the
constraint

k -p, p k-k -AQ (3.1)

ko-p, ko —k3-AQ, k', k -&' Q (3.2)

where A, is a scaling parameter which scales to zero. For
example, we say k is parallel to p~ if FIG. 1. A diagrammatic representation of the regions of in-

tegration in the loop momentum space, which contribute to the
qq ~qq amplitude in the leading power in Q.
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FIG. 2. Examples of four-quark subdiagrams (square boxes)
and gluon subdiagrams (circular boxes).

x 2 kl.k~

Xki =Pa Pc
i=1

(3.3)

I.et f be the integrand of the Feynman integral corre-
sponding to the graph. We may multiply it by
(gk;) /t(—:1) without changing the value of the integral
and write the integral as

(3.4)

where a', b', c',d'; a', p', y', 5', and p, +l„pb+12, p, +13,
l

y f(k, '/t)f+2g f(k; k /t)f .
i=1 l (J

In the integral f (k; /t)f, the contribution from the re-

gion of integration, where the momentum k; is soft, is
suppressed by a power of Q, due to the presence of the ex-
tra factor k; /t-k; /Q; hence, k; must be hard. Then,
in order to get an integration region consistent with the
picture shown in Fig. 1, all the internal lines of the
minimal four-quark subdiagram, containing the ith-gluon
subdiagram, must also carry hard rnomenta. Similarly, in
the integral 2f (k; kj/t)f, all the internal lines of the
minimal four-quark subdiagram, containing the ith- and
the jth-gluon subdiagrarn, must carry hard rnomenta. Let
us denote by &t& the sum of all such possible four-quark
subdiagrams, all of whose internal lines are constrained to
be hard due to the presence of the extra factors of kg /t or
k; kilt in the internal lines. Typical contributions to P
have been shown in Fig. 3. We may represent P as

a'P'y'5'
4a'b'c'd'(Pa + l 1 &Pb +12&Pc + l3 )

x k

g f t{ki-Qi

(c)
FIG. 3. Some typical contributions to Ij&.

and pd+l&+l2 —l3 are, respectively, the color and Dirac
indices and momenta carried by the quark lines external to

In later discussions, we shall often drop the color and
the Dirac indices from P.

Let F denote the Green's function shown in Fig. 4. In
F, we sum all the diagrams, connected and disconnected,
and self-energy insertions on external lines, and then rnul-

tiply the sum by [Z2(p, )] '(p, —m)u (p, ), [Z2(pb }]
X(pb —m)u(pb), u(p, )(p, —m)[Z2(p, )] ', and
u(pd)(pd —m)[Z2(pd}] ' for the external lines carrying
momenta p„p~, p„and pd, respectively, thus truncating
the propagators corresponding to these lines. The total
contribution to the amplitude under consideration is then
given by

$/2 d lj~=[Z (p, )Z (p )Z (p, )Z (p )]' fg F, g~ ~ (p, +l„p +l, ,p, +l, )g fr' (p, +l„p +l,p, +I,), (3.5)
j—$

where a', P', y', 5' and a', b', c',d' are, respectively, the Dirac and the color indices of the external quark lines of F, as

shown in Fig. 4. For convenience of notation, we have dropped the dependence of F on the color, helicities, and momen-

ta of the external on-shell quarks in the above equation. If we take the convolution of a particular diagram contributing
to F with a particular diagram contributing to &t& according to (3.5), the l integral may have some spurious ultraviolet

divergences, due to the presence of the extra factor k; /Q or k; kj/Q in the internal lines of P, but these divergences

must cancel when we sum over all the diagrams in F and P.
The integral of (3.5) is diagrammatically represented as in Fig. 5. We write it as

d4l'

4 a b c d (Pa+ '1&'p'b'+12&pc+ 3)4'a'b'c'd'(Pa+ 1&pb+12&pc+l3)=Fili ~

a'P'y'5'

r (2')

We shall stick to the convention that whenever we draw
a graph contributing to F, we shall draw the external on-
shell quark lines, carrying momenta p„p~, p„and pd to
the left, and the off-shell quark lines, carrying momenta

p, +l&, pq+l2, p, +l3, and p&+l&+l2 —l3 to the right.
Thus, as we move from the left to the right in a graph
contributing to F, we move towards the core P in the cor-
responding amplitude shown in Fig. 5. Let us consider a
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FIG. 4. The eight-quark Green's function F.
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F=F(~g) +FK(~) (3.7a)

in the shorthand notation used in writing (3.6).
In an exactly similar way we may define K(~), K(,),

subgraph of any graph contributing to F, with the follow-
ing properties: (1) the subgraph has eight external quark
lines and no external gluon lines, (2) the eight external
quark lines of the subgraph are the continuations of the
eight external quark lines of F into the graph. Such a sub-
graph is called four-particle irreducible (4PI) if it is not
possible to divide the subgraph into two parts by drawing
a vertical line through it, which cuts only four fermion
lines. Examples of such 4PI subgraphs of F have been
shown in Fig. 6 by enclosing them in square boxes. Let
K( ) be the sum of all eight-quark graphs satisfying the
following properties. In any graph contributing to K(,),
one and only one of its 4PI subgraphs has nontrivial in-
teraction with the a line and this 4PI subdiagram lies
unambiguously to the left of all other 4PI subgraphs of
that graph. Typical contributions to K(,) have been
shown in Fig. 7. Note that a diagram of the type shown
in Fig. 8 is not included in K(,), since the gluon line
marked 2 may be taken to lie to the right or to the left of
the gluon line marked 1. We also define F(~d) to be the
total contribution to F from those diagrams where the line
a does not take part in any interaction. Typical contribu-
tions to F(~d) have been shown in Fig. 9. If in K(,) we in-
clude the propagators of the external quark lines to the
right, but truncate the propagators of the external quark
lines to the left, F satisfies the equation

FIG. 6. Examples of four-particle irreducible eight-quark
subdiagrams of F (square boxes).

K(d), F(,d), F(,~), and F(,I ). Equations analogous to
(3.7a) are

F=F(g,g) +FK(h),

F =F(,~) +FK(,),
F =F(~~)+FK(d) .

(3.7c)

(3.7d)

We shall find it more convenient to redefine F by divid-
ing it by a factor of Q and redefine P by multiplying it by
a factor of Q . As a result, the dependence of F on Q due
to the presence of the factors (p, )'~, (ps)'~, (p, )'~, and
(pd)' from the external spinors, goes away. On the other
hand, multiplication by Q makes P dimensionless, thus
ensuring that P(p, +li,pi, +12,p, +13) is independent of Q
at the tree level, in the limit

J

1t'
~

/Q~0, i = 1,2, 3. These
redefinitions leave (3.5) unchanged. If we redefine Fii ~),
F~~d~, F~,~~, and Fi,s, ~ by dividing each of them by Q,
then these redefinitions also leave Eqs. (3.7) unchanged.

With the help of Eqs. (3.7), we shall bring (3.6) to a dif-
ferent form. Let us first analyze the tensor structure of

(pd~+'l»ps+l2, p, +I3) .

In color space, it can have two independent tensor struc-
tures, which may be taken as 6, , 5~d and 5, d 5~, , respec-
tively. In Dirac space, it may have many different tensor
structures in general, but we shall be interested in only

P b+l(

Pc+l s

Pd+/&+/Z-2 &

pb+g2

pc+&'p

Pd+Xi+jZ X~

(b)

FIG. 5. Graphical representation of W, defined in (3.6). FIG. 7. Some typical contributions to E(,).
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(b) (c)

FIG. 9. Some typical contributions to I'(b,d).

FIG. 8. A typical contribution to the eight-quark Green's
function, suffering from ordering ambiguity.

those tensors, which contribute to (3.6) from the region

~

It'
~

&&Q, in leading power in Q. To identify such ten-
sors, let us note that in the l;~0 limit, the numerators of
the propagators of the four-quark lines, entering and leav-
ing P, may be replaced by p, y, pb y, p, y, and pd y,
respectively. In the Q~ eo limit,

(p;.y) j'~ g u, , (p;)u ~,(p;),
s =+—1

i 2

(3.8)

s; referring to the helicity. For the subset of diagrams
considered here, s, =s, , sb =sd in leading power in Q,
since there are an odd number of y matrices on the a'c'
and the b'd' lines. Using reflection symmetry in the plane
of p„pb, p„and pd (n does not change under this reflec-
tion), we conclude that there are only two independent
Dirac structures of P, corresponding to the ampli-

1

tudes s, = —,, sa'=T s, = » sd ———,, and s, = —,,

sb ————, s, = —,, sd ————,. Thus, in the Dirac and the
color space there are altogether four different tensor struc-
tures of P that contribute to (3.6) from the

~

II'
~

&&Q re-
I

gion, in leading power in Q. Let us choose a basis of
linearly independent tensors (A;), f, d such that if we
substitute A~, A2, A3, or A4 in place of p in (3.6), we re-
ceive a nonsuppressed contribution to the integral from
the

~
I,"

~
&&Q region, whereas if we substitute any of the

other A s in place of P in (3.6), the contribution from the
region

~

Ij"
~

&& Q is suppressed by a power of Q. Let P; be
the component of P along the direction of the tensor A;.
We may write P as

i

4
Q4/[Q4+(I 2)2+(I 2)2+(I 2)2]+P

(3.9)

In the region
~

lj"
~

&&Q, j =1,2, 3, the contribution to
(3.6) comes entirely from the g,. , term on the
right-hand side of (3.9), thus the contribution from the P„,
term in this region is suppressed. The contribution to (3.6)
from the g, ,

. term on the right-hand side of (3.9) is
given by

61 If ~ F (p +I,p +l„p +I, )p;(p, +I,p +12,p, +I3)Q /[Q +(Ii ) +(I2 ) +(I3
) (2m)

(3.10)

where

F =F b g(A. ) b
a'&y'5' a'P'y'5' (3.1 1)

The purpose of the term Q /[Q +(1, ) +(12 )

+(I3 ) ] is to avoid ultraviolet divergences in the integral
of (3.10) from the I integrals in graphs like Fig. 10(a).
This also avoids spurious ultraviolet divergences in the I
integrals in graphs like Fig. 10(b), due to the presence of
the extra factors of k; /t or k; k~/t in the internal lines of

All such divergences are dumped into the integral
JFQ, .

To analyze the integral F „„webreak up „,as

As we have already seen, when we substitute P„, in
place of P in (3.5), the integral receives nonsuppressed con-
tributions only from the regions where at least one of l1,
12, and l3 is hard, thus (l ~ ) + (l2 )"+ (I32)2 must be of or
der Q or more. The contribution from the P'„s term is
then suppressed unless I, is of order Q or more. Simi-
larly P, , and P, , terms will give nonsuppressed contribu-
tions to (3.6) only from the

~

1~2
~

&Q and
~

l~q
~

&Q
regions, respectively. If in the integral JFQ'„„, we sub-

stitute the right-hand side of Eq. (3.7a), the Frb, d~ term
does not contribute since it has a 5(l~) term. The contri-
bution from the FK(, ) term is

(( res '(t'res+ Ares+ 'Pres ~

where

3

g(Ij )' P„, ,

(3.12)

(3.13a)

(12 )
3

g( j ) Pres~ (3.13b)
(a) (b)

(I 2)2 g (I 2)2 (3.13c) FIG. 10. Some typical contributions to the integral of (3.5),
where the I integral suffers from ultraviolet divergences.
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d lj d ljf / F(Pa+lliPb+l2iPe+l3) (a)(Pa+lliPb+lziPe+l3iPa+ll iPb+l2iPe+l3 )Ares(PaiPbiPeill il2il3 ) i

, (2m. ) (2m)"

(3.14)

where we have dropped all the color and Dirac indices of F, E(,), and (t'„, for convenience of writing. P'„„ is now
separately a function of p„pb, p„ /1, l2, and 13 instead of being a function of p, +l1, pb+12, and p, +l3, because of the
extra factors of

3

Q4+ g (l 2)2

j=l
and

3

(ll )2 y (l, z)2

in (3.9) and (3.13a), respectively. In the integral in (3.14), l', is constrained to be hard. In order to get a momentum flow
consistent with Fig. 1, all the internal lines of K~, ~

must also carry hard momenta. Similar analysis may be done for the

fFP', and fFP,' terms, by substituting for Fthe rig.ht-hand sides of Eqs. (3.7b) and (3.7c), respectively. The sum of
all these terms may be written as

f d4Ij', F.A '(p. +l,p»+l, p, +l»4."", ) '(p. ,p p„l,l, l», (3.1 5)
l (2m. )

where

(1) b C
+(a) Pres++(b)Pres++(e)4'res ' (3.16)

l))(" is calculated from diagrams, all of whose internal lines carry hard momenta. The integral (3.15) has the same
structure as the integral of (3.6) and hence may be analyzed in the same way to give a sum of the term

X fF (P. +1) Pb+l»P +13)4 (P. Pb,P„1),lz, l3)Q'~(Q'+(1(')'+(lz ) +(13 ) J (3.17)
i=1

and the integral fFrtr.",,' This may. be analyzed in the same way as fFP„,. Continuing this process indefinitely, we may
express A as

4

(3.18)

where

d4hjI;=fF;(P, +l),Pb+lz, P, +l3)0 r(PaiPbiPeil), lz, l3
l (2n)

(3.19)

&p;(p„pb,p„l),lz, l3)= 4 z z z 2 z z [p;(pa+i),pb+lz, p, +13)+/I (p„pb,p„ll, lz, l3)+ . ] .
Q +(ll ) +(lz ) +.(13 )

(3.20)

The right-hand side of Eq. (3.19) may be graphically
represented as in Fig. 11. Note that, in (3.19), the lz in-
tegrals do not have any ultraviolet divergence due to the
presence of the

Q4 Q4+ g(12)z

factor in N;. The spurious ultraviolet divergences which
appear, due to the presence of the terms k; /t or k; kj/t in
P;, are all included in the internal loop-momentum in-
tegrations in 4'; and hence must cancel internally. The
only ultraviolet divergences left are then due to the vertex
and self-energy corrections which are canceled separately
inside N; and I'; by the usual counterterms. Hence, each
of the terms

lzz(p )zz(pb)zz(Pe)zz(Pd ) j (3.21) FIG. 11. Cxraphical representation of I;.
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N

k+Zq
i=] aNt

k
t~ t~

IV. FACTORIZATION OF THE COLLINEAR
DIVERGENCES

FIG. 12. A Green's function with N gluons attached to a fer-
rnion line.

is separately ultraviolet finite when expressed in terms of
the renormalized parameters. Since the Z2's are multipli-
catively renormalized, so must be the I s. If (Z2) ' is
the multiplicative constant which renormalizes the
Z2(p;)'s, I s are obtained from the corresponding un-
renormalized quantities I" s as

(3.22)

The renormalization-group equations for I s may be
obtained by using (3.22) and the fact that I;, when ex-
pressed as a function of the bare parameters of the theory,
is independent of the renormalization mass p.

In this section we shall show that the contribution to
the amplitudes I;, defined in Sec. III, may be brought into
a form, which receives contributions only from those re-

gions of integration in momentum space, where none of
the internal loop momenta are parallel to any of the exter-
nal momenta p„pb, p„or p~. We shall use this result in
the next section to derive a differential equation involving
the amplitudes. We shall use a method developed by Col-
lins and Soper, " rather than the method used in Ref. 1, to
show the factorization of the collinear divergences. We
shall explain the method briefly below.

For a set of gluons of momenta qi, . . . , qN, polariza-
tions p~, . . . , pN, and color a&, . . . , aN, attached to a
quark line moving parallel to one of the external momenta
p; (i =a,b, c,d), as shown in Fig. 12, we define the soft ap-
proximation as

N

g UJ '[i/(g+q)+ . +qJ —m+ie)]U~ J, (4.1)

where

and

~ ~

(q)+. -. +qj) u;+i@ ' ' (q~+ . . +qJ) u;+ie ' ' qi"u;+i&
(4.2)

0

qJ+i'u —+ ie' '+' (qJ+i+&+z)'u —+i~
l

(qJ+, + . . qz) u;+is ' (4.3)

where t 's are the representations of the group generators
in the fermion representation, k and k +g,. ,q; are

the momenta of the external fermion lines, and

v;= lim p;/p;,Q~ co
(4.4)

if the soft approximation is made for the momentum k be-

ing parallel to p; (i =a,b, c,d). In Eqs. (4.2) and (4.3), the
negative sign in front of the ie appears when k is parallel
to p, or pb, the positive sign appears when k is parallel to
p, or pd. This is to make sure that the poles in the q.v;

plane from the denominators of (4.2) and (4.3) are on the
same side of the real axis as the poles from the original
Feynman denominators of the graph. Equation (4.1) may

I

be graphically represented by Fig. 13. The rules for the
special vertices used in Fig. 13 are given in Fig. 14. Ex-
pression (4.1) approximates the graph shown in Fig. 12 in
the region of integration where q&, . . . , qN are soft lines
and k is collinear to the momentum p;. Similar soft ap-
proximations may also be made for soft gluons attached to
collinear gluons. Consider now a Green's function with a
set 3 of external gluons and fermions, and a set B of
gluons attached to it through the soft approximation given

I/( q.u ~ ja)

N

X
J=O

ajg U

hajj

—ig v+t~
jl

FIG. 13. Soft approximation for the Green's function shown
in Fig. 12.

FIG. 14. Expressions for the special vertices and propagators
shown in Fig. 13.
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FIG. 15. Examples of tulips and gardens.

in (4.1). It was shown in Ref. 11 that if we sum over all
insertions of the gluons of set B to the Green's function,
using soft approximation every time, the final result is the
sum of all possible graphs, where the gluons of set B are
attached to the outer ends of the external fermions and the
gluons in set A through the eikonal vertices given in Fig.
14 (as in Fig. 13). The graphs, where the external gluons
of set B are attached to the ends of the internal lines of the
Feynman graphs, cancel among themselves.

We now give some definitions. Let us consider any 4PI
subgraph 6 of F. We may regard this as a subgraph of
the amplitude I;, after we plug I' into Fig. 11. A sub-
graph T of 6 is called a tulip, if it satisfies the following
property: The graph contributing to I;, of which 6 is a
subgraph, may be topologically decomposed in the form of
Fig. 1, with T as a part of the central subgraph S, and all
the lines in 6 —T belonging to the various jets J„.. . , Jd.
The graph 6 —T must be 1PI in the external gluon legs.
A garden is a nested set of tulips I T,, . . . , T„ I such that
TJ. &TJ+1 for j =1, . . . , n —1. Examples of tulips and
gardens are shown in Fig. 15. In this figure, Tl, T2, T3
are example of tulips and the sets {T,I, {T2j, {T3),

Ti T3 I, and {T2, T3 I are examples of gardens.
For a given 4PI subgraph G, we define a regularized

version GR of Gby

GR ——6+
inequivalent

gardens

( —1) S(Ti) . . S(T„)G . (4.5)

We shall first explain the meaning of the symbol
S(Ti) . S(T„)G. We start with the largest tulip T„, be-
longing to a particular garden. We pretend that the
gluons, coming out of the tulip, are soft gluons, attached
to collinear lines in 6 —Tn, and replace these insertions by
their soft approximation given in (4.1) or its analog for
collinear gluons. This defines S(T„)6. We now take the
gluon lines coming out of Tn 1. If some of these gluons

are identical to some of the gluons coming out of T„, we
leave them as they are. For the other gluons, we again
pretend that they are soft gluons, attached to the collinear
lines in G —Tn 1 and replace these insertions by their soft
approximation. We proceed in this manner to calculate
S(T1).. . S(Tn)G. Two gardens are said to be equivalent
if S(T, ) S(T„)6 for the two gardens are the same,
this happens if the two gardens have identical sets of
boundaries. X is the maximum number of tulips in a gar-
den.

It was shown in Ref. 11 that Gii, defined by Eq. (4.5),
receives nonsuppressed contributions only from the in-
tegration region, where all its internal momenta are hard.
Then according to Fig. 1, the subgraph of I', which lies
unambiguously to the right of GR, must also carry hard
momenta.

We shall now show that the collinear divergences fac-
torize into wave-function renormalization constants on
external lines. We start with a given graph, contributing
to the amplitude I;, and number its 4PI graphs from out-
side to inside as 61, 62, . . . , Gn. For graphs of the type
shown in Fig. 8, it is not possible to say which 4PI graph
is outside (or to the left side of) the other; let us for the
time being ignore such ambiguities. We can then write the
contribution to the amplitude I; from the above graph as

G162 . . G„A;4; .

We decompose 6; as

G; =6;s+6;R,

(4.6)

where 6;ii is the residue defined in (4.5) and 6;s is the
term containing soft approximations. We write (4.6) as

In the first term, all the internal lines of the graph must
carry hard momentum, since 61R carries hard momentum
and 62, . . . , Gn are surrounded by 61R. In the second
term, G2R carries hard momenta. This constrains
63 6 to carry hard momenta. And so on.

Let us now turn towards the case where we have the or-
dering ambiguity as shown in Fig. 8. The most general
ambiguous subdiagram in I' has the form shown in Fig.
16, except for possible permutations of the lines a, b, c,d.
Here 6'1,62, . . . , G„',Gl', G2', . . . , 6„" are two-particle-
irreducible subdiagrams. The product of 6'1
6„' 61' - - - 6„" is decomposed as

61R 2 n +61562R63 Gn +61S62SG3R64 Gn

+ ' +61S ' ' 6 —1SG R +61S ' ' ' G S)A 4'
(4.8)

(Gi+Gz ' ' 6»'+Gis62ii63 ' G»'+ +Gis ' ' 6»' —isG»'ii+Gis ' ' ' G»'s)

1R 62 Gn" +61S62R63 Gn" + +6 15 Gn" —1SGn "R +61S Gn "S) .

If we pick the R part from any of the G, all the GJ 's
for j)i and the part of I, which lies to the right of the
subgraph of Fig. 16 in the full diagram, is constrained to
carry hard momenta. Similarly, if we pick the R term
from any of the 6;"'s, all the GJ"'s for j &i are constrained

to carry hard momenta, so is the part of F, lying to the
right of the subgraph of Fig. 16 (remember that the right
side of I' refers to the part closer to the core A;+; in Fig.
11). For the term Gis 6„',6,'s . . G„"s we break up
the part of I', lying to the right of the subdiagram of Fig.
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16, into a product of 4PI parts and decompose them into
R and S parts in the same way as we did in (4.8).

At the end of the decomposition procedure, we shall get
a central hard core, which carries only hard momenta due
to the presence of a GR in its outermost shell, surrounded
by shells of 4PI subdiagrams, each of which is replaced by
its soft approximation

p ~+X, 6,
'

Gq'
/

Grl

(l r)

Gs= — g ( —1) S(T)) S(T„)G .
inequivalent

gardens

Let us call this central core to be @I;), the subscript (i) is
to remind us that we started with the amplitude I;. The
contribution Gz from a given 4PI subdiagram may be
written by grouping together the sum over all gardens
with the largest tulip T. Thus, we may write

G) G~

Q Pd+&)+go &S

//

Gn"

FIG. 16. The most general subdiagram of F, suffering from
ordering ambiguity.

( —1) 'S(T)) . S(T„)) S(T)G .
inequivalent

gardens with T„=T

(4.10)

Let

TR T+ ( —1) 'S(Ti) . . S(T„ i)T .
inequivalent

gardens with T„=T

(4.11)

The right-hand side of (4.10) may then be interpreted as
the insertion of TR into 6 —T using soft approximation
for the lines coming out of TR. I; is then the sum of dia-
grams of the form shown in Fig. 17. Here MR is the col-
lection of disconnected regularized tulips TR. The lines
coming out of MR are inserted into the blobs J„Jb,J„
and J~ using soft approximation. The sum of all such in-
sertions is given by Fig. 18. Let us now compare it with
the graph shown in Fig. 19. Here g~;~ is an unspecified
hard core, we shall try to choose it in such a way that the
graph of Fig. 18 becomes identical to the one in Fig. 19,
except for the self-energy insertion on the external lines.
To do this, let us note that the part of Fig. 19, involving
MR, may again be divided into 4PI subdiagrams, which
are nothing but regularized tulips TR, attached to the

quark lines. Let G be such a 4PI subgraph. We divide it
into the soft part G~, where the insertions of the gluori
lines, coming out of TR, on the quark lines in 6 are re-
placed by their soft approximations, and GR =G —Gz,
having the property that all its internal lines must be hard
if 6 is replaced by GR in the full graph. We then decom-
pose the 4PI subgraphs of Fig. 19 using equations similar
to (4.8) and (4.9), with G replaced by G. The result is a
central hard core X~;l, surrounded by 4PI subgraphs TR,
inserted on the quark lines through soft approximation.
The sum of all the soft insertions is the graph shown in
Fig. 20. P~;& is obtained from P~;~ by using the equation

~(i) =+(i) + 1 1~(i) & (4.12)

where 1() is the sum of diagrams containing an arbitrary
number of regularized 4PI subdiagrams 6, the leftmost
one of which is replaced by its R part, thus ensuring that
all the lines in gg(;) are hard.

If we choose X~;~ in such a way that X~;~ equals +~;~, then
the graphs of Figs. 20 and 18 are identical, except for the

FIG. 17. Graphical representations of I;, after the rearrange-
ment given in Eqs. (4.8)—(4.10). The broken lines indicate that
soft approximation is made for the gluon lines crossing the bro-
ken line.

FIG. 18. Sum of all insertions of the gluons coming out of
M& into the blobs J„Jq,J„and Jq in Fig. 17.
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MR

FIG. 19. A trial amplitude.

self-energy insertion on external lines. The corresponding
P(;) is given by

FIG. 20. The amplitude of Fig. 19, after the S—R decomposi-
tion of its 4PI subgraphs and sum over all insertions of the
gluons, coming out of the S part, on the quark lines.

X(;)——(I+Pi) '4 (;)

= (I —itt) +Q) f) + —' ' )@(;) . (4.13)

p„pb,p, for convenience of writing. F' has similar struc-
ture as F, defined in Sec. III, and we may write the equa-
tions

d4IJf Q E'(p, +l„p +l,p, +1 )
i (2m)

XX(i)(Pa&Pb&Pc&I) &12&13) t (4.14)

where F' is the contribution from the part involving M~.
Again we have omitted all the Dirac and the color indices
and the dependence of F' on the external mom enta

In the definition of F, we have a [2'2(p;)] '(p; —m)
factor for each external fermion, this removes the external
self-energies from Fig. 18. I; is then calculated by con-
tracting Fig. 20, or equivalently Fig. 19, with the external
spinors u(p;) and u(p;) (i =a,b, c,d). Figure 19 satisfies
the property that none of the internal gluon lines in Mz,
nor the gluon lines entering or leaving Mz, can be col-
linear. This is because if there is any such collinear gluon
there will also be soft gluons attached to it, separating it
from lines collinear to the other momenta. But the soft
subtraction terms in Mg force the contribution from any
such region to be suppressed by a power of Q. Thus, the
internal lines of M~ may either be hard or soft. We ex-
press this contribution as

F' =F(b,g) +F'K(~),
F' =F(~g) +F'K(b)

F'=F(.~) +F'K(,),
F'=F(~~) +F'K'(d) .

(4.15a)

(4.15b)

(4.15c)

(4.15d)

g(;) has a perturbation expansion, which may be obtained
from Eq. (4.13). E' may be calculated using the subtrac-
tion scheme described in this section. I; may then be cal-
culated using (4.14), an expression which is free from col-
linear divergences.

V. ANALYSIS OF I';

In this section we shall derive a set of differential equa-
tions involving the I s and show how the solutions of
these equations give us the asymptotic behavior of the
I s. The asymptotic behavior of the functions Z2(p;)'s
(1 =a,b, c,d) will be derived in the next section. Combin-
ing these two results, we may find the asymptotic behavior
of the full amplitude.

The color and the Dirac structure of X(;),b, ~ may be
a'p'y'5'

analyzed in an exactly similar way as we did for P. We
express X(;) as

(Xi )a'b'c'd'(Pa&Pb &peti( &12&13) QX(i)i'(Patpb&Pc&11&12&13)(Ai')a'b'c'd'
a'p'y'5' a'p'y'5'

4
a'p'y'5' a'p'y'5'= g X(i)i'(Pa&Pb&Pc& tO& )(Ai')a'b'c'd'+(Xi)res)a b cd''' (5.1)

where the last line of the above equation defines X(;)„,. This definition is slightly different from the definition of (1)„,
given in Eq. (3.9). In the limit

~ lj ~ &&Q (j =1,2, 3, ), X(;) becomes independent of these momenta, since all the internal
lines of P(;) are constrained to carry hard momenta. Hence, we may set l~, l2, I3 to be zero in P(;) in this region. The con-
tribution to the integral of (4.14) from the region

~
lj"

~
&&Q then comes solely from the

4

g X(;)&'
1=0

term, the X, term contributes when at least one of the 11 s is of order Q. Equation (4.14) may then be analyzed in a simi-
lar way as (3.5) and brought into a form analogous to (3.18):
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4 d4l, 4

g J g ~ Fi (p, +l),ps+12,p, +13)[X(;);(p„ps)p„0,0,0)+X(;))i (p„pb,p„0,0,0)+ . ]—:g b(.r;; )

, (2') i'=1

where

d4lj
b; =f + F (p, +I, ,p +l,p, +l, ),

i (2rr)

(1)rii' (X(i)i +X'(i)i +')I =, 0 .
J

(5 2)

(5 3)

(5.4)

Thus, ~;; 's are calculated from Feynman graphs, all of whose internal lines carry hard momenta. We shall now try to
evaluate ar, /alnQ, keeping the angle 8 defined in Eq. (2.1) fixed. Thus, the differentiation is a differentiation with
respect to in' s, keeping the ratio s/t fixed. Taking the derivative operator inside the integral in (4.14) we may write

BI",. 3 d"1. r)F'(p, +l„p +l,p, +l )

al Q . 4 X( )(pa p».p. 1) 4 4)a lnQ . , (2ir) 0 in+

BX(i)(pg &pb ~pc ~ I i ~12 ~13 )+ F'(p, + 1 i,pb +12,p, + l3 )
() lnQ

(5.5)

F' may be written as a Feynman integral over its inter-
nal loop momenta. We may choose the independent loop
momenta of I" in such a way that the only dependence of
the integrand on p„pb, p„or p~ comes from the propaga-
tors of the four fermion lines running through the graph.
r)F'/BlnQ may then be evaluated by acting with the
derivative operation on each of these lines. A typical con-
tribution to I" and the corresponding contribution to
BF'/() lnQ have been shown in Fig. 21. The cross on a fer-
mion line denotes the operation of 8/8lnQ on that line.
(Although we represent F' by a Feynman diagram, it
should be understood that in these diagrams, the 4PI sub-
graphs have internal soft subtractions. Such subtraction
terms do not affect our discussion. )

Let us consider a quark propagator in a graph, contri-
buting to I", which is a part of the continuation of the
external quark line, carrying momentum p, through the
graph. The momentum carried by this line may be written
as p, +k, where k is some linear combination of the inter-
nal loop momenta of F' and the IJ's. The contribution to
the Feynman integrand from this line is given by

(p, +k).y/[(p, +k) m+—ie] . (5.6)

If we consider the region of integration where k is soft,
we may approximate the numerator by p, y and the
denominator by (2p, k +i e) In t.he Q ~ ac limit, (S.6)
may be written as

Ug 1/(2U~ 'k'+ie), (5.7)

u, being defined as in Eq. (4.4). Equation (5.7) is indepen-
dent of Q, hence the 8/8 1nQ operator, acting on it, gives
zero. So, in- order to give a nonsuppressed contribution to
Bl";/() lnQ, a crossed line in a diagram must carry hard
momentum (remember that there is no collinear loop
momentum in F'). [This result is valid only for on-shell
regularization. For off-shell regularization, the denomina-
tor is given by (2p, .k+M, +ie) in the k-soft region,
where M denotes the quantity p, —m . 8/8 lnQ opera-
tor, acting on this term, will receive a contribution from
the k -M, /Q region, besides the hard region. ] Then, in
order to get a momentum flow consistent with the result

8
3 In Q

0

b

C

l
I
I

I
I

I

I
I
i
I

I

I

I

I
I

FICx. 21. A typical contribution to F' and the corresponding contributions to BF'/8 lng. Iu each graph, the subgraph to the right
of the broken line is constrained to be hard due to the action of the derivative operations. (This excludes the quark lines cut by the
broken lines. )



872 ASHOKE SEN 28

of Fig. 1, the part of the graph which lies unambiguously
to the right of the crossed line, or which cannot be
separated from the crossed line by drawing a vertical line
through the diagram cutting four normal (not crossed)
quark lines, must also carry hard momenta. Similar
analysis may be carried out for crosses on the other fer-

l

mion lines. In Fig. 21, in each graph, the part lying to the
right of the broken line is constrained to be hard. As a re-
sult, the first term on the right-hand side of (5.5) may be
expressed as a convolution of I" with a central hard core
p(;~. Typical contributions to p(;] have been shown in Fig.
22. Then (5.5) may be written as

f d41J (;](p~,pb,p„l&, l2, 13 )', F'(, +I,p +I, , +I ) (p. p p. l»~ I )+
J i (277)

(5.8)

The above expression has the same structure as (4.14),
with X~;~ replaced by the hard core p~;~+aX~;~/alng.
Thus, it may be analyzed in the same way and brought
into a form analogous to (5.2):

Br,
g g ll I (5.9)

4

ar, /alng= gX,,'r, , (5.10)

where o. is calculated from Feynman diagrams all of
whose internal momenta carry hard momenta. I; is given
by (5.2). Treating I and b, as four-dimensional vectors
and o. and ~ as 4)&4 matrices, we may eliminate 6 be-
tween (5.2) and (5.9) and write

The solution of (5.13) is

&;; (Q/p, g) =&;; ( l,g(Q)), (5.14)

g being the running coupling constant. Thus, the solution
of (5.10) is

Solving these equations, we ma express A,;; 's in terms
of I s and aI;/alng's. Now, I s and also aI;/a lng's
are independent of p, when expressed in terms of the bare,
parameters of the theory. Hence, A.;;'s must also be in-
dependent of p if expressed in terms of the bare parame-
ters of the theory. This leads to the renormalization-
group equation for the A, 's.

P(g) +p &;; (Q/p, g) =0,8
(5.13)

Bg Bp

where

(&);; =(or ');; . (5.11)

4 . gI;= g P exp f A, ( l,g(g') )d lng'
i'=1 P

b,;, as defined in (5.3), suffers from ultraviolet diver-
gences, since the lj integrals diverge in (5.3). Consequent-
ly, o and ~ must also have ultraviolet divergences, so that
the products oh and ~A are free from ultraviolet diver-
gences. In Eq. (5.10), however, both I; 's and al;/a lng's
are free from ultraviolet divergences. If we regard these as
a set of linear equations in A, ;; *s, we get 16 such indepen-
dent equations (four i s and four different color and helici-
ty structures of the external on-shell particles, on which
the I s depend). By solving these, A, ;; 's may be expressed
in terms of I s and aI;/alng's. This shows that the
A,;;'s are free from ultraviolet divergences. k is also free
from infrared divergences and independent of the quark
mass m in the gazoo limit, since it is calculated from
Feynman diagrams, all of whose internal lines are hard.
Thus, A, may be expressed as a function of Q/p and the
coupling constant g (p =renorrnalization mass).

If we multiply both sides of Eq. (5.10) by (Z2) then,
using Eq. (3.22), we get

ar;/alng =+X;;r; .

XA; (m, p, R,g), (5.15)

where P is the path ordering, which orders the terms in
the expansion of the exponential, from right to left, in the
order of increasing Q'. A; 's are constants, independent of

In writing Eq. (5.13), we have set the quark mass to be
zero in A, . A careful reader may object to this, since in
(5.15) the Q' integral runs from p to Q, and it may not be
legitimate to set m =0 in A. near the lower limit of the in-
tegral (Q'-p). To see the effect of a finite quark mass m,
let us note that A,(g',p, m) may be expressed as a sum of
A,(g',p, 0) and a function (m/Q')f(g', p, m), where the
function f is at most logarithmically divergent in the
Q'~ao limit. The m/Q' factor in front of f reflects the
fact that all the internal lines of A, carry a momentum of
order Q', and hence any m dependence must be suppressed
by a power of m /Q'. If we add the term
(m /Q')f (Q', p, m) to A, in (5.15), the effect of this term is
to give a constant multiplicative factor that can be ab-
sorbed into A;. This shows that Eq. (5.15) is valid so long
as we ignore terms of order m /Q.

A, has a perturbation expansion starting at g . Thus,

&;; (l,g(g')) =&,'; '[g(g')]'+O([g(g']") . (5.16)

In non-Abelian gauge theories,

(b) (c) g (Q') =16m /(Poing' /A ) (5.17)

FIG. 22. Some typical contributions to p(;).

in the Q'~ ao limit. Here po is a constant related to the
group structure. Thus,



28 ASYMPTOTIC BEHAVIOR OF THE FIXEl3-ANGLE ON-SHELL. . . 873

I;=exp

XA;(m, p, R,g) .

8Hz"' Qln ln ——ln ln~
Po A A

(5.18)

where nf is the number of flavors.

VI. ASYMPTOTIC BEHAVIOR
OF THE FULL AMPLITUDE

Po = 11 2—nf /3, (5.19)

Systematic corrections to (5.18) may be made by includ-
ing higher-order terms in A, in Eq. (5.15) and higher-order
corrections in the expression for g (Q). For the SU(3)
group,

In Sec. V, we found the asymptotic behavior of the I s.
In this section, we shall show how to find out the asymp-
totic behavior of the Z2's, using the results of Ref. 1.
Combining these two results, we may find the asymptotic
behavior of the full amplitude.

In Ref. 1, we showed that for an on-shell quark, moving
along the +Z direction with large momentum p, we have

2 'dx
[Zp(p)]' =B(m,p, R,g)exp —f y~(g(y))+ f&(g(x))+fz(m, p, R,g)

x dy
P

(6.1)

In writing the above equation we have taken the gauge-fixing vector n to be a fixed vector and hence omitted the
dependence of the functions B, y„ f, , and f2 on n. The above equation is not in a Lorentz-covariant form, it is valid
only for particles moving along the +Z direction. In order to find Z2(p') for any large on-shell momentum p', we note
that it may be expressed as a function of m, p, R,g and

I
n p I, due to Lorentz covariance and the invariance of the

theory under the transformation n~ —n. If p is an on-shell momentum lying along the +ve Z axis, and satisfies the
condition

In p I

= In p'I

then Z2(p') will be identical to Zq(p). Let us define

vy=2po/
I

n p I
=2/

I

n' n'
I

.—
Then,

[Z2(p ) 1 = [Z2(p)]

(6.2)

(6.3)

&~" & ~ dx dy=&( pm, R,g) pex— /y(g(y)) +f/(g(x))+f2(m, p, R,g) (6 4)x p

The reader may wonder how Z2(p') can depend on the quantity g =2/
I

n n
I
. Since n—and p' are the only two vec-

tors available to us and the gluon propagator is invariant under the scaling of n, the final result for Z2(p') should depend
only on the quantity n.p/( n)'~,—and the various mass parameters of the theory, but not on (n —n ). The solution to
this puzzle hes in the fact that the way the functions y~, f~, f2 were defined in Ref. 1 is not Lorentz invariant. Hence,
these functions may also have explicit dependence on various components of n. [This is the reason why, in the right-
hand side of Eq. (6.1), the upper limit of the x integration is p, instead of n p/( n)'~ .] In—the final answer however,
all the spurious n dependence must cancel among themselves and Zz(p') will be a function of n.p'/( —n )'~2 only. Since
we are interested only in the Q dependence of the amplitude, the spurious n dependence of the various components does
not bother us.

Equation (6.4) gives the asymptotic expression for Z2(p') for a general p'. Note that, if we choose n =0,
Z2' (p, )=Z'2' (ps), as was the case in Ref. 1 and Z2' (p, )=Z2' (pd). The full asymptotic expression may be ob-
tained by combining Eqs. (5.15) and (6.4):

r

&~" &i~ dxW= C(m, p, R,g) g exp fJ=a,b, e,d x
4 - ~ g

X g P exp f A, ( l,g(Q'), 0)d lnQ'
i,i'=1

—f y)(g(y) )+f)(g(x) )+f2(m, p, R,g
x dy

S y

I (mlitt &g&+pbtct4~a &sb scrod ~)
Il (6.5)

In the above equation, we have explicitly shown the
dependence on all the external variables, except n. The
functions y~, f, , and f2 may be calculated using the
prescription of Ref. 1. The 4)&4 matrix A, may be calcu-
lated using the prescription of Sec. V. C and A;'s are un-
known constants, independent of s. In the Q —+co limit,

exp —4C~ f f g (y)
dx x dy

p x p
(6.6)

the yi term is the most dominant term in the exponential.
If the O(g ) term in the expansion of y~ is C~g, the term
gives a contribution
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From Ref. 1 we know that C, is C~/4m, C„being the
eigenvalue of the quadratic Casimir operator in the fer-
mion representation. Using the expression (5.17) for
g (Q), we can write (6.6) as

exp
8C~ Q Q Q tt Qln —ln ln ——ln —ln ln —ln-
Po A A A A p,

(6.7)

Systematic corrections to (6.7) may be made by using
the full Eq. (6.5) and including higher-order corrections in
the expression for g (Q). The functions y~, f&, and A,

have perturbation expansions in g, which can be calculated
up to any order. The functions C, f2, and 3 s are
infrared divergent and hence cannot be calculated in per-
turbation theory. These functions are, however, indepen-
dent of Q. We may take them as unknown constants in
calculating the Q dependence of the amplitude from Eq.
(6.7).

At the tree level, the amplitude for qq~qq is propor-
tional to g . When we take asymptotic freedom into ac-
count, we may expect this factor of g to be replaced by
g (Q) and produce an explicit factor of 1/ln(Q/A), mul-
tiplying the full amplitude. The reader may wonder what
has happened to this factor in our expression (6.5). In our
formalism, this factor is included in the matrix A, . If we
look at expression (5.18), we see that an additive factor of
—1 in the matrix 8m A.

' '/Po will produce a multiplicative
factor of 1/ln(Q/A) in the amplitude. This is how the ef-
fect of the g (Q) term is hidden in A, .

The phase of the amplitude comes solely from the

,I; term. The Z2(p) factors cannot have any ima-
ginary part, since they involve a single on-shell incoming
and outgoing quark line, which cannot give rise to any in-
termediate state with on-shell particles. From (5.18), we
see that the leading contribution to I; comes from the
eigenvalue of A,

' ' with largest real part. If A,l be the ima-
ginary part of this eigenvalue of A,

' ', then the phase goes
as

tudes of on-shell quarks (antiquarks) in the shoo, t/s
fixed limit. The method can also be applied to analyze
amplitudes with more than four external on-shell quarks
(antiquarks). The leading asymptotic behavior comes
from the self-energy insertions on the external lines. This
is given by the renormalization-group modified formula of
Cornwall and Tiktopoulos:

exp — gC; 8 I J [g(y)], (7.1)
P X P

where C; is the eigenvalue of the quadratic Casimir opera-
tor in the representation to which the ith external particle
belongs and Q is some energy of order (p; pj)'~ . Sys-
tematic corrections to (7.1) for the qq~qq amplitude may
be made by using the full expression (6.5) and adding to it
the term with s„s~ interchanged, c,d interchanged, and
p„p& interchanged. For qq~qq amplitude we get a simi-
lar form as (6.5), with different functions A, ;; and 3; . For
amplitudes involving more external quarks, we again get a
similar form as (6.5), except that here the dimensionality
of the matrix A, and the vector A is larger than four, being
equal to the number of independent tensor structures in
the amplitude.

The result derived in this paper supports Mueller's con-
jecture on the asymptotic behavior of the wide-angle elas-
tic scattering amplitudes of hadrons. For his result,
Mueller used a form like (6.7) for the qq~qq amplitude.
In his calculation, the color-singlet property of the exter-
nal hadrons automatically provided an infrared cutoff
&Xs, where X-m /s corresponds to the Landshoff pinch
point and X-1 corresponds to the hard scattering region,
where the quark-counting rule is valid. As mentioned in
the Introduction, it is a plausible conjecture that the off-
shell regularization effectively reduces to an on-shell one,
when we sum over a set of graphs, and use the fact that
the hadrons are color singlets. In our result (6.5), if we set
the infrared regulator R to be &Xs and also p=~Xs, so
as to aviod logarithms of p/&Xs, the asymptotic expres-
sion (6.7) becomes

(8m A,IIPo)lnlnQ/A . (6.8)

Thus, the phase of the amplitude is determined by the
4X4 matrix A, , which is free from infrared singularities
and hence may be calculated perturbatively in QCD.
(This is true for the phase of the Sudakov form factor
also, where A, is a number, rather than a matrix. ) This is
an important result, since this shows that the phase of the
hard scattering processes may provide an important test of
@CD.

We should remember that (6.5) represents the asymptot-
ic behavior of the sum of only those graphs where the c
line is the continuation of the a line and the d line is the
continuation of the b line. The sum of the other set of
graphs, where the c line is the continuation of the b line
and the d line is the continuation of the a line, may be ob-
tained from (6.5) by interchanging the color and the helici-
ty quantum numbers of the lines c and d and the momenta
p, and p~.

VII. CGNCLUSIGN

In this paper we have found a systematic way of calcu-
lating the asymptctic behavior of the scattering ampli-

Q Q Q V'Xs
exp — ln —ln ln ——ln —ln ln —ln

Po A A A A ~X

(7.2)

which is exactly the form assumed by Mueller.
On the basis of this equation, Mueller showed that the

leading contribution to the wide-angle elastic mm scatter-
ing amplitude comes from a region Xs-s ' +" where
C=8CF/Po, which gives a factor of s' 2 c'"(' c+"
multiplying the quark-counting-rule prediction for the
amplitude. Thus, our result supports Mueller's conjecture.
%'e hope that the technique used in this paper may be ap-
plied directly to the analysis of hadron-hadron elastic
scattering amplitude and will enable us to make systematic
corrections to Mueller's result.

Pire and Ralston have suggested that the phase of the
qq ~qq and qq ~qq amplitudes may be responsible for the
small oscillation of the experimental data for hadron-
hadron elastic scattering cross section about the quark-
counting-rule prediction, as was noted by Brodsky and
Lepage. This is achieved by considering the interference
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between Mueller's result and the quark-counting result.
We have seen that the phase of the amplitude is free from
infrared divergences. Hence, it is calculable perturbatively
and is proportional to lnlnQ/A thus confirming Pire and
Ralston's assumption that the scale of the Q dependence
of the phase is set by the @CD scale parameter A. We
hope that the analysis of the full hadron-hadron scattering
amplitude, using the method used here, will also provide
us with a quantitative result for the oscillation of the
scattering cross section.

Note added in proof A. fter finishing this work, we
learned about a paper by Cheng et aI., ' which deals with
the similar problem in Abelian gauge theories.
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