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Rotation generators in two-dimensional space and particles obeying unusual statistics
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We describe systems of particles obeying unusual statistics in two-dimensional space, as well as
solenoid —charged-particle composites, in terms of a complete set of local gauge-invariant currents.

I. INTRODUCTION J(x)= —,
' P'(x)[[(A'/i)V —(e/c)A(x)]g(x)]

The unusual statistics which could be obeyed by parti-
cles moving in two-dimensiona1 space, or by idealized
solenoid —charged-particle composites, have been dis-
cussed recently by Wilczek, ' Goldhaber, Kobe, Lipkin
and Peshkin, and Jackiw and Redlich, raising questions
concerning the correct choice of rotation generator. The
statistics of identical particles in two dimensions were dis-
cussed earlier by Leinaas and Myrheim. Here we show
how the description of these systems previously obtained
using local currents allows a rigorous, clear, and sys-
tematic treatment of the questions raised. We conclude in
agreement with Refs. 1, 2, and 7 that in the strictly two-
dimensional case the eigenvalues of the rotation generator
can be shifted from integer multiples of R by an arbitrary
fixed constant, and a corresponding one-parameter family
of possible statistics interpolates between Bose and Fermi
systems. We describe a simple model in which the ex-
change of particles in two dimensions is implemented ex-
clusively by means of observable rotations in bounded re-
gions, constructed from local currents. For
solenoid —charged-particle composites, the unusual statis-
tics occur only in the idealization of actually infinite
solenoids with no return flux, and cannot be obtained in
the limit of long, finite solenoids, as has been remarked in
Refs. 2, 4, and 5. In contrast to Ref. 5, our description is
in terms of a complete set of manifestly gauge-invariant
quantities.

II. THE LIE ALGEBRA OF LOCAL CURRENTS
AND THE PHYSICAL ANGULAR

MOMENTUM OPERATOR

The fundamental objects in our approach are the opera-
tors

p(f)= Jp(x)f(x)dx
and

J(g)= f J(x) g(x)dx,

where f and the components of g are smooth test func-
tions which vanish at infinity. The mass density p( x ) and
the kinetic momentum density J(x) can be written in
terms of a nonrelativistic second-quantized field @(x ) and
its adjoint g'( x) as

p(x) =mt/i'(x)P(x),

+Hermitian conjugate,

where A(x) is the vector potential. Thus p(f) is the mass
density operator averaged in space by f(x), and J(g) is
the momentum density averaged by g( x ). The operators
p(f) and J(g) are gauge invariant and satisfy the commu-
tation relations

[p(f» p(f2)]=o,

[p(f),J( g )]=i Rp( g Vf ), .

[J(g» J(g2)] =i~([g i g2])

(3)

(4)

+i (A'e /mc )p(B ( g i && g & ) ), (5)

[J(gl) J(g2)1 t~([gl g21)

Equations (3), (4), and (6) are taken as the basis for our
discussion. It is remarkable that the same infinite-
dimensional Lie algebra arises whether one starts with
underlying fields satisfying canonical commutation rela-
tions or canonical anticommutation relations. A physical
system corresponds to a representation of the Lie algebra
(3), (4), and (6) by self-adjoint operators in Hilbert space;
thus for any g, J(g ) describes an observable. Alternative-
ly, a physical system can be described by a unitary repre-
sentation of the associated infinite-parameter Lie group. '

Two such representations describe the same physics if they
are unitarily equivalent. Distinguishable as well as indis-
tinguishable particles can be described by means of the
rich class of inequivalent representations existing for the
Lie algebra of local currents.

In such a representation, the operator for physical angu-
lar momentum (also called orbital or kinetic angular
momentum) about the z axis is obtained from J(g). Let
the vector field q be given by q&(x)= —x2, q2(x)=x&,

where [g, , g2]= g2. Vgi —gi. Vg2, and the external mag-
netic field B=V && A has not been quantized. Here

[g i, g2] is the Lie bracket of the vector fields, allowing the
geometrically meaningful interpretation of the operators
J(g) as infinitesimal generators of diffeomorphisms. For
test functions restricted to be nonzero only in the field-free
region, the second term on the right-hand side of Eq. (5)
vanishes, leaving
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q3(x)=0. Since g must vanish at infinity while q does
not, let g(x)=q(x) in a large compact region

~

x
~

&R
and let g( x) fall smoothly to zero for

~

x
~

& R. With this
choice, J(g) in units of angular momentum is approxi-
mately

J[xXJ(x)].x3dx .

The possibility exists of a shift in the spectrum of the
physical angular momentum operator from integer multi-
ples of A by A,R/2m, even for distinguishable particles mov-
ing in two-dimensional space or for distinguishable
particle-solenoid composites moving in R, because in
these cases the configuration spaces are not simply con-
nected, and there are consequently unitarily inequivalent
representations of the Lie algebra corresponding to dis-
tinct values of A, . It is not necessary to exclude the parti-
cles from occupying the same point by means of repulsive
5-function interactions in order for the unusual represen-
tations to occur. Still other inequivalent representations
exist describing identical particles, in which the physical
angular momentum spectrum is shifted from even-integer
multiples of A by A.A/m. The case A, =O describes bosons,
A, =m. describes fermions, and other values of A, in the in-
terval [0,2m) describe particles obeying unusual statistics.
In ihe case of particle-solenoid composites, A. is propor-
tional to the magnetic flux.

The nontrivial connectedness of a configuration space
can be characterized by means of its fundamental group.
In three or more dimensions, the fundamental group for
configurations of N identical particles is isomorphic to the
symmetric group Sz, whose one-dimensional representa-
tions can lead only to Bose or Fermi representations of- the
local current algebra. " In two dimensions, however, the
fundamental group for configurations of N identical parti-
cles is isomorphic to the braid group of order N, ' whose
one-dimensional representations include those leading to
the unusual statistics discussed here.

It is especially noteworthy that all of these systems —N
distinguishable particles (with or without a shift in the an-
gular momentum spectrum), N indistinguishable fermions,
bosons, or "anyons, " for arbitrary N, as well as infinite
gases as N~ ~ in the thermodynamic limit —arise as ine-
quivalent representations of the same manifestly gauge-
invariant Lie algebra (3), (4), and (6) of local observ-
ables

III. THE ROTATION GENERATOR
IN TWO-DIMENSIONAL SPACE

Next we examine the correct choice of rotation genera-
tor in such a representation. For particles moving in a
strictly two-dimensional region, the following model illus-
trates why it is not necessary to require a rotation genera-
tor (canonical angular momentum) distinct from the orbi-
tal angular momentum obtained from J( g ) as above.
Consider a circular wire hoop of radius D (D~ op ) with a
thin liquid film suspended across the hoop, and let there
be N first-quantized pointlike vortices in the liquid. At
the boundary

~

x
~

=D, require the film to be stationary.
When the x coordinates of two vortices are exchanged by
letting them "orbit" each other, we have locally generated
a rotation using the two-dimensional orbital angular
momentum operator J( g ), and we can have a phase shift

in the probability amplitude by other than 0 or m.. The
boundary condition at the hoop restricts the test function
g to become zero as

~

x
~

~D, effectively "tying down"
the local rotation at the boundary. Thus, we can "keep
track" of how many times the disturbances have circled
each other, and this information becomes part of the
description of a "particle configuration ".When we let
D~oo, set g(x)=q(x) for

~

x
~

&R, and permit R~ao,
the operator J(g) becomes the generator of a projective
representation (i.e., a multivalued or ray representation) of
the two-dimensional rotation group. Physically, a ray rep-
resentation is all that is needed to ensure that the out-
comes of measurements are rotationally invariant. It is a
representation of the covering group of the two-
dimensional rotation group. ' When N=2, one might
seek to argue that a "true" rotation exchanging x coordi-
nates means physically turning the whole hoop, wire and
all (or, equivalently, rotating the liquid while abandoning
the boundary condition at

~

x
~

=D), thus ruling out the
unusual statistics. But, any quantum-mechanical mea-
surement which we actually perform must be made in a
bounded region of space, and cannot entail a truly global
rotation such as that described. Furthermore, when N )3,
one can keep track of the number of times a vortex passes
between two others when a lacal rotation exchanges x
coordinates; then unusual (non-Bose and non-Fermi) rep-
resentations still occur since particle configurations re-
quire parameters beyond the position coordinates to
characterize them uniquely.

Thus particles such as point vortices in two-dimensional
space are completely described by means of local observ-
ables, and there is no a priori necessity either mathemati-
cally or physically for introducing a canonical angular
momentum operator distinct from the rotation generator
discussed above.

It is interesting that for fixed, arbitrary A, , the two-
dimensional orbital angular momentum operator can be
represented by the differential operator (fi/i)B/BO on a
domain (depending on A, ) in the space of square-integrable
wave functions of x, where x = (r, B) is the relative coordi-
nate between two (distinguishable) particles. ' Recall that
an unbounded linear operator A on a Hilbert space A is in
general defined only on a dense domain D~ C A . For A to
be self-adjoint, one needs both D& ——D, and 2 =A' on

D~. Choose an arbitrary axis along which 0=0, and de-
fine L to be (A'/i)B/80 on the largest possible domain of
functions which vanish on this axis. Thus defined, L is
not self-adjoint, but it has a one parameter family -of self
adjoint extensions L~ to larger domains D~. A wave func-
tion in D~ has a phase shift e' at 0=0. Different self-
adjoint extensions L~ arise from the self-adjoint operators
J(g) in inequivalent representations. The apparent arbi-
trariness of the axis where 0=0 can be eliminated by writ-
ing a unitarily equivalent representation on the Hilbert
space of wave functions on the covering space of two-

, particle configurations ("inultivalued" wave functions). '

In all such representations the orbita1 angular momentum
(A/i)B/80 has a discrete spectrum and is therefore quan-
tized. Here we differ from Refs. 2 and 5, at least in termi-
nology. To say orbital angular momentum is not quan-
tized would be to say that as a self-adjoint operator it has
a continuous spectrum, which is Hot tl Ue hel e. Fol
particle-solenoid composites, a change in flux represents
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the orbital angular momentum by a different self-adjoint
operator, changing not merely its eigenfunctions, but its
whole domain of definition.

We also note that while the spectrum of L~ is shifted by
(fiA, /2sr) from the spectrum of Lx p, the operator Lx does
not equal the operator (RA, /2sr)I +Lx o since they are de-
fined on different domains. However, here the two opera-
tors are related by a unitary transformation of the repre-
sentation of the (gauge-invariant) current algebra. This is
the transformation Q in Eq. (3.7) of Ref. 8, also discussed
by Kobe.

Finally, we turn to the question of the correct rotation
generator for two impenetrable solenoid —charged-particle
composites. Wilczek exchanges such composites by means
of a rotation, and unusual statistics occur when the orbital
angular momentum operator L~ is taken as the infini-
tesimal generator of the rotation. ' At issue, then, is
whether the rotation is achieved "orbitally" or "canonical-
ly." Demanding that the orbital angular momentum
operator generate a single-valued representation of the
two-dimensional rotation group would quantize the flux in
the solenoids so as to eliminate the unusual statistics, but
such a condition is not dictated by the physics. However,
other authors have noted that when the infinite solenoids
are considered as limits of long, finite solenoids, it is
necessary to include the angular momentum in the crossed
fields,

F= ( 1/4src )I x X [E(x ) X 8( x )]d x

and to take account of the return flux. ' Then the aver-
aged kinetic momentum density operators J(g ) satisfy Eq.
(5) rather than Eq. (6) when g is nonvanishing in the dis-
tant region of return flux. In a fully quantized theory, it
is interesting that it is the total momentum density, de-
fined by

P(x)= J(x)+(1/gsrc)[E(x)XB(x) —B(x)XE(x)],

which satisfies the Lie algebra of Eq. (6) when averaged
with test functions. For finite solenoids of arbitrary
length, the total angular momentum obtained from P(x ) is
quantized in the usual integer multiples of A, with the
shift in orbital angular momentum exactly canceled by the
angular momentum stored in the distant crossed fields.
Representations in which the spectrum of total angular
momentum is shifted can also be ruled out by a time-
dependent analysis. Like J ( x ), P( x ) is manifestly gauge
invariant. Lipkin and Peshkin point out that in the gauge
V A=O and A( 0e )=0, the angular momentum in the
crossed fields equals the additional angular momentum in-

troduced by A when (following Ref. 5) we write the
canonical angular momentum operator as M =L
+(e/c)x XA, L being the orbital angular momentum.
The latter expression is, of course, gauge dependent.

The above considerations (return flux, or a condition at
t = —ee in a time-dependent analysis) rule out the possi-
bility that long particle-solenoid composites prepared in
the laboratory, which are necessarily finite and whose his-
tory we know, obey unusual statistics. However, the
unusual representations of the gauge-invariant Lie algebra
exist. Thus we cannot rule out the unlikely possibility that
actually infinite flux-tube —particle composites of cosmo-
logical origin will be discovered floating in space, with no
return flux and undiscoverable history, obeying the unusu-
al statistics suggested by Wilczek.
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For indistinguishable particles, all wave functions in the
preceding are periodic in 0 with period m. rather than 2m.


