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We develop Lagrangian and Hamiltonian lattice formulations of the Wess-Zumino model which
preserve the superalgebra. We check that the lattice model passes into the continuum model in the
zero-lattice-spacing limit, and obtain various perturbative results (nonrenormalization, effective-
potential loop expansion) on the lattice. We study the phase structure with the one-loop effective po-
tential and find dynamical symmetry breaking at large coupling in two dimensions, but not in four
dimensions. Separately, we evaluate the strong-coupling limit in the Hamiltonian formulation and
confirm the accuracy of the one-loop effective-potential predictions. Our methods should apply to
certain other supersyrnmetric theories.

I. INTRODUCTION

Supersymrnetric field theories' have become of interest
to particle physicists for essentially two reasons. When at-
tempting to go beyond the standard SU(3) X SU(2) X U(1)
theory, it is hoped that (global) supersymmetry might help
to understand the vast difference between the scale of
weak interactions and the Planck scale. Furthermore (lo-
cal) supersymmetry is the only known framework which
allows one to combine gravity with the standard theory of
strong and electroweak interactions.

If supersymmetry applies to low-energy particle physics,
it cannot be exact but must be broken. As a consequence
of nonrenorrnalization theorerns, breaking of supersym-
metry either has to be put in by hand (by choosing ap-
propriate Higgs parameters), or it must come from non-
perturbative effects. The second possibility certainly is
more attractive, but not yet understood well enough. For
two-dimensional models there is now strong evidence that
such a dynamical breakdown is possible. ' In four dimen-
sions, however, the situation is less clear. Witten s index
theorem states that for a large class of models supersym-
rnetry will not be broken by any nonperturbative effects.
But there are still important cases left which are not
covered by this argument, in particular, models with
zero-mass fermions. It is therefore important to investi-
gate further the dynamics of supersymmetric theories
beyond perturbation theory.

In recent years it has proven very useful to formulate
quantum field theory on the lattice. Powerful techniques,
such as the strong-coupling expansion, mean-field theory,
or Monte Carlo computer simulations can then be used to
obtain both quantitative and qualitative insights into the
structure of the theory. Several attempts have also been
made to put supersymmetry onto a lattice, but so far none
of these has reached the stage where one could start to sys-
tematically investigate realistic supersymmetric models.

Difficulties arise from the fact that the (continuuin) su-
persymmetry algebra contains the generators of transla-
tion and Lorentz rotations, e.g.,

and such infinitesimal transformations are ill-defined on
the lattice. Furthermore, it is well known that the proof
of invariance under supersymmetry transformation re-
quires the product rule of differentiation (Leibniz s rule),
and, again, this rule is generally lost on the lattice.

Nicolai and Dondi' were the first to point out that, if
one wants to define a supersymmetry algebra on the lat-
tice, one is forced into nonlocal operators. Not only is one
led to a version of the derivative operator which has long-
range correlations, but also the interaction terms in the
lattice action require some sort of nonlocality. Banks and
Windey" and, later on, Rittenberg and Yankielowicz'
tried to preserve, if not the full supersymmetry algebra, at
least what seems to be the most crucial part of it:

a=O
(1.2)

At the same time they attempted to avoid the nonlocal
features mentioned before. Unfortunately, however, their
lattice version does not fully recover Lorentz invariance,
when the lattice spacing is taken to zero. Elitzur, Rabino-
vici, and Schwimmer' continued along these lines and
succeeded in finding a class of models where these diffi-
culties do not arise. Their method, however, so far only
works for simple models, such as the Wess-Zumino
model, ' in two dimensions. In four dimensions the sim-
plest model would be X =2 extended supersymmetry.

Very recently, the problem of putting supersymmetry
onto a lattice has been investigated from a somewhat dif-
ferent angle. ' Following Symanzik's idea of constructing
an "improved" lattice action, ' a lattice version of the
Wess-Zumino model has been found which, by construc-
tion, agrees with the continuum theory in the limit of van-
ishing lattice spacing. Here, again, nonlocal operators
were avoided. In the resulting lattice action, manifest su-
persymmetry is completely lost, and no way has been
found so far to investigate this model outside of perturba-
tion theory.
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In this paper we describe a new attempt to find lattice
versions of supersyrnmetric field theories. As a start we
limit ourselves to the Wess-Zumino model, but we hope
that in the future we will be able to handle supersym-
metric gauge theories as well. Comparing our approach to
the previous attempts mentioned before, we describe our
strategy as follows. Our first goal is to preserve a mani-
fest invariance under a set of transformations, which satis-
fy the same algebra as in the continuum case, even if all
this leads us to the nonlocal features of Ref. 10. There is.
an obvious way to define such transformations. We re-
quire that the Fourier transform of our lattice version
agrees with that of the continuum theory, apart from the
constraint that, on the lattice, momenta range from —m/a
to ~/a. In this way we satisfy, in Fourier space, the su-
persymmetry algebra [e.g., Eq. (1.1)]. Transforming back
to configuration space we of course find the SLAC deriva-
tive' operator with long-range correlations. However, in
accordance with Ref. 10 the interaction terms also become
nonlocal. Typically we find

J d~x $3(x)~a4 g V„„P„P„P„, (1.3)
11 ] Il 2 Il 3

where n; denote the lattice points, and V will beIlln2n3
specified below.

The main achievement of this procedure is that we can
define transformations (supersymmetry, translation,
Lorentz rotation) which, formally, satisfy the same com-
mutation and anticornmutation relations as in the continu-
um theory, and that we have a lattice action which is man-
if'estly invariant under these transformations. It is, how-
ever, clear that what we call "translation" or "rotation"
operator cannot be interpreted as an infinitesimal transla-
tion or rotation operator. Only after exponentiating do we
obtain operators which correctly define finite translations
or rotations. We also can show that our lattice theory has
the correct continuum limit, quite in the spirit of Ref. 15.

After having established that our lattice theory has the
correct symmetry properties, we than have to find
methods of handling the nonlocal interaction terms (1.3).
This is the second goal of our paper. We shall demon-
strate that it is still possible to apply some of the well-
known lattice approximations, in particular, mean-field
theory and the strong-coupling expansion. The first ap-
proximation will be used in order to analyze the partition
function (we actually calculate the effective potential in
the one-loop approximation). For the strong-coupling ex-
pansion it turns out to be necessary to use the Hamiltonian
formulation. We split the nonlocal interaction V

Il ] Il p Il 3

[Eq. (1.3)] into a local piece and treat the nonlocal part as
a perturbation. First, we solve the single-site problem,
then study the influence of the nonlocal piece to all orders.

Applying all this to the Wess-Zumino model we find
that supersymmetry is unbroken for all values of the cou-
pling constant g (at fixed mass m&0). The point g= oo

turns out to be singular: two phases which for small g are
very far apart from each other come together at g= oo.
We therefore interpret this limit as a phase-transition
point. This analysis comes out of the mean-field-theory
approximation. The behavior at g= m is confirmed by
our strong-coupling calculation: we prove that supersym-
metry is still unbroken. We also compare these results

II. THE LATTICE ACTION

We start from the continuum Lagrangian of the Wess-
Zumino model':

S„„,= Jd x(Wi„„+W +Ms), (2.1)

F2+ g2 (2.2)

=m FA+GB— (2 3)

Ws g(FA FB +2G——AB—i ggA +—i fysQB ) . (2.4)

Here g (g= itiry ) denotes the Majorana spinor field, A and
B are the scalar and pseudoscalar fields, respectively, and
F and 6 are auxiliary fields which we prefer to keep. We
use the metric ( —1, + 1,+ 1+1) (except for the following
section where we find it more convenient to switch to the
Euclidean metric), and our y matrices are in the Majorana
representation. (In Sec. V we will write down the explicit
form of the y„.)

Our lattice version of the Wess-Zumino model is ob-
tained most easily if we introduce interpolating fields.
They are defined to have the same Fourier transform as
the lattice field variables. As an example, we write for the
A field:

1 m/a
d k e' " ' "'A(k),

n (2~)2 m/a

A(x)= J d ke'"'"A(k) .
(2~)2 —m/a

(2.5)

(2.6)

stands for the field A of the lattice point

n=(no, n, ,n2, n3); a is the lattice spacing, A(k) denotes
the Fourier transform, and A (x) is our interpolating field.
By inverting (2.5)

a4
A(k)= ge '"'"'A

(2m)
n

and substituting into (2.6), we find

A (x)=QIC (x)A

(2.7)

(2.8)

with the two-dimensional case: there the phase transition
from unbroken supersymmetry to broken supersymmetry
seems to occur for some finite g, and at g = 00 supersym-
metry is broken. '

We organize our paper into essentially two parts. We
first work in the Lagrangian formulation. After defining
the action and the supersymmetry transformations on the
lattice we make sure that our lattice action is invariant
(Sec. II). We then (Sec. III) survey a variety of analyses of
our partition function. The most attention is given to the
one-loop effective potential, and we study the phase struc-
ture in that approximation. We do find, however, that the
Lagrangian formulation is poorly adapted to the calcula-
tion of the strong-coupling limit. In the second part we
therefore turn to the lattice Hamiltonian formulation (Sec.
IV), and we use this formulation to calculate the ground-
state energy in the strong-coupling limit (Sec. V). In Sec.
VI we summarize and comment on our results.
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where

a4
K (x)= d4ke'"' -"'

(277)4 1r/a—
(2.9)

One easily sees that A (x} interpolates between the lattice
I

sites, i.e., for x=ma we have A(x)=A . Interpolating
fields for the other field variables of the Wess-Zumino
model are defined in a similar way. Inserting (2.8) into the
action integral (2.1) and carrying out the x integration, we
arrive at our lattice action:

r
t

4 1 1 lSi,ii,.„——0 y —,A D A + —,8 D 8 ——y ypA
1 1' 2 2 n

1
n 1' n 2 n 2 2

+ —,'F '+ —,'G '+m F A +G 8

+gV [F A A FB —8 +2G A 8 if (—A „y58„)Q—„]. . (2.10)

Here the summation extends over all repeated indices, and the derivative matrices 6",D are defined as

a'
QP d4k( ky) i k ( m —n )a

(2&)
4

D d4k( k2)e' " ~ m —"i&
m, n (2~)4 —~/g

Obviously they satisfy the relation

(2.11)

(2.12)

=D
n1

The vertex V stands for
n

1
n 2 n 3

a m'/a8

V d k, d k2d k35(ki+k2+k3)exp —igk n a0 j B 2 B 3 (2~)8 n/a— ' J J
J

(2.13)

(2.14)

It is important to note that the 5 function in (2.14) is non-
periodic. This vertex V satisfies the relationn

1
n 2 n 3

V-- -~"--+V - » +V» =0,n3 n2n3m m n1 n3n 1
m m n2

pie. The relevant property of V reads
n

1
n 2 n 3

gv
n

1

(2.17)

(2.15)

which is nothing but the Leibniz rule for differentiating
products

~"- —I'- - - f- g-3mmn1n&n1n2

=&-„-„-„[(~"-„-f-)g-„+f-„(&"-„-g )] .

(2.16)

We will find that maintenance of the Leibniz rule is all
that is required to make the lattice action invariant under
supersymmetric transformations.

The disadvantage of our lattice action (2.10) lies, of
course, in the fact that the interaction term gV has

Il
1

n 2 n 3

become nonlocal. For large separation of lattice points n
&

and n2 the vertex V goes to zero with an inversen1n2n3
power of

~
ni —n2 ~, and one might fear that this nonlo-

cality presents a severe difficulty. As we will show, how-
ever, it is possible to apply standard approximation tech-
niques to this nonlocal type of interaction. The first is the
stationary phase approximation (or mean field theory, to
be discussed in the following section), and it makes use of
the fact that for field configurations which are indepen-
dent of space and time the nonlocal vertex becomes sim-

5A =igg

58 =i i)y~g

5F =LP ii}y„g

5G „=~"„-igysy, -4

5f =5" (A y~B )y„g+ (F—+y5G )i}

(2. 1 8)

(here q, i)=i)ry denote anticommuting Cirassmann vari-
ables). Using the Leibniz rule (2.15), a straightforward
(though lengthy) calculation shows that our lattice action

The second approximation scheme is the strong-coupling
expansion (to be discussed in Sec. V, within the Hamil-
tonian formalism), and the basic idea is to treat the off-
diagonal part of V as a perturbation. Because ofn1n2n3
the rather slow fall-off of V as a function of then

1
n 2 n 3

separation of lattice points it is not obvious at all why
such a treatment should work. As we will see, it is the su-
persymmetric structure of our model which allows us to
control this perturbation expansion to all orders.

After having discussed the unpleasant features of our
lattice action (2.10}, we now turn to the advantageous
ones. We first define the following supersymmetry
transformations'.
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(2.10) is invariant under these transformations. As in the
continuum theory, one finds that each of the three pieces
of the action is separately invariant: the kinetic part, the
m part, and the interaction part. Furthermore, we define
generators of the Poincare's group. For the translation
operators we define

and

aA
(e )--=& „. . & „+i 6

m n 0 0 P' P 3 3
(2.28)

(a/2)M „(e ~mn ~nm ~n —m ~mnm n 0 0 v )M p' v 3 3

(2.29)
I'p. (Ap)

and for homogeneous Lorentz transformations

(2.19)

(2.20)

[P„,P„]=0, (2.21)

(2.22)

[Mq„,Mi ]=gpss M +g„M„i„+g„iMp +g„Miq .

Again the Leibniz rule (2.15) is crucial in proving the
correct commutation relations

Equation (2.28) defines a shift by one lattice spacing in the
p direction, Eq (2..29) a 90 rotation in the p-v plane. We
see that finite transformations generated by our superalge-
bra give the expected results when the transformation is
permitted on the lattice.

This is a good place to remark why we chose to main-
tain the superalgebra on the lattice. One alternative
would be to require that the Lagrangian be invariant only
under those finite transformations permitted on the lattice.
However, the finite transformations do not form a dense
subset of the continuum transformations even in the limit
of zero lattice spacing. It is therefore difficult to establish
the connection with continuum supersymmetry.

Combining the supersymmetry transformations (2.18)
with the Poincare generators P&~&, one also verifies the
superalgebra part

IQ QtiI = 2y"t—tP,

[Pi Q ]=0
(2.24)

(2.25)

[Q,M""]=i at' jQ tt, (2.26)

where o""=—,[y",y ) and Q is defined by (2.18). We
therefore can conclude that our lattice action (2.10) is
manifestly supersymmetric. A lattice version of the
Wess-Zumino model can thus be defined through the fol-
lowing partition function:

Z=
dA dB dF dG dg

(2ir) i
(2.27)

We conclude this section by mentioning that our defini-
tion of P& and M&„a11ow us to define a finite shift and a
finite rotation, respectively. After some calculations one
finds that

III. ANALYSIS OF THE PARTITION FUNCTION

dA dB dF dG df
lattice

(2m )
(3.2)

and the lattice action differs from (2.10) only in a few
coefficients in front of fermionic terms:

In this section we explore the lattice partition function
(2.27) by a variety of simple methods. Our conclusion is
that there is no sign of dynamical symmetry breaking of
supersymmetry near weak coupling in four dimensions,
but that a more detailed study is required in the strong-
coupling regime. The quantity which signals the break-
down of supersymmetry is a nonzero ground-state energy
density. Working in Euclidean space we expect that

firn ——lnZ =Ep )01
(3.1)

v V

is a necessary and sufficient condition for the breakdown
of supersymmetry.

It will be convenient to switch (for this section only) to
the Euclidean metric. The partition function then reads

S~,«,„——bosonic part +a g —tl y&h" li —, tnt p gp' —(17g— 11 —ill y+ g )

(Our metric is now g&„———5& [y&,y I = —25&„,y~2=1,
and P is a Majorana spinor analytically continued from
Minkowski to Euclidean space. )

In order to make contact with the continuum theory, we
first look at the weak-coupling region of (3.2). At g=O
the fermionic and bosonic integrations decouple from each
other and can be done analytically. As expected, the fer-
mions provide a negative contribution to the ground-state
energy, which then is exactly canceled by the bosonic con-
tributions. As a result, Z=1. In lowest nontrivial order
of g we have the contributions shown in Fig. 1. In the
continuum theory, these diagrams sum up to zero, and in
fact these cancellations continue so that Z = 1 is correct to

I

all orders of perturbation theory. For our lattice model we
also find that the order g corrections to Z vanish (for all
a). This can be seen quite easily by noticing that our
lattice-Feynman rules are the same as in the continuum,
except that the momentum along each propagator line is
restricted to the interval ( —m/a, ~/a). At each vertex we
have a momentum-conserving 5 function. [As we have
remarked after (2.14), it is important that this 6 function
is nonperiodic. Otherwise we would have "umklapp" con-
tributions which would spoil the cancellations. ] With these
modifications of the Feynman rules, the cancellations
among the diagrams of Fig. 1 still work, and we expect
that this will continue to be true in higher order in g . If
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(b)
FIG. 1. Two-loop graphs for the partition function Z. The

sum extends over all possible internal particle lines.

so, Z=1 in our model to all orders perturbation theory,
and supersymmetry remains unbroken, except for possible
nonperturbative terms.

Next we want to make sure that our lattice model in the
limit a ~0 agrees with the continuum theory. To this end
we have considered all potentially divergent vertex func-
tions in the one-loop approximation, in the same spirit as
in Ref. 15. In the limit a~O our renormalized vertex
functions agree with those of the continuum theory, and
the necessary counterterms are supersymmetric. We have
not yet fully explored the two-loop approximation, but ex-
pect that the limit a —+0 agrees with the continuum
theory. We mention that the difficulties in using the
SLAC derivative, which have been discussed in connection
with nonsupersymmetric gauge theories, do not apply to
our case. ' ' In particular, the supersymmetric structure
of our model improves the situation in that ultraviolet
divergences are never worse than logarithmic and counter-

I

terms of the constant
~ pz ~

never appear.
Leaving the domain of perturbation theory, it is most

tempting to try a strong-coupling expansion around
g= ao. Such an attempt, however, runs into severe diffi-
culties which stem from the nonlocality of the interaction
vertex gV . Usually, when putting a field theoryn&n&n3'

model onto a lattice the interaction terms remain local and
the only nonlocality resides in terms involving the lattice
gradient operators. In the strong-coupling limit, such
terms are suppressed by an inverse power of the coupling
constant, and one is left with a product of single-site in-
tegrals. In our case, terms with gradient operators are also
down by some inverse power of g, but the remaining in-
teraction terms involve V and hence couple dif-

Il l Il
Q

Il 3

ferent sites together. One then might try to treat the off-
diagonal parts of V as a perturbation, such that in

Ill IIPIl3
the zeroth-order approximation one has a product of
single-site integrals. However, it turns out that such a
single-site integral treats fermions and bosons slightly
asymmetrically. The negative contribution of the fer-
mions to the ground-state energy wins over the positive
energy of the bosons, and the resulting ground-state ener-

gy density equals Eo ———ln2. In order to see how this re-
sult emerges it is convenient to define the partition func-
tion (3.2) in a finite volume (with periodic boundary con-
ditions). The volume is shrunk until it contains just one
point:

dA dB dl( 1 2 2 2Z„„s„„„= exp[ —, ming gg(A—iy~B—)g——, (md+—gA gB ) ——,(m—B+2gAB) ] . (3.4)

This integral, as a function of m/Vg, can be studied in
detail, and one finds the following properties: Z=1 at
g=O and Z=2 at g= oo. Moreover, performing a pertur-
bation expansion around g=O one finds that Z=1 to all
orders in g. It thus has one of the most remarkable prop-
erties of supersymmetry (nonrenormalization to all orders
of perturbation theory), but it is badly suited as a starting
point for a strong-coupling expansion. The reason for this
lies in the fact that our neglect of the nondiagonal pieces
of V destroys the property of H being the sum ofIl ] Il p Il 3

squares of the supersymmetric charades. This is one of the
reasons why, in the following sections, we shall switch to
the Hamiltonian formulation and try a similar perturba-
tive treatment of the off-diagonal part of V . As

Il ] Il p Il 3

we shall demonstrate, there it turns out that the "local"
forms Q' ', H' ' of the charges Q and the Hamiltonian H
are such that H' '=[Q' ']~ is preserved.

We finally mention another attempt to evaluate our par-
tition function in the limit g= oo. Having done the fer-
mion integration and taken the limit g~ oo we found that
the action as a function of 3 and B has a maximum away
from A =B=0. Expanding around this stationary point
we again found a negative ground-state energy, which in-
dicates that our treatment still violates the balance be-
tween fermionic and bosonic contributions to the ground-

I

state energy.
In the remainder of this section we shall evaluate the

partition function (3.2) in another approximation: Taking
the field variables ~ & Bpg B, Fpg Fy and G„=G to
be constant in space-time, we calculate the effective poten-
tial in the one-loop approximation and search for minima
with respect to F, G, 3, and B. The difference between
this calculation and the strong-coupling approximations
above is that in a systematic expansion in loops the fer-
mions and bosons are on the same footing. In the two
strong-coupling calculations the fermions were completely
integrated out as the first step, but approximations were
made in evaluating the remaining partition function.

Knowledge of the one-loop effective potential will give
us some information about the phase structure of the
theory. The reason why this approximation is well suited
for our nonlocal interaction is that for constant field con-
figurations the nonlocality becomes harmless. [See the
discussion around (2.17).] In momentum space our ex-
pressions will be the same as those in the continuum
theory, except that our momentum integration ranges only
from —m/a to m/a. The virtue of our lattice version then
lies in the fact that all our expressions are regulated in a
supersymmetric way. Using standard techniques we find
for the effective potential up to one loop:
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V(A, B,F,G) = —, F——,—G —F(mA+gA gB—) —G(mB+2gAB)

d4k—f ln[k +(m+2gA) +(2gB) ]--(2~)'
d4k+ —,

' f 4 ln[[k +(m+2gA) +(2gB) ] —4g~(F2+62)] .—~ (2') (3.5)

(Here we have taken out overall volume factor, and we
have put a =1.) If we find an extremum of V with V=O,
supersymmetry wi11 be unbroken. If V ~ 0 at this ex-
tremum, supersymmetry is broken.

The easiest way to decide whether supersymmetry is
broken or not is the following: In order that V has an ex-
tremum with respect to F and 6, we must fulfill the two
conditions

0= = —F—mA —gA +gB —4g Fz z z d k 1

BF -~(2~)' {t

(3.6)

0= = —6—mB —2gAB —4g 6av, d'k
—~(2m)4 P

(3.7)

where {(}stands for the argument of the second logarithm
in (3.5):

P=[k +(m+2gA) +(2gB)2]'—4g2{F2+G') . {3.g)

As long as P&0 (for negative {t the potential becomes
complex valued), the matrix of second derivatives

V/8F, 8 V/BG, and 8 V/BFBG can be shown to be
negative definite. So, for fixed 3 and B, V can have only
one stationary point as a function of F and 6, where V is a
maximum. Since V(A, B,O, O) =0, it must be that V& 0 at
this maximum, unless the maximum sits at F=6=0.
Therefore, supersymmetry is unbroken if Eqs. (3.6) and
(3.7) are satisfied for F=6=0. This is the case if

I: (A,B)=(0,0):, (3.1 1)

II (A B)= ——0m
(3.12)

W= ——,(B„A) + Qy BP+ —,—W"QP+ , F FW, ——
(3.13)

with the superpotential

W= — —A +—A2 g 3

2 3
(3.14)

We conclude that supersymmetry is unbroken for all g,
but there are two fixed points which coincide at g = oo .
The two phases correspond to a discrete symmetry of the
Wess-Zumino model: A ~A +m /g, m ~—m, and in' per-
turbation theory they are infinitely far apart. The point
g = 00 is a phase transition point and thus singular. It fol-
lows from (3.5) that the same conclusion could have been
drawn already from the tree approximation: the fact that
one-loop quantum corrections do not change the situation
at all, gives rise to some confidence in the validity of this
result.

In order to compare with earlier work on two-
dimensional models, we brieAy describe how the situation
changes when we go from four to two dimensions.
The two-dimensional model analogous to the Wess-
Zumino model in four dimensions has the form

0=ma +g(W —B )

0=mB+ 2gAB

For real B we find two solutions:

(3.9)

(3.10)

The lattice model is set up in the same way as in the four-
dimensional case, with appropriate changes in the defini-
tions of LF „,D „, and V . The one-loop effective

Il I 11 P Il 3

potentia1 is

k 2 rt ri 2 I d k
V(A, F)= —,'F +FW'+ —,f—ln[k+FW"+(W") ]——,

' f In[k +(W") ] .
(2~)' —~(2~) (3.15)

Supersymmetry is unbroken only if the extremum condi-
tion (3V, I

~ d k P7/II
0= = —F+ 8"+ —,

&F ' — (2~)' k'+FW" +(W')'
(3.16)

with

P7lfi{y)=y
4g2

d k 1f2{y)=— —~ & (2') k +4y

(3.19)

(3.20)

or

O=f i {y)—f2{y» (3.1 8)

has a solution for F=0. Equation (3.16) with F=0 reads

d k 10= —A (m +gA ) —g —~(2~) k +(m+2gA)
(3.17)

y= 2+
2g

2

(3.21)

The two functions f, and f2 are shown in Fig. 2 and it is
evident that for small g we have two solutions near A =0
and 2 = —m /g, respectively, whereas for large g there are
no solutions at real values A. We conclude that at some
finite g,„, a phase transition occurs, such that supersym-
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m

4g~
metry is broken dynamically. Higher-order loop correc-
tions to the effective potential should be expected to
change position and behavior near the phase-transition
point g,„„but not the qualitative picture.

All these results have been derived so far in a frame-
work which is not too far away from perturbation theory.
In the second part of our paper to which we now turn we
will confirm all this in a strong-coupling expansion.

IV. HAMILTONIAN FORMULATION

FIG. 2. Graphical illustration of Eq. (3.18).

metry is unbroken for small g but broken for g &g,„,.
From (3.16) and (3.17) we see that in the tree approxima-
tion supersymmetry appears to be unbroken for all g. In
contrast to the four-dimensional case, quantum correc-
tions significantly change this situation and supersym-

In this section we will set up a lattice version of the
Hamiltonian of the Wess-Zumino model. As we have ex-
plained before, our main motivation for developing this
formalism comes from the desire to calculate the strong-
coupling limit of the ground-state energy. It will be
shown in the subsequent section that in the Hamiltonian
formalism such an attempt is successful. The easiest way
to arrive at the lattice Hamiltonian is again via interpolat-
ing fields. We start with the continuum theory. Here we
have

H= fd'x ,'(ir„'+its—')+,'(V'A)'+ —,'(VB)'+ —PyVg+ —V
2

(4.1)

V= ,' (F'+G')+——17[m+2g(A y,B)]p, —
2

+= —mA —g(A —B ),
G = —mB —2gAB,

(4.2)

{4.3)

(4 4)

p„=—fd x n&VkA+irsV kB+ Ao~kf
2

g = fd'x[ (~, +)—,~.)q+y ~(A )5B))"0—(F+) ~G—)l"«
The commutator algebra reads

[n„(x,t),A(x '.
, t)]=—i5 (x —x '),

[1r (sx, t),B(x ', t)]=—i53(x —x '),
Ii(j (x, t),gp(x ', t)] =5 p5 (x —x '),
[it~(x, t),F(x ', t)]=i5 (x x')[m+2—gA(x, t)],
[mrs(x, t),G(x 't)]=i5'(x x')[m—+2gA(x, t)],
[its(x, t),F(x,t)]=[~g(x,t), G(x ', t)]=—2ig5'(x —x ')B(x,t) .

(4.5)

{4.6)

(4.7)

(4.g)

(4.9)

{4.10)

(4.11)

(4.12)

Substituting the interpolating fields into (4.1)—(4.6) and performing x integrations, we arrive at the lattice version of the
operators H, Pk, Q:

H=a'g ,'(~„'+~ „')+ ,—(&"-„-„A,)(&"-„-,A—,)+ —,'(&"-„,B, )(&"„,B )+—P y„&" „1( + V, (4.13)

with

V=a g , (F„+G )+ —P—[m5 +2gV (A y~B )]g— {4.14)

F = —mA —gV (A A BB ), — (4.15)

G = —mB —2gV„, A B (4.16)
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P„=—a'g ~„&" g +rr b," (4.17)

Q=a'g[ (—~„-„+rs~~-„4'-„+rk~"-„-(~- r—sB- )r'0 -—(F-+rsG-)y')))-] .

The commutation relations are

(4.18)

[~„,A ]= ia— (s (4.19)

(4.20)

[vr„,F ]=ia (m|) „+2gV„,A, ), (4.21)

and analogous formulas hold for the remaining relations. It is now a matter of straightforward, though tedious, algebra
to verify the superalgebra:

[s)Q ~-„]=i8(t-„

[RQ»-„]= i'grA'-„

[ 1Q7,F ]=is][—m6 2gV— (A ysB—)]g

NQ, G. ]=i%[ m&—„,-2-g —V-„—,, (~ „r-sB—-, )]rA-,

[qQ, g ]=(n~ ysvr~ )y—Ti+b,"- (A —ysB )ykq+(F +ysG )g,

IQ. Qp} =2r.p'H 2rk-

[Pk, Q(, ]=[H,Q ]=0 .

(4.22)

(4.23)

(4.24)

(4.25)

(4.26)

(4.27)

(4.28)

In proving these relations a vital role is played by the Leibniz rule (2.10). In the following section we shall use the Hamil-
tonian (4.13), the supercharges (4.18), and the relation (4.27). The latter implies that

3

0=-,' gQ. '.
a=p

V. SUPERSYMMETRY IN THE STRONG-COUPLING LIMIT

It is convenient to scale the dynamical variables

(5.1)

a2 212

2 + 2 + V-„—,, [iQ-„y (&-, ysB-„)f-, + —, V—--, (A A 88 )(3 -, 3— 8-, 8 )—
n

with the field 8 scaled like A. Then I g', P'„pJ =5 „5 ~ and vr„'„= —i(3/BA„'. Dropping primes, the Hamiltonian and
charges take the form

g2js
2

+2V -, A 8 2 -, 8 ] +O(g'), (5.2)

Q=g' a ' g i +iys + V (2 2 88 +2yp 8 )y —p +O(g '~s) .
n n

In this section we drop subordinate terms in g '. The su-
persymmetry algebra in the strong-coupling limit is

[Q,Qp] =25 pH . (5.3)

Our program is to see if Q) has eigenstates with eigen-
value zero. If it does, it follows that these states have en-
ergy zero and are annihilated by all the charges. They
then comprise the supersymmetric ground-state multiplet
of the theory, and it is plausible that supersymmetry is un-
broken in our model all the way from g =0 to g = ~.

Unfortunately, the strong-coupling charges are nonlo-

cal, owing to the coupling V which we had to introduce to
maintain the supersymmetry algebra on the lattice. As a
result, the strong-coupling limit is nontrivial. Our ap-
proach is to partition V into local and nonlocal parts:

(5 4)

Q Q(0)+gQ(1)

a=a"'+ma'"+ a'a"' .
(5.5)

V =VO5 M - -+A(V))
A, is an ordering parameter to be set A, =1 at the end.
There is a corresponding partition of Q and H:
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We will show that to all orders in the perturbation A, there
are eigenfunctions of Qi having eigenvalue zero. Since the
dimensions of the operators in Q', ' and Q'," are the same,
we believe our perturbation series in 1 has a finite radius
of convergence. This argument rules our nonperturbative
contributions at X-O, and makes it highly plausible that
Qi continues to have eigenstates with zero eigenvalue at
A, =1.

QI
' is a sum of single-site operators, and we begin by

finding eigenfunctions of the single-site summands. We
use the Majorana matrices

r:fop+i' fbi ~=f pp ifii—

~=f)p+ifpi, D=fip if—pi .

(5.14)

I
i)'j& =foo

I
0& fiob I

0& —foi" + I
0&+fii" b—+ I

0&

(5.13)

is an associated eigenfunction with eigenvalue —p.
Equations (5.12) can be simplified by three changes.

First, write them in terms of the linear combinations

0 —lO2

—lO2 0
03

1
V 0

0
—lO2

lO2

0

3's =
—iO2 0

0 lO2

We introduce fermion operators

0
—01

(5.6)

The function X and 6 are amplitudes for components hav-
ing an even number of fermions (bosonic amplitudes)
whereas S and D are amplitudes of components having
one fermion (fermionic amplitudes). We shall see that the
ground state is purely bosonic, S=D =0, but all other
states have contributions from all four amplitudes.

Second, introduce polar coordinates in field space:
3 =R sinO, B=R cosO. Third, introduce Fourier expan-
sions in O. For example,

(A+i%» b —= ( iti+iA)—1 . 1

2
(5.7) &(&,8)= g 4 (R)e'

m = —oo

(5.1 5)

and their adjoints. (The site labels are suppressed. ) These
operators satisfy anticommutation relations

Ibi, bi I =0, Ibi, bi I =Bi i (l, l'=+, —), (5.g)

so we can construct single-site wave functions in the form

I
1(&=fpp(A, B) IO&+f,p(A B)b IO&

+foe(A, B)b+ IO&+fi, (A,B)b b+ IO&

We then obtain coupled ordinary differential equations for
the radial amplitudes:

~m + ~m +l ~OR ~m+1 PSm —1 r

m+1 . 2+1+ R
~ +1+l ~pR ~ =~D +2

F
I
0&, —

where
I
0& is defined by

bi IO&=0.

The spin operator is

(5.9)

(5.10)

m —1—S' 1+ Sm 1
—iVpR D +2

——pram,R
NZ +2

Dm+2 + Dm+2 l ~OR Sm 1
——Phm+R

(5.16)

gy'y'g= ,
' (b—+b+ bb —), — (5.11)

so in the continuum theory b+(b ) would create a Ma-
jorana fermion having s, = —,

'
( ——,

' ).
The single-site eigenvalue equation Q„ i'

I g & =q
I

iij &

takes the form

Fortunately, only four radial functions are involved in
Eqs. (5.16). In addition, we can deduce from them two
uncoupled differential equations which are satisfied by the
fermionic components of

I
P&:

1, p (m —1)~ 2 4Sm —1+ RSm 1+ p —
2

—Vp R Sm —1
—0 ~R

(5.17)

II 1 i (m+2) q 4Dm +2 + Dm +2 + PR R
—Vp R D =0.m +2

af» af»
i i — +iVo(A —B )f—io+2i VoABfoi Pfpp, ——

aW aB
afpp af„
a~

+' aB
~)fii afpp

a~
'

aB
af» af„
a~ +' aB

—iVo(A —B )foo »'VoABfii =of»—

+iVo(A —B )fii 2iVoABf—po=pfo»

iVo(A —B—)foi+2iVoABfio=Pfii ~

(5.12)

where p=q(2a)'~ g '~ . Note that if
I P& results from

these equations with eigenvalue p, then

These equations are instances of the generic equation

2
Um+ U + iu — —Vp 8 U =0. (5.18)

In order that
I g& have finite norm, we require solutions

finite at R =0 and R = ao. Indicial and asymptotic analy-
ses of Eq. (5.18) shows that this requirement leads to a
discrete spectrum of eigenvalues p, (s =1,2, . . . ) and
associated orthonormal eigenfunctions. We thus obtain
two sets of solutions of Eq. (5.16) designated by r= —1

and T =2'
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and

im8
R

1=—l%1 VQR Um 1,e'
2 1/2 i(m —1)0

~m s —1
—+1(Pm —1,$ ) m —1,$

0 p (p 2)1/2

~m, $, 2 l+2 VQR Um +2,$e )

m +2 i(m+ 1 j(9
m s 2=N2 Um+2, s+ U +2, e

(5.19)

normal. To see this, note that our solutions of the single-
site problem are orthonormal. It follows from Eq. (5.9)
that

f dA „dB [Ft, , „F ] =o o„o„„+E,
(5.24)

where K is normal ordered in fermion operators. Ortho-
normality of the lattice states follows from this anticom-
mutation relation. Completeness of the lattice states can
be proved starting with the completeness of the eigenfunc-
tions of Eq. (5.18).

Our lattice states (5.23) are eigenstates of the Hamiltoni-
an 0"'.

Sm, 2
——0,

2 1/2 i(m+2)0
Dm, s, 2 2(Pm +2, s ) Um +2,s

V=(em+2, $ )
2 1/2

(5.20)

H' '~ [m-,s-, r-„)=&(

(5.25)

Solutions having p~ —p can be generated by changing
the signs of the fermionic components 5 and D in Eqs.
(5.19) and (5.20). These additional solutions we designate
by changing the index s~ —s.

There are two special solutions having zero fermionic
components S and D. It follows from Eq. (5.16) that @=0
and

(5.26)

where

Im, s, r I ~Pm +r, sn' n' n n n' n
(5.27)

To prove Eq. (5.26), we use a result following from the
single site problem:

[Q-„&]F =p, +„,F +K, (5.28)

Solutions bounded at infinity are obtained from Eqs. (5.21)
and the first of (5.16):

2
m, Q, Q 3 (m +2)/3

~m 0 0 l+3 (m —1)/3
VQR

3
ei(m +1)0

(5.22)

~
[m,s, r ])=gF ~0) . (5.23)

Since the F's contain fermion operators, the lattice prod-
uct must be taken in a fixed order. These states are ortho-

These solutions are finite at R =0 only for m =0, —1. We
have set the indices s =r =0 for them. The fact that we
have found two normalizable solutions to our zero-energy
eigenvalue problem implies that, at the single-site level
and in the limit g~ao, supersymmetry is unbroken. As
to the degeneracy of our solutions, we believe it reflects
the two supersymmetric vacua identified in Eqs. (3.11) and
(3.12).

Now consider the lattice as a whole. For each single-
site state there is an operator F which creates that

stafe on site n, as in Eq. (5.9). Using these we create lat-
tice states

Q',"
~
[m, o,o])=o (5.30)

for m =0 or —1. These 2 degenerate states are

presumably split by the gradient interactions, which drop
out in the strong-coupling limit.

Now introduce the nonlocal perturbation A, Q'& . We
will use perturbation theory to construct states

whre K
~

0) =0. In addition, it is important that [Q' ', ]2

is even in fermion operators so

[[Q'-„',]'F„, , ]=0 (n&n'} . (5.29)

The action of Q', (and also QI") on the lattice states is
more complicated. According to Eq. (5.2), these operators
are sums of fermion operators l( . When acting on a lat-

tice state, a Q operator maps fermionic components at site
n onto bosonic components and vice versa. At all other
sides, each component is mapped into itself.

Since [H' ',QP'] =0, linear combinations of eigenfunc-
tions of H' ' can be formed that are also eigenstates of
Q'& '. In particular, appropriate linear combinations of

~
[m p, r ] ) and QI

'
~

[m p,r, ] ) are eigenfunc-

tions of QP' with eigenvalues +[E(~, „)]'~ .

The supersymmetric ground states on the lattice are

i
[m,o,o] ):

~q, )=
~
Im, o,o])+g ~~C'~'([

m,
sr' ])

~

Im', s, r (5.31)

which satisfy

[QI"+~Q'i" ] I
'4& =o . (5.32)
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The sum in Eq. (5.31) is over all nonzero-energy states. Our proof is by induction. Assume that Eq. (5.32) is satisfied for
orders A, , where p &po, by the coefficients

& I~'-. "-. '-. j I

QI"QI"
I
Iki j &. . .

& Ik, ij I

QI"Q'i'
I Im-„,0,0j &

[k)
(5.33)

The intermediate state sums are over all nonzero-energy states. We will show that Fq. (5.32) is satisfied in order 2,

provided Eq. (5.33) is extended to p =pa+ l.
po+1The requirement that the coefficient of A,
' vanish on the left-hand side of Eq. (5.32) is

(I j)QI"+&"'(I j)QI ')
l
I~'-„»'-„,r'-„j &=0.

I P I
I lent ~,s~, P~ Jn' n n

(po+ &)
We must show that C ' can be chosen so that the projection of the left-hand side on every lattice state vanishes. First
consider zero-energy states by forming the matrix element with & Im, 0,0j

~

. Since & Im, 0,0j
~ QI =0, we must show

that the matrix element given by the second term in (5.34) vanishes. This matrix element is

&I~-„,0,0j
I

Q'i"
I Ikoj &&Ikoj I

QI"Q'i"
I tkij &

. &Ik„ ij I

Q'i"QI"
I Im-„,o,oj &

EIk, I EIk, I
' ' ' EIk,

(5.35)

Consider the leftmost factor in the sum, the matrix ele-
ment & I m, 0,0j

~
Q ~"

~
Iko j &, and compare terms in the

sums over states which differ solely by s;~—s; in the in-
termediate states. These simultaneous reflections do not
affect the energy denominators, but they do change the
sign of the designated matrix element. We recall that Q', "
is a sum of fermion operators P, and at site n the matrix

element is an integral over a product of a bosonic ampli-
tude from the ground state and a fermionic amplitude
from the intermediate state

~ I ko j &. The reflection
s;~—s; just changes the sign of the fermionic amplitudes
[cf. Eq. (5.13)]. All other sites are unaffected because the
matrix element involves an integral over products of bo-
sonic amplitudes at those sites. As a result, the designated
matrix element changes sign. All other matrix elements in
Eq. (5.35) are unchanged under the reflection s;~ —s;.
This is because the operator QI 'QI" is bilinear in the fer-
mion operators, i.e., it is a sum of terms g 1( . When

s;~—s;, factors in the matrix elements coming from sites
m and n change signs, but those from all other sites are
unchanged. The overall sign of matrix elements of
Q I 'Q I' therefore is unchanged by s;~—s;. Altogether,
we see there is a pairwise cancellation of contributions to
M by states defined by s; —+ —s;, and therefore M =0.

Next consider the subspace of finite-energy states, and
the projection of the left-hand side of Eq. (5.34) onto this
subspace. On the subspace the operator Q'~

' is invertible,
so it suffices to take projections & fm, s„,r„j

~ QI '. Tak-
ing this projection, we find the A,

' term in Eq. (5.32)
vanishes provided we take Eq. (5.33) to hold for p =po+ 1.
Thus Q& ~

%o & =0 to all orders of perturbation theory.
It is worth noting that very little has gone into our

demonstration. First, we required the existence of super-
symmetric single-site states. Then we used the fact that
energies of single-site eigenstates are not altered by change
of sign of fermionic amplitudes. It followed that M=O,
which immediately led to the construction of the perturba-
tive supersymmetric lattice states. These requirements are
so simple that we believe our version of lattice supersym-
metry could be used to examine dynamical symmetry
breaking at g = ao in a variety of models.

We conclude this section with a brief comment on the
two-dimensional version of the Wess-Zumino model. The
single-site problem is identical with Witten s supersym-
metric quantum-mechanics model, and in our case

8'(3 ) = —IA —gA (5.36)

As was shown in Ref. 6, there is no normalizable zero-
energy solution, since the function

~dx
P(A) =exp 1 8'(x)oz '1((0) (5.37)

becomes infinite either at A~oo or at A~ —ap. Hence
supersymmetry is broken at the single-site level, and for
the moment we do not have any evidence that the off-
diagonal part of V will restore it. This is quite

Il
1

Il 2 Il 3

consistent with the picture which we have gained in Sec.
III.

VI. SUMMARY

We have seen that it is possible to give both Lagrangian
and Hamiltonian formulations of the Wess-Zumino model
on a lattice in which supersymmetry is manifest. The per-
turbative properties of these formulations are very close to
the continuum theory. The reason for this is that, in
momentum space, the lattice formulation simply intro-
duces a cutoff in a way that preserves supersymmetry. As
a result, we were able to show in Sec. III that in the zero-
spacing limit, all potentially divergent amplitudes agree
with continuum perturbation theory. We also verified,
through two loops, that perturbative nonrenormalization
also occurs in the lattice theory. Finally, we studied the
effective potential through one loop. We found that in
four dimensions there are two supersymmetric vacua
which coalesce as gazoo, and in two dimensions there is
dynamical breaking of supersymmetry where g exceeds a
critical coupling.

These perturbative results indicate that our method of
putting supersymmetry on the lattice does not mutilate the
Wess-Zumino model, at least as far as we have checked.
However, the real interest in a lattice formulation of su-
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persymmetry lies in whether one can do nontrivial calcula-
tions outside the perturbative regime. Here Wilson's lat-
tice gauge theories define the standard: for such theories,
strong coupling and Monte Carlo methods have been dis-
tinct advances. Our formulation has two obvious techni-
cal problems, the presence of fermions (which is inevit-
able), and the nonlocal couplings. But we showed in Sec.
V that a degree of computability survives in the strong-
coupling limit, and we give strong evidence that supersym-
metry is not dynamically broken in the Wess-Zumino
model in four dimensions, but in two dimensions it is.

Our main interest has been in the question whether su-
persymmetry will be broken for strong coupling. Our con-
clusion agrees with Witten's argument based on counting
of zero-energy states. This argument has been applied to
a large class of theories, where it rules out dynamical sym-
metry breaking. However, there are exceptions. One is
supersymmetric gauge theories with matter fermions in
complex representations, and in fact Peskin has given an
example where supersymmetry is broken. Another is

massless theories which cannot be obtained as the limit of
a massive theory.

Given these results, we would like to extend our lattice
formulation to supersymmetric gauge theories and other
theories to which Witten's argument cannot be applied.
Beyond that, lattice supersymmetry offers a means of
studying supersymmetry far from the perturbative regime.
For example, in models where there is dynamical breaking
of supersymmetry, our formulation might be used to study
the nature and dynamics of these phase transition.
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