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Classical scalar solitons in three space dimensions
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A systematic study of a class of covariant scalar field Lagrangians with derivative self-
coupling is made. Methods are found which allow for the selection of classes of Lagrangian
models with three-space-dimensional soliton solutions. These methods allow, in particular,
for the elaboration of models with solutions which are finite-energy confining potentials.

I. INTRODUCTION

There is no universally accepted definition of the
concept of soliton. The most restrictive definition
requires the stability of the soliton in two (or more)
soliton collision processes.! The existence of this
kind of soliton has been proved for a restricted set of
nonlinear field equations in one space dimension.>3
The mathematical difficulties present in the search
for such solitons makes this definition too restrictive
at present, at least, concerning its usefulness in field
theory.

In classical field theory the following definition is
generally accepted: A soliton is a static regular (C™
class) finite-energy solution of the field equations.
This is the Coleman “lump.”* In this paper, we
shall adopt this definition, but we mention the ex-
istence of other ones.>®

With this definition, one-dimensional models with
soliton solutions can be easily elaborated, but their
main interest is for testing useful properties with the
hope of their eventual extrapolation to more realistic
three-dimensional models.

When we consider three-(space-) dimensional
models, Derrick’s theorem’ shows the nonexistence
of scalar solitons for Lagrangians with nonderiva-
tive self-coupling.

Accordingly, many authors have checked for (and
found) more complicated (and physically realistic)
three-dimensional models with soliton solutions in
spontaneously broken gauge field theories.®~!° Here,
the existence and stability of the soliton solution is
due to the presence of topological conservation laws
in the model.!!

Another way for circumventing Derrick’s theo-
rem has been used by Deser, Duff, and Isham!?
(DDI). These authors start with the usual nonlinear
chiral SU(2)xSU(2) Lagrangian for the pion field
and construct a new model where the new Lagrang-
ian is a function of the former one. If this function
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is properly chosen, the new model has soliton solu-
tions and conserves the primitive internal sym-
metries.

In this paper we explore systematically the conse-
quences of this last procedure in order to elaborate
models with three-dimensional soliton solutions.
Our study deals with the pure scalar fields only
thereby avoiding the complexities introduced by any
internal structure, but, in many cases, the procedure
can be extended to more complicated fields, as is
proved by the Born-Infeld!® and DDI models.

In Sec. II, we analyze Lagrangians defined as ar-
bitrary functions of the scalar 9,43%¢ and we ela-
borate strategies for selecting those models with
three-(space-) dimensional soliton solutions. Soli-
tons obtained in this way are spherically symmetric,
sharp-pointed “lumps”; that is to say, there is a
jump in the first derivative of the potential ¢(r) at
the origin. As classical Lagrangian these are of no
interest. We consider them as models for the effec-
tive Lagrangian of the self-interacting scalar field.
It is an open question whether or not such Lagrang-
ians, which include quantum effects, permit soliton
solutions even though the corresponding classical
Lagrangians do not.

In Sec. III we study the models that can be ob-
tained from the former ones by changes in the field
variables in the Lagrangian. In this way, we show
the existence of well-behaved solitons.

The existence and preservation of all these soli-
tons can be understood by the fact that some quanti-
ty (the first derivative of the Lagrangian) must have
an infinite jump if the field is to decay on to the
vacuum state.

In Sec. IV we analyze the linear stability of these
solutions.

In Sec. V we briefly comment on the possibility of
generalization of these techniques to a multicom-
ponent scalar field.

In what follows we make use of the following
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conventions: the signature of the metric is
(+ —— —). Dots on functions indicate differentia-
tion with respect to their field arguments. Primes
on functions indicate differentiation with respect to
the coordinates.

II. A FAMILY OF SCALAR FIELD MODELS

Derrick’s theorem asserts the nonexistence of soli-
tons in three-dimensional scalar field models where
the Lagrangian has the generic form

L =3,63"¢+V(4), (2.1)

V(X) being an arbitrary function.

We will study the simplest scalar generalization of
(2.1) avoiding Derrick’s hypothesis, that is to say,
Lagrangians of the general form

L =£(3,43"¢) , 2.2)

f(X) being an arbitrary function.
The associated field equation is

3,1£(3,$3"$)3"$]=0 (2.3a)
or
f (0,43%$)3,0"d +2 f (0,403%¢)3*$3°$3,3,4 =0
(2.3b)
and the corresponding canonical energy tensor is
TH = — £ (3,03%)g"" +2£(3,63% )0 $d"$ .
(2.4)

If we look for static spherically symmetric (ele-
mentary) solutions of (2.3), we have to solve the
equation

_QLI_ .}.‘:( - ’2) rarr &__
. +2——¢—, +==0 (2.5)
¢ f(—¢) 44 r
which has one first integral
P f(—¢H=A, (2.6)

A being an arbitrary constant.
The energy density for this solution is

T®=_f(—¢"7) 2.7
and the total energy is
E=—A4r fo“’ rif(—¢'Xr))dr . (2.8)
From Eq. (2.6) we obtain
% — —ZA%’l (2.9)
and

frn=-=2A f ﬂ(ZL)dr +const . (2.10)
r

Equations (2.6) to (2.9) suggest strategies for ela-
borating models with finite-energy solutions. As a
first strategy, we have the following:

(a) Choose a monotonic (invertible) function ¢’(7).
If its derivative ¢''(#) vanishes at infinity faster than
1/r [and f(0)=0], Eq. (2.10) shows the convergence
of the integral (2.8). We also choose ¢'(r) so that
¢"'(0)=0 in order to have regularity for the fields
everywhere.

(b) The knowledge of the inverse function r(¢’)
and the integration of (2.6) allows us to obtain the
function f(x) and, thus, the form of the Lagrangian.

In this way, we can construct good sharp-pointed
solitons, but the corresponding field theory is not al-
ways admissible, because the Lagrangian functional
is not defined outside the class of solutions'* or the
energy functional is not positive definite everywhere.

As an example, we start with the function
) 172

"(r)=
¢'(r r4+,u2

(2.11)

satisfying the requirements of (a); following (b) we
obtain the corresponding Lagrangian

L =5 [(1+u%,3¢)1 1] . 2.12)
u

This is the scalar version of the well-known
Born-Infeld generalization of electrodynamics.!* As
the parameter u goes to zero, (2.12) reduces to the
d’Alembertian Lagrangian.

The corresponding energy functional (2.4) is posi-
tive definite in the set on which the Lagrangian is
well defined, and the total energy of the elementary
solution (2.11) is finite. But the Lagrangian func-
tional is not defined when
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FIG. 1. Functional form of the scalar Born-Infeld La-
grangian.
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FIG. 2. Implicit form of the Lagrangian function for
scalar models with soliton solution.

0,00% < — %
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(see Fig. 1). In order to overcome these difficulties,
we shall set up a second strategy which leads direct-
ly to models with a good Lagrangian and good ener-
getic behavior [though there is always an unavoid-
able singularity of the first derivative of the La-
grangian at the center of the soliton, as can easily be
seen from (2.6) and (2.9)]:

(a) First of all, we choose L as a function of r:
L (r)=f(—¢"X(r)) in the implicit form,
__y)

2VY(L)
with ¥(L) being a monotonic (invertible) function
defined everywhere. Moreover, we impose 1(0)=0;
¥(0) <0 and Y(Ly)=1y(Ly)=0, L, being a negative
number (see Fig. 2). This last condition guarantees
that L (r) decreases from L, when r=0 and vanishes
as 1/r* when r— o making convergent the energy
integral (2.8).

(b) Using Eq. (2.9) in the form

[ r2dL =—2A¢'(r)

we obtain
PY(L)=4A%""(r)= —4A%3,$3"¢

d
2. a4 _
r == [VY(L)]= (2.13)

(2.14)

(we can now choose Azé without loss of generali-
ty) and

L =y~ (—3,40"¢)

gives us the form of the Lagrangian.

(c) By elimination of L between (2.13) and (2.14),
we obtain the solution depending on the arbitrary
|

(2.15)
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FIG. 3. Functional form of the Lagrangian of Eq.
(2.17)

constant A and, thus, the general elementary solu-
tion of the model.

To see one example of how the method works,
choose the function

) g 3/2
YL)=—5 [1— |[1+-E-L (2.16)
L 3
which satisfies the conditions of (a).
Following (b) we obtain the Lagrangian
L =5 [(1+u%0,60°) ~ 1] 2.17)
1L

(see Fig. 3). This Lagrangian functional has the fol-
lowing properties:

(i) It is defined and regular for every field ¢ (ex-
cept in 3,$3*¢ = —1/u* where L diverges).

(ii) The energy functional obtained from (2.17) is
positive definite everywhere as can be easily shown
from (2.4) and (2.17).

(iii) As in the scalar Born-Infeld model, (2.17) can
be interpreted as a nonlinear generalization of the
d’Alembertian Lagrangian:

limL =53,43% .
u—0

This suggests the possibility of elaborating a non-
linear electromagnetic theory from (2.17) by just fol-
lowing the inverse way which leads from the origi-
nal Born-Infeld theory to the scalar one (2.12).

Now, following (c) we obtain the expression of the
soliton field in implicit form

Ii_ (1_”2 4'2)1/3
A ¢’ ‘
Obtaining the explicit expression requires the resolu-

tion of a third-degree irreducible algebraic equation.
The final form is

(2.18)

"(r)= A
¢(r)—PR r_6+ Lli 6A6 172 1/3+ fi_ r_u_rGAG 735 - (2.19)
R. 2 4 27 2 2 77
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FIG. 4. Qualitative form of the potential and the field
of a scalar confining potential.

Here, the symbol P.R. means “the only positive real
root” of the expression between curly brackets.

As it should ¢'(r) reduces to the d’Alembertian
elementary solution (A/r?) in the limit u=0. The
soliton potential ¢(r) is obtained by simply integrat-
ing (2.19). After a straightforward manipulation, we
now obtain the soliton energy from (2.8) and (2.13):

3 172

E =2.456m (2.20)

As it should this energy diverges when we go to the
d’Alembertian limit (¢ =0).

We now explore the possibility of constructing in
this way models with a finite-energy confining po-
tential as elementary solutions. Now, the potential
¢(r) diverges asymptotically as r increases and the
field ¢'(r) approaches asymptotically to a constant
value ¢'( ) (Fig. 4). The potential becomes a con-
fining one by a suitable coupling with the matter
field (for example, a Yukawa coupling). If the ener-
gy is to be finite, we see from (2.8) and (2.10) that
¢’(r) must approach its asymptote faster than 1/7.
Moreover, Eq. (2.6) shows that the Lagrangian func-
tion must have a vertical tangent at the origin and a
horizontal one at ¢'(w), the asymptotic value of

~$'? ()
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FIG. 5. Functional form of a Lagrangian with confin-
ing potential as elementary solution.

¢'(r). Furthermore, these points must be inflection
points if the energy functional is to be positive de-
finite (Fig. 5). By expanding this Lagrangian
around the horizontal tangent point and using (2.6)
we can easily show that ¢'(r) approaches its asymp-
tote as 1/r at best and, thus, the energy associated
with the elementary solution is not finite. The con-
clusion is the incompatibility between finite energy
and good behavior of the energy and Lagrangian
functionals for confining potentials as elementary
solutions of models of the family (2.2). In the next
section we elaborate on methods allowing the con-
struction of good models with a confining-potential
soliton solution.

III. FIELD TRANSFORMATIONS

In this section we shall see the possibilities of con-
struction of new models from Lagrangians of the
form (2.2) by field transformations, that is to say, by
making transformations to new fields obtained as
functions of the previous ones.

If we define the field ¢ by

dx)=n"Yd(x)), (3.1)

where 77 is a well-behaved arbitrary invertible func-
tion, the Lagrangian (2.2) becomes

L =f[7"(4)0,43"8] . (3.2)

The associated field equations are obtained by vary-
ing (3.2) or from (2.3) by simply substituting (3.1),
and the corresponding solutions are, thus, related by
the same formula. It is easily seen that the charac-
ter of the energy functional is conserved after the
transformation. The elementary solution corre-
sponding to the Lagrangian (3.2) is thus directly ob-
tained from

d(r)=n"Y¢(r)) (3.3)

and the associated total energy is the same in both
cases [all these properties can be easily proved by
combining (3.1) and the elementary properties of the
functional derivative]. Thus the construction of La-
grangian scalar models of the form (3.2) with soliton
solutions is automatically reduced to the same prob-
lem as in case (2.2).

Further, we can choose the function 7(¢) in order
to obtain models with solitons of any prescribed
form. In this way, suppose we want to obtain a
model where the elementary solution is the regular
invertible function #(r). We start with a good
model of the (2.2) family with elementary solution
&(r) which is a soliton [for example, (2.17)], ¢(7) be-
ing the primitive of (2.19). We call R (¢) the inverse
function of ¢(r) and we construct the transforma-
tion
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¢(x)=7((x))=¢{R[$(x)]} . (3.4)

By substitution, the Lagrangian (2.17) becomes

L =${[1+u2ﬁ2($>a‘$a$]2/3—1; (3.5)

and the associated elementary solution is the
prescribed function ¢(r). This solution is a soliton
of the model (3.5) and the associated total energy is
the same (2.20) as in the starting case.

In particular, we can choose ¢(r) as any confining
potential and thus find field-theoretical models for
the hadronic potentials with finite energy. (For the
use of confining potentials in hadron physics see
Ref. 15 and references quoted therein.)

In order to restrict the generality of this field
transformation we shall impose on the transformed
Lagrangian the condition of semilinearity; that is to
say, the final Lagrangian must be invariant under
the transformations

¢p—ad, (3.6)

a being an arbitrary real constant.

If we start with a Lagrangian (2.2) with associated
elementary solution ¢(r), after a change of the gen-
eric form (3.4), the new Lagrangian is

L =f($"(R($)R*($)3,$3"3) . 3.7
The new Lagrangian is invariant under (3.6) if
e 1
"(R(¢))R(Pp)=—=, (3.8)
¢'(R($))R (¢ X3

K being an arbitrary real constant. Equation (3.8)
implies

K¢(R(4))=In

0

E—},

é, being a new arbitrary real constant.
Thus, the new Lagrangian is

3,$0"d

= (3.9)
K2¢2

L=f

and the associated elementary solution is obtained
from the initial one by

d(r) =t . (3.10)

The transformation (3.10) is the generalization to
a general Lagrangian (2.2) of Bel semilinearity
transformation defined in the d’Alembertian case.'”

IV. STABILITY

A detailed study of the linear stability of the ele-
mentary solutions of the field equations of the type

(2.3) requires the solution of the linear equation
3L/ (3,863°60)3¢
+£(8,803"$0)3,$03°$3*$o] =0 (4.1)

obtained by the perturbation ¢y(r)+€d(x) of the ele-
mentary solution and neglecting the quadratic terms
in the small parameter e.

Equation (4.1) must be integrated in every partic-
ular case and the soliton will be stable if the basic
solutions (normal modes) are purely oscillating (see
for details Refs. 2 and 4). The general study of sta-
bility from (4.1) for all the family (2.2) is difficult,
but we can obtain general conditions for static sta-
bility using the variational method.®

Consider a small perturbation of the soliton ¢(r)
of the form

d+8d=0p(r)+€¢,(X), (4.2)

where € is the small parameter of the variation and
¢1(X)=¢,(r,0,p) is a time-independent function
which vanishes at infinity faster than 1/72.
The first variation of the energy functional (linear
in €) is
8,E = —2€ [ L[—¢X(r)]3,6(r)3"$,(X)dQ .
4.3)
If the derivative of the Lagrangian function is
regular everywhere, it is easily shown that the condi-
tion §;E=0 is satisfied for arbitrary variations of
the static solution. But in our models, L diverges at
the center of the soliton and the energy is stationary,
only, if the variation vanishes at r=0.
The second variation of the energy functional
(quadratic in €) is
SE=—¢€ [ 2 [ 4o DL
or

— L[—¢"(1]V,-Ve, tdQ .

(4.4)
The stability criterion amounts to the requirement
81E =0, 5,E>0 (4.5)

and from (4.4) we obtain the static stability condi-
tions

L[—¢Xn]<0, L[—¢(nN]>0. 4.6)

These conditions imply for the Lagrangian function
a form like that of Fig. 3 between its values at the
vacuum and at the center of the soliton. They are
satisfied, in particular, by our solutions (2.19). It is
thus statically stable against variations which vanish
at r=0.
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If the variation is not null at the origin, our solu-
tions appear to be unstable. Nevertheless, as in the
Prasad-Sommerfield solution,’ our solitons have an
integration constant [A in Eq. (2.6)] which sets the
scale of length. Thus solutions for different values
of A are identical with respect to the appropriate
length scale. Then, a “non-null at the origin” varia-
tion becomes a “null at the origin” variation after a
change of length scale and the solitons can be con-
sidered stable.

The same considerations on stability can be easily
extended to the transformed Lagrangian of Sec. III.

V. THE MULTICOMPONENT SCALAR FIELD

The existence of internal degrees of freedom for
the scalar field introduces some qualitatively new
features as to the construction of models with soli-
ton solutions. These new features are, essentially,
the topological properties associated with the inter-
nal structure and internal symmetries of these
models.

We first consider the multicomponent scalar
fields governed by Lagrangian densities of the form

L =f(3,md*m), (5.1)

f(X) being an arbitrary function. The n-component
scalar field is now a vector in an n-dimensional Eu-
clidean space and the model is invariant under the
transformations of the internal symmetry group O,.
All the methods developed in Sec. 11, in order to ela-
borate models with spherically symmetric soliton
solutions, can be generalized to the multicomponent
fields (5.1) in a straightforward way. Moreover, the
field transformations developed in Sec. III can easily
be generalized to the Lagrangian (5.1). These
transformations lead to Lagrangians of the form

L =f[gy(md,m'd"n/], (5.2)

where the metrics in the internal space are Euclide-
an.

There is nevertheless a more general family of
models defined by Lagrangians of the form (5.2)
whose metric g;;(m) is, however, Riemannian. The
classical example of the latter case is the nonlinear
chiral SU(2) X SU(2) model for the pion field.

The Lagrangian is

La=gij(7r)ap7ria“1rj (53)
with
'
8ij(m)=8;+ ﬁ? ,
where

m= 3 n¥nk
K

and f is a positive constant.

The model (5.3) does not have static soliton solu-
tions, but we can ask the following question: Is
there some function of the Lagrangian L, leading to
a model with static soliton solutions? The answer is
yes. It is the DDI model'! defined by the Lagrang-
ian

L=—(—L,y". (5.4)

Although our method cannot be immediately gen-
eralized to these multicomponent scalar models with
internal Riemannian spaces, it is enlightening to try
to understand the role of the functional transforma-
tions such as (5.4) in the existence of the soliton.
This can be done by avoiding other causes of ex-
istence of solitons in the model like the internal
structure and, thus, by studying the one-component
scalar model whose Lagrangian has the same func-
tional form.

Thus, in the case of the DDI model we must
study the pure scalar Lagrangian

2
pear

The static solution which is, now, the analog of
the DDI soliton is the spherically symmetric one.
However, the simple application of the methods of
Secs. II and III shows that this solution is not a soli-
ton. This result points out that the existence of the
DDI soliton is not only due to the functional form
of the Lagrangian (5.4). In fact, Isham!” has shown
the presence of conserved topological currents in the

model which are responsible, also, for the existence
and stability of the soliton.

L=—|— |1+

372
3,634 ] . (5.5)

V1. CONCLUSION

We have systematically explored the scalar covari-
ant field theories with Lagrangians which are arbi-
trary functions of the scalar d,4d"¢ (avoiding the
consequences of Derrick’s theorem). In this way we
have succeeded in elaborating strategies for con-
structing models with three-space-dimensional soli-
ton solutions (in the sense of field theory) and we
have given some explicit examples. Some of these
examples are nonlinear generalizations of the
d’Alembertian linear model.

The method of Lagrangian transformations al-
lows the elaboration of very rich classes of solitons.
We note in particular the possibility of constructing
models which admit semilinearity and models which
are a field-theoretical basis for finite-energy confin-
ing potentials.
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