PHYSICAL REVIEW D

VOLUME 28, NUMBER 4

15 AUGUST 1983

Quantum dynamics of Kaluza-Klein theories

Thomas Appelquist and Alan Chodos
J. W. Gibbs Laboratory, Yale University, New Haven, Connecticut 06511
(Received 8 April 1983)

Some of the quantum properties of Kaluza-Klein theories are studied. The classical features of
these theories are reviewed, and the quantization of the gravitational field in an arbitrary number of
dimensions is described. These results are then applied to a detailed analysis of the five-dimensional
Kaluza-Klein model. The fifth dimension is taken to be compact and a quantum effective potential,
as a function of the five-five component of the metric, is constructed. It is argued that the one-loop
computation is reliable as long as the distance around the fifth dimension is large compared to the
Planck length. The effective potential separates into two pieces: an induced cosmological constant,
independent of the size of the fifth dimension, and a distance-dependent “Casimir” energy. The
cosmological term is subtracted, leaving an attractive Casimir potential which will contract the fifth
dimension to a size on the order of the Planck length. Consequences of this result are discussed and
some of the ways in which it can be generalized are outlined.

I. INTRODUCTION

One of the most intriguing and elegant ways of unifying
gauge field theories with gravitation is also one of the old-
est. The suggestion of Kaluza! and Klein? was that elec-
tromagnetism and general relativity could be unified by
starting with a five-dimensional version of the latter and
then somehow arranging for the fifth dimension to be-
come unobservable. In recent years, the Kaluza-Klein
idea has been generalized to higher dimensions in an effort
to unify non-Abelian gauge fields with gravitation.>* The
possibility of obtaining a realistic four-dimensional theory
by starting with a simpler theory in a higher-dimensional
space has been actively pursued in the context of super-
gravity. The construction of the N =8 theory by starting
with N =1 supergravity in 11 dimensions® is especially at-
tractive.

We shall take the point of view that any implementation
of the Kaluza-Klein idea should regard the extra dimen-
sions as actually existing with some physical size, rather
than as only an intermediate device for deriving interest-
ing four-dimensional theories. If so, then these extra di-
mensions presumably form some compact manifold whose
size is extremely small, perhaps not much larger than the
Planck length (4G /c)'/?=1.6x 1073 cm.

In a recent letter,® we suggested that the vacuum fluc-
tuations of the higher-dimensional gravitational field
might provide a physical mechanism capable of account-
ing for the extreme smallness of the extra dimensions. An
explicit computation was carried out in the five-
dimensional prototypical Kaluza-Klein model which
showed that these quantum fluctuations give rise to a
gravitational Casimir effect’ which can contract the fifth
dimension to a size on the order of the Planck length. It
was assumed that the relevant vacuum solution to the field
equation of five-dimensional general relativity is the
Cartesian product of flat four-space and a compact fifth
dimension with associated metric component gss. The
vacuum fluctuations about this classical background are
then computed in the form of a quantum effective poten-
tial as a function of gss. When the distance around the
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fifth dimension is larger than the Planck length, the loop
expansion is reliable and the potential is seen to give rise
to an attractive Casimir force.

The purpose of this paper is to describe the quantum
physics of the five-dimensional model in more detail and
to begin to discuss some of its generalizations. The most
important of these is the extension to higher numbers of
dimensions in order to accommodate non-Abelian gauge
fields. In this paper, our remarks along these lines will be
restricted to the classical theory. Some of these have ap-
peared already in the literature>* but we include them here
in order to prepare for a study of the quantum properties
of these theories.

The effective dimensional reduction which takes place
in a Kaluza-Klein theory is analogous to the effective
reduction of a high-temperature four-dimensional gauge
theory to three dimensions.® Such theories have a periodi-
city in the time coordinate inversely proportional to the
temperature. For temperatures much larger than the
momentum scales being considered, the time dimension is
squeezed out of the problem, leaving an effective massless
three-dimensional theory. This classical picture is then
modified by quantum loops composed of the nonzero
(massive) modes in the Fourier time expansion. Because
of the ultraviolet singularities in certain loop computa-
tions, they do not completely decouple from the low-
momentum physics. In particular, they produce an effec-
tive mass (a Debye mass) for the electric components of
the gauge field. Thus quantum effects screen the electric
field at large distances, completing the reduction to an ef-
fective three-dimensional theory. The effective potential
computation in Kaluza-Klein theories is very similar to
the Debye-screening computation in finite-temperature
gauge theories.

In Sec. II, we discuss the classical features of Kaluza-
Klein theories. The five-dimensional model and its reduc-
tion to four dimensions is described in some detail. We re-
late the time-independent solution, which will be used as a
starting point for the quantum computations, to a time-
dependent classical solution (the Kasner solution) that was
considered in Ref. 9. Some of the features of higher-
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dimensional compactification are then described. Finally,
returning to five dimensions, we show that the presence of
a cosmological term which is naturally generated by the
quantum fluctuations, leads to a five-dimensional de
Sitter-type solution. With the assumption that the cosmo-
logical constant is sufficiently small, this solution reduces
to the above time-independent or Kasner solutions for ar-
bitrarily long times.

In Sec. III, some of the properties of quantum gravity in
D dimensions are described. The quantization of the five-
dimensional theory is carried out in detail, using a particu-
larly useful and physical gauge choice. The quadratic La-
grangian sufficient to carry out a one-loop computation of
the effective potential is constructed, the gauge-fixing and
ghost terms are derived, and a convenient method of regu-
larization is described.

In Sec. IV, we present the explicit details of the compu-
tation of the one-loop effective potential as a function of
gss. In Sec. V, this result is interpreted, the analogy with
the Casimir effect is explored, and the validity of the loop
expansion is discussed. Finally, for the convenience of the
reader, we include an Appendix in which some of the
relevant features of finite-temperature gauge theories are
summarized.

II. CLASSICAL FEATURES OF KALUZA-KLEIN
THEORIES

To begin, we focus on the classical theory of general
relativity, not in the usual 3 + 1 dimensions but instead in
D =d +1 dimensions. The action is

—— 1 rison7
S=1ercs I @ xV'ZR , @.1)
where g4p is the metric in D-dimensional space,
1<A,B<D, R is the scalar curvature computed from g,
and Gp is the D-dimensional version of Newton’s con-
stant. It will be convenient for our purposes to work with
the Euclidean version of the theory in which the signature
of g, is D. Our units are such that g,p is dimensionless;
since R contains two derivatives and since S must be di-
mensionless (we have set #i=1), it follows that the dimen-
sion of G, is (length)? ~2. For the time being, we omit a
cosmological constant in the action, Eq. (2.1). The possi-

ble role of such a constant will be discussed later.

The central idea of the Kaluza-Klein approach is that
“dimensional reduction” takes place; i.e., the D-
dimensional theory becomes effectively equivalent to a
four-dimensional theory, with the extra D —4 dimensions
being somehow rendered unobservable. In the literature
one finds two points of view regarding dimensional reduc-
tion. On the one hand, some authors use it as a technical
device for obtaining rather complicated Lagrangians in
four dimensions from simpler Lagrangians in D dimen-
sions. According to this approach, one merely truncates
the D-dimensional theory by assuming, without need for
further justification, that either the fields are totally in-
dependent of the extra D —4 coordinates, or else that they
depend on them in some particularly simple way that can
be integrated out.'”

It is tempting, however, to suppose that the extra di-
mensions really exist even though we cannot detect them.
This is possible if they form a compact manifold whose

size is very small, perhaps as small as the Planck length
(Gp)/'P=2) the only length scale appearing in the action,
Eq. (2.1). There is, of course, nothing in the classical
theory which would force the compact dimensions to be
related to the Planck length. In the classical theory, Gp is
simply an overall factor and is irrelevant. In the quantum
theory, we will discover a mechanism which might be re-
sponsible for the contraction of the extra dimensions to
the order of the Planck length. However, there will still
remain the question of why the Planck length, which is
very different from all other length scales in physics, a-
rises in the first place.

To see in more detail how dimensional reduction works,
it is simplest to begin with the five-dimensional model.
One chooses coordinates x* for (3 + 1)-dimensional
space-time (©=0,1,2,3) and x> for the extra dimension
which is assumed to be a circle of radius Rs:

0<x’<27Rs . (2.2)

Here Rs is a parameter with dimensions of length. We
observe that, by itself, Rs has no physical significance; it
merely serves to characterize the range of the coordinate
Xxs. What can have meaning, however, is the distance
around the extra dimension:

2@R

8s=[ dx*Vzss .

[Even this could have no significance if the theory were
truly generally covariant in a five-dimensional sense. The
field equations derived from Eq. (2.1) will be generally co-
variant, but the boundary condition we have chosen,
namely, that the extra dimension be compact, breaks the
five-dimensional general covariance.]

To proceed, we parametrize the metric in the form

Buvt+Aud,g Aud

2.3)

gup =" 2.4
gup=¢ A ¢ 2.4)
and we expand each component in a Fourier series
00 i S/R
Zaslxtx’)= 3 gpxre™ 7 2.5)

n=—c

So far, no approximations have been made. Any five-
dimensional metric can be written in the form of Eq. (2.4)
and any sufficiently smooth function on a finite interval
can be expanded in the form of Eq. (2.5). Complete di-
mensional reduction is then achieved by keeping only the
n =0 (x’-independent) mode of g,5. Upon so doing, one
finds

1 4 12| p4) 1
S4:_—1—6—7T—G—fd x(det{g,“,}) 2R +T¢F;¢VF’"
1 9,699
6 ¢

(2.6)

Here R is the four-dimensional scalar curvature com-
puted from g,,, F,,=3,4,—93,4,, and G=Gs/27Rs.
(The zero-mode superscript on the fields has been
dropped.) The role of the Weyl factor ¢ —!/? in Eq. (2.4) is
to ensure that no extra factors of ¢ multiply R‘* in Eq.
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(2.6). Thus the first term in S looks precisely like general
relativity. This choice is purely cosmetic, however; Eq.
(2.6) really represents a scalar-tensor theory of gravitation,
and it is not possible to isolate gravitational effects in g,
alone or in ¢ alone. Indeed, with A, =0, the action S, de-
scribes a particular version of the well-known Brans-Dicke
theory!'! (the Brans-Dicke parameter  is zero in this
case). Had we chosen some other Weyl factor, S; would
have looked different in detail, but all physical predictions
would be the same.

Equation (2.6) also illustrates the simplest instance of
the Kaluza-Klein “miracle”: the appearance of the stand-
ard gauge piece F,,, F*". It is true that in order to make it
take the conventional form, one had to be clever in one’s
choice of parametrization, Eq. (2.4), but it is not true that
the gauge fields were put in by hand; the starting point
was pure general relativity in five dimensions.

In order to provide a physical mechanism for dimen-
sional reduction, it will be important to work within the
full five-dimensional theory [all terms in the Fourier series
Eq. (2.5) must, a priori, be considered]. Quantum correc-
tions will be computed as an expansion in # about a “vac-
uum” classical solution to the five-dimensional field equa-
tions derived from the action Eq. (2.1). Using the nomen-
clature of Eq. (2.4), the classical solution of choice is

Buv= ap.v

A4,=0, (2.7

¢=¢,=constant ,

along with the manifold restriction Eq. (2.2). The distance
around the fifth dimension, Eq. (2.3), will be determined
by the magnitude of ¢, which, in turn, will depend on the
quantum corrections. The question of why the five-
dimensional theory chooses the classical solution, Eq.
(2.7), over some other remains unanswered. Nevertheless,
the seemingly trivial fact that it is a solution is worth em-
phasizing since corresponding solutions do not always ex-
ist in more realistic, higher-dimensional theories.

The classical solution, Eq. (2.7), is not the only one
which might be used as a starting point for the five-
dimensional Kaluza-Klein theory. In Ref. 9, it was point-
ed out that there exists a very simple solution to the five-
dimensional Einstein equations (the Kasner solution), in
which the metric has a time dependence of an especially
appropriate form. The manifold is one in which time
ranges over the entire real line and all the spatial co-
ordinates x; (i =1,2,3), x5 have a finite range, say
0<x;, x5 <R. The metric has the form

6™ g0=1, ¢~ Pgy=(t/15)"'8; ,
4,=0, 2.8)
6P =(t/15)"?
where the sum rules
3pl +P2 =1 s
., 2.9)
3pi°+pyi=1
must be obeyed. The interesting case is p, ==, p = —+

in which the fifth dimension shrinks and the three other
spatial dimensions expand with time. (The case p; =0,

p2=11is simply flat space in disguise.)

The evolution of the metric over cosmological time
scales might then explain both the smallness of the fifth
dimension and the “largeness” of the visible universe. The
time-independent solution, Eq. (2.7), with ¢. small, can
then be regarded as an approximation to the Kasner solu-
tion during the present epoch. We shall see in Sec. IV that
this approximation will be adequate for the computation
of the quantum effective potential. It will be the quantum
effects which finally determine the size of the fifth dimen-
sion relative to the Planck length.

We next consider how the classical theory generalizes
when D >S5 in order to expose some of the difficulties
which are not apparent from the five-dimensional case
and which are often not pointed out in the literature.
Nevertheless, since the quantum corrections will be com-
puted only for D =5 in the following sections, the reader
who is specifically interested in those computations may
wish to rejoin the discussion in the paragraph following
Eq. (2.20).

For the case D > 5, it is natural to write

Euv +B;B?/¢ab B,ﬁ¢ca

Zap=WI(o) Bidy, bub , (2.10a)
with inverse
g,u‘V _Ba Au
=AB __ —1
g =W (¢) b Av ¢nb+BaBbgA,g (210b)

Here W(¢) is an appropriately chosen Weyl factor, and
one expects that g,,, (1,v=0,1,2,3) will play the role of the
metric of spacetime, bap (a,b=1,2, -+ D —4) will be sca-
lar fields, and B}, will somehow represent the gauge de-
grees of freedom Notice that both g,z and g2 are poly-
nomial in B}, and that

Vg =Vg Vaetd[W(4)

Thus the Lagrangian will be polynomial in the gauge

fields. (In fact, no higher than quartic terms will occur.)
If one computes the action, Eq. (2.1), based on the

parametrization Eq. (2.8), one finds a term

1°72. (2.11)

__ 1 Vaed D/2—1
167G, detd[ W(o)]

XVE | FaFirg e ¢ (2.12)

[The natural choice for W is W(d)=(detd)~ /P =2); cf.
Eq. (2.4).] Here

F.,=B,,—BS, , (2.13)
where
B, =B ,—BB., . 2.14)

This is almost the generalization of the five-dimensional
result to the non-Abelian case. We must somehow convert
the extra terms in Fy, into the standard f “”‘A,’;Af, form.
The way to do this is to assume the existence, on the inter-
nal manifold, of a set of vector fields £; which obey the
relations
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[Earpl*=C000 0 —CREE b= —SP1C5 .

Here [£,,5g] is the standard Lie bracket. We also assume
that {5 , =0. Setting

BL=baAy

it then follows that
Fo =EUAL, —A%,) —ABEHEAAD) » +ARCHELAT)
—£5(4°

where the ... refers to terms that depend on the deriva-
tives of 4, with respect to the internal coordinates.

A problem with the non-Abelian generalization of the
Kaluza-Klein idea is that, whereas in the five-dimensional
case the manifold M 4><S 1 with metric given in Eq. (2.7)
solves the Einstein equations and hence serves as an ap-
propriate background for the quantum dynamics, no such
manifold exists in the non-Abelian case. One can see this
as follows. Let us assume that the manifold we are
searching for has a “vacuum” metric of the form

(2.15)

(2.16)

—fPr4BAY) -, (2.17)

8y O

0 du») (2.18)

gz =W(¢)

This is the analog of the vacuum solution, Eq. (2.7), in the
Abelian case. Here we use y to denote the coordinates of
the internal manifold. Inserting this ansatz into the Ein-
stein equations, one finds, first, that W must be a constant
and, second, that

Rup(¢)=0.

R, () is the Ricci tensor computed from ¢, alone. The
solution to Eq. (2.19) is complicated by the fact that we
need the vector fields introduced in Eq. (2.15). Indeed, for
the vacuum solution, one would like these vectors to be
symmetries of the metric ¢,p:

Vagab +Vb§aa =0,

where the covariant derivative V, is with respect to the
metric ¢. However, there is a theorem'? which states that
Egs. (2.15) (with nonvanishing f’s), (2.19) and (2.20) are
incompatible on a compact Riemannian manifold. If one
gives up (2.15), one gives up non-Abelian gauge theories; if
one abandons Eq. (2.19), one abandons Einstein’s equation;
and if one forsakes Eq. (2.20), one has a hard time under-
standing what it means to have a natural candidate for the
vacuum field configuration. In the literature, the usual as-
sumption is that the pure Einstein equations no longer ap-
ply, either because of the addition of extra matter fields,'
or because of the presence of torsion,'* or because of quan-
tum effects.> The danger to be avoided, however, is that
in a more complicated theory the assumption of extra di-
mensions may fail to explain anything, such as the origin
of gauge theories. Under such circumstances, one might
as well stick to four dimensions.

To close this section, we return briefly to the question
of a cosmological constant. We shall see in Sec. IV that,
just as in any nonsupersymmetric field theory, the fluctua-
tions of the quantum fields induce a constant, infinite,

(2.19)

(2.20)

vacuum energy density, which in a theory of gravity plays
the role of a cosmological constant. In the usual spirit of
renormalization, it becomes unnatural to expect that the
observed cosmological constant should be zero; in fact, its
natural size exceeds the observed upper bound by 120 or-
ders of magnitude.

There is no commonly accepted resolution of this incon-
sistency. For the purposes of this paper, we shall simply
take the cosmological constant to vanish as an observa-
tional fact, and we shall tune our parameters at each stage
of the calculation to ensure that it remains zero, however
unnatural an act that may be.

To see the dynamical role of a cosmological term, we
look at the five-dimensional Einstein equations in the
presence of a cosmological constant A. In four dimen-
sions, one has the usual de Sitter and anti-de Sitter solu-
tions, depending on the sign of A. In the five- dimensional
case, we postulate the form

ds = —dt*+ f(t)doi 2 +g(t)Ndx>)* .

Here do;? represents the line element of a maximally
symmetric three-dimensional space; there are three such

(2.21)

spaces, of positive (k=1), zero (k=0), or negative
(k = —1) constant curvature. We solve the Einstein equa-
tions
Ryp—788R+AZ4p=0, (2.22)
or equivalently
Rip=0a8up » (2.23)
a=2A. (2.24)
It is convenient to set ¢= f /f; y=g/8. Equations
(2.23) reduce to
a=tb4 30 T, @.25)
3 2.26
3f+ T+ +636+7), (2.26)
a=3y+37736+7) . (.27
Together, Egs. (2.25) and (2.27) imply that
=214, (2.28)
¢
i.e., that
f.z
g =807 . (2.29)
Then Eq. (2.26) determines f to be
f(t)=Ae® + Be —ory K (2.30)

3a ’

where @?*=a and 4 and B are constants of integration. If
a>0, A and B are each real and arbitrary; if @ <0, B =A*
with A4 arbitrary.

Of course, if A is small enough, we can, by setting k =0
in Eq. (2.30), return arbitrarily closely to the time-
independent solution, Eq. (2.7). Here we show, in addi-
tion, that in the same limit one can also recover the Kas-
ner solution, Eq. (2.8).

To achieve this, we look at the case k=0, a >0, and
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A, B of opposite sign. Then by choosing the origin of time
so that f(0)=0, we have the solution

f(t)=Agsinhwt , (2.31)

cosh’wt

(2.32
sinhwt? )

g(t)=(Aog0a)

To get a nontrivial limit as a—0, it is necessary to take
Ao=By/w where B, remains finite. Then, provided
wt << 1, we find

f(t)~Bgt ,

Bogo
— -

(2.33)

g(t) (2.34)

This is the Kasner-type behavior that we sought. No-
tice however, that when wt >> 1, we have

f(t)~Age™,
g(t)~(A0goa)e‘°' .

(2.35)
(2.36)

Thus, if a is sufficiently small, there can be an arbitrarily
long Kasner-type epoch; nevertheless, unless a is strictly
zero, the fifth dimension will begin to grow (the change-
over from contraction to expansion occurs when e’
=v2+1), and will ultimately reemerge from the obscuri-
ty of the submicroscopic world.

III. QUANTUM GRAVITY IN D DIMENSIONS

A. General remarks

Classical gravitational theories, like all classical dynam-
ical systems, must become inadequate in regimes where
quantum effects can no longer be neglected. In the case of
gravity, this happens when distance scales on the order of
the Planck length are being approached. When the Planck
length is reached, however, the effective gravitational
self-coupling will become of order 1 and the loop expan-
sion will break down. Thus, unless important quantum ef-
fects can be identified at distance scales larger than the
Planck length, the conventional loop-expansion approach
to the quantization of the gravitational field may not be
useful.

Kaluza-Klein theories offer just such a distance scale.
The radius of curvature of the extra dimension(s) can,
a priori, be larger than the Planck length and, as we shall
show in the next section, it can provide the scale for an
important and reliably computable quantum effect. In or-
der to set the stage for this computation, we briefly review
some of the main features of the quantization of general
relativity. We emphasize that, even if Einstein’s theory is
only an effective theory for use at large distances beyond
the Planck length, the kind of situation which arises in
Kaluza-Klein theories could make the quantization pro-
gram meaningful and useful.

The path integral quantization of a field theory
proceeds by first finding an extremum of the action—a
classical solution, as discussed in the previous section—
and then computing the quantum corrections as an expan-
sion in #. A natural way of implementing this program,
especially if general properties such as renormalizability
are being studied, is the background-field method. The

fields are split into a classical part and a quantum part
and the action is then expanded in the quantum fields
about arbitrary classical background fields. An expansion
to second order is sufficient to generate all one-loop dia-
grams with any number of external lines attached. Phys-
ics is then extracted by putting the external lines on the
mass shell, that is, by taking the background fields to
satisfy the classical field equations.

In general relativity, the background-field method'® has
been extensively used to construct the on-shell counter-
terms for the study of renormalizability.!”"!® The result of
these studies, as expected from the fact that Newton’s con-
stant is dimensionful, is that the theories are nonrenormal-
izable. This means that not only is one restricted to using
them to construct low energy expansions at distances
beyond the Planck length, but the coefficients in this ex-
pansion must be taken to be arbitrary parameters. We ex-
pect this to be the case in higher-dimensional theories as
well but we will see that some quantities might be reliably
computed at distances beyond the Planck length. In par-
ticular, quantum effective potentials which govern the
dynamics of the extra compact dimensions can be comput-
ed when these dimensions are larger than the Planck
length.

B. Quantizing the five-dimensional theory

We shall consider the pure Einstein theory, Eq. (2.1), in
five dimensions, taking as a starting classical solution the
generalized  Minkowski space, Eq. (2.7), with
0<x’<27Rs. The effect of an additive cosmological
term, which is naturally induced by the quantum correc-
tions, was discussed in Sec. II and we shall briefly return
to it at the end of this section.

The metric g4p is parametrized as in Eq. (2.4) and
quantum fields 4,,, 4,, and ¢’ are then introduced by set-
ting

uvs

Euv= ;w+h,uv ’
p=¢.+¢" .

The action, Eq. (2.1), can then be expanded as an infinite
series in the quantum fields. Note that even though these
fields have been introduced with an eye toward dimension-
al reduction, they are at this point still functions of x, and
Xs5.

To determine propagators and to compute one-loop dia-
grams in the classical background field, it suffices to keep
only terms quadratic in the quantum fields. The result of
this exercise is

(3.1

S _ ﬁ fdsx P (3.2)
where
L= Lo+ Lo+ Ls+-Ls (3.3)
and
Lor= %'(huv,ph#vyp_ZhW»phupvv
—Zh#v.#hpp»f“hppynhw,#)
+i(hw5hm,,5—hw,5hw,5) , (3.4)
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JG=%‘¢C(F;LV)2 ’ (35)
1
Ls=——=(9,¢")?, (3.6)
N 6¢c2 I3
2

3 45:5 ¢:5

L= | 6 ] s
_% ‘25 By + Ay s (B —hpy) - 3.7

There are several points worth making about this result:

(1) There is no mixing among A,,, 4,, and ¢’ in the
n =0 sector. This was, of course, already demonstrated in
the full zero-mode Lagrangian, Eq. (2.6), and is a conse-
quence of the variable choice, Eq. (2.4), in particular the
presence of the Weyl factor ¢ —!/3,

(2) The first piece .£g,, Eq. (3.4), is the usual quadratic
Lagrangian for the graviton, together with a masslike
term for the ns£0 modes. It can be inverted for n=£0 to
give the unitary form of the massive, spin-2 propagator.

(3) The second two pieces, . ¢ and £, describe the
massless gauge field and scalar field.

(4) The role of the constant, classical background field
¢. as the metric for the fifth dimension can be seen in
each term.

A simple and natural gauge choice for the quantization
of this theory is the cylindrical gauge

(3.8

It is analogous to the static gauge in finite temperature
gauge theories, discussed in the Appendix. It can be ef-
fected by the addition of the gauge-fixing Lagrangian

§M5,5(X)=0 .

AL o= —5(A%gp)*, (3.9)
where
AB=(AH,£0s) , (3.10)

and A* is, for the moment, an arbitrary four vector. The
cylindrical gauge, Eq. (3.8), is then obtained by taking the
limit {— . Only the n =0 mode in the Fourier expan-
sion, Eq. (2.5), will remain sensitive to A* in this limit.
Using the variables 4,,, 4, and ¢', and referring to th?

fMAB(X,x')é'B(x')dx'=[g—A 5,585+g_BsaAa§+g—AB(aS)2+§AB,SaS]EB(x) .

The gauge condition g4s5 5=0, corresponding to the limit
£— oo in Eq. (3.10), has been used to simplify this expres-
sion. The quantity A may be represented as an integral
over anticommuting variables:

AsznDﬁexp

fdx dx'TAHx )M 45 (x,x" )p(x")

(3.15)

We see that the ghost action is already quadratic in the
fields n and 7, and hence the one-loop approximation is
obtained by setting 3,5 in Eq. (3.14) to the background
value Eq. (2.7).

Having obtained the one-loop versions of the classical

quadratic Lagrangian, Eqgs. (3.3)—(3.7), A¥ can be used for
further gauge fixing within the massless, zero-mode sec-
tor.

In the cylindrical gauge, the fields 4, and ¢ are in-
dependent of xs—they are purely zero mode. Because of
this, the .£°5 term in the quadratic Lagrangian, Egs. (3.3)
and (3.7), which mixes the fields, must vanish. The under-
lying reason for this useful simplification is that the
cylindrical gauge is the physical gauge for the five-
dimensional Kaluza-Klein theory. To see this, we note
that in N dimensions, an N X N metric field g4p describes
(N2+4+N)/2—2N physical degrees of freedom, the subtrac-
tion of 2N corresponding to the freedom in the choice of a
coordinate basis and the fact that g, are dependent vari-
ables. The 5 degrees of freedom in the five-dimensional
theory are then accounted for in the following way.!® In
the zero-mode sector, they correspond to the massless
graviton, photon, and Brans-Dicke scalar. By contrast,
the 5 degrees of freedom in each nonzero mode are those
of a single massive, spin-2 particle. Clearly the cylindrical
gauge explicitly reflects the physics of the five-
dimensional Kaluza-Klein theory. ‘

The absorption of spin-O and spin-1 degrees of freedom
to create a massive spin-2 particle is, of course, a Higgs
mechanism. The chosen classical solution [Eqs. (2.2) and
(2.7)] involving, as it does, a fixed scale associated with the
fifth dimension, clearly does not have all the symmetries
of the original Lagrangian. Spontaneous symmetry break-
down (“spontaneous compactification”) has taken place
for those modes (n£0) which are sensitive to the presence
of the scale Rs, and the fields 4 p and ¢ are the associated
Goldstone fields.

The change in g4p induced by an infinitesimal coordi-
nate transformation

x4 x4 —el(x) 3.11)
is
884p(x)=€Gyp,c +€ 48cp +€ p8uc - (3.12)

From this, one finds in the usual way that the DeWitt-

Faddeev-Popov ghost factor A is
A=detM , (3.13)

where M is defined by

(3.14)

r . . .
action and the gauge-fixing and ghost terms, we are al-

most ready to study the quantum theory defined by

—[S(2)+ng]
’

z= [ Du(h)A(h)e (3.16)

where

Z1n =843 +hup
and g% is given in Eq. (2.7). The only remaining issue is
what to take for the measure Du(h). This question has
been discussed at length by Fradkin and Vilkovisky,”° and

by DeWitt?! and ’t Hooft,?? among others. Its definitive
resolution probably awaits a well-defined quantum theory
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of gravity. However, it is clear that the measure must at
least intervene to cancel unwanted terms in physical quan-
tities proportional to 8*0) and, in our case, 8°(0). This
role of the measure can be seen, for example, in derivative-
ly coupled scalar theories in four dimensions, where Feyn-
man graphs with one or more loops typically contain
quartic divergences. These are precisely canceled by a fac-
tor in the measure that can be derived by starting with the
phase-space path integral where the measure factor is uni-
ty and then integrating out the canonical momenta to ob-
tain the standard path integral in configuration space.

In performing our computation, we shall enforce this
cancellation by setting Du(h)=Dh, and at the same time
systematically deleting any terms in the effective potential
which are proportional to §*0) or 8°(0). This is consistent
with having chosen a regularization scheme such as di-
mensional continuation or zeta-function regularization, in
which these singular factors would have been defined to
zero from the beginning.

C. Divergences and counterterms

In D-dimensional quantum gravity, the maximum de-
gree of divergence of an L-loop graph is

d=(D—-2)L +2. ’ (3.17)

This maximum, independent of the number of external
lines, is attained only if the two momentum factors at
each vertex are taken to be internal loop momenta. The
counterterm being computed would then have no deriva-
tives acting on the fields; it would correspond to an in-
duced cosmological constant. In general, an L-loop ampli-
tude will produce terms ranging from finite ones (thank
goodness) up to the maximally divergent cosmological
constant. The possible divergent terms will be dictated by
the local counterterms allowed by D-dimensional general
covariance. The actual divergences encountered in a com-
putation will further depend on the regulation scheme em-
ployed. We here restrict ourselves to some general re-
marks about counterterms, imagining that a cutoff A is in
place on the momentum integrals. A specific such cutoff
will be introduced in the next section in the course of
describing the effective potential computation.

At one loop, the maximal degree of divergence is d =D.
For the five-dimensional theory, the leading quintic diver-

gence corresponds to an induced cosmological constant. It

must, of course, be fine-tuned away and we have nothing
new to add to this age-old problem. A cubic divergence
will appear multiplying the scalar curvature R and it can,
therefore, be absorbed into a renormalization of Newton’s
constant. Finally, there can be a linear divergence multi-
plying the four-derivative operator (RWM)Z. In an even
number of dimensions, this operator must vanish on
shell'” because it is proportional to R?—4R,,” plus a total
divergence. In five dimensions, it persists and one sees the
nonrenormalizability already at one loop. Of course, all
these divergences would be defined to be zero using di-
mensional continuation or zeta-function regularization.
The effective potential is a zero-derivative operator and
it is therefore a (finite) partner of the induced cosmologi-
cal constant. It will be possible to separate these two
pieces and then to focus our attention on the finite part.
The presence of the other, higher-derivative, counterterms

at one loop will not impact on the effective potential. In
higher orders, all these terms can be mixed together and
this problem will be briefly discussed after computing the
effective potential.

IV. COMPUTATION OF THE EFFECTIVE POTENTIAL

Having outlined the general framework, we turn to the
explicit evaluation of the effective potential. We begin
with

Z[¢:1= [ Dhd(hyss)A(h)eSH] 4.1)

where we have expanded the metric as in Eq. (3.1). We
have chosen to take the {— o« limit of the gauge-fixing
Lagrangian, Egs. (3.9) and (3.10), immediately; hence the
delta functional appears in Eq. (4.1). To compute the ef-
fective potential to one loop, we use??

Z[¢.]=exp[ — Vesr(¢:)(g )2 [dx] . 4.2)

This differs from the usual expression in that we have ex-
tracted a factor (g'?)!/2 in defining V.g. If we did not do
this, Vs would not be generally covariant, and hence
would be without physical significance.

For a one-loop computation, we need only the terms in
S that are quadratic in the quantum fields. The relevant
Lagrangian has been given in Egs. (3.4)—(3.6). We can see
explicitly from these equations how it is that the zero
modes (the scalar ¢’, the vector A,, and the xs-
independent piece of the tensor #,,) do not contribute to
V.tr. We observe that by scaling the integration variables

' —dc b, (4.3a)

A“—>—-1——— ?A” s (4.3b)

we can remove the dependence on ¢. completely from the
zero-mode terms. The price we pay for this is that we
generate a Jacobian factor in the path integral, e.g.,

D¢'—[[14.1D¢'=(D¢")exp |3 Ing,

Using the relationship (d*x)8%0)=1, we have

D&’ —exp [5“(0) [ d*x Ing, ](D¢') . (4.4)
This ill-defined Jacobian factor is precisely the sort of
thing that must be absorbed into the measure of integra-
tion, as discussed in Sec. III. The same holds true for our
rescaling of 4,. Thus we conclude that the zero modes
contribute a ¢ -independent factor to Z[¢, ], which will be
absorbed into the overall normalization of the path in-
tegral [see Eq. (4.15) below].

Therefore, we need only concern ourselves with the
massive-mode contribution to the path integral, and possi-
bly with the ghost-determinant contribution as well. We
shall first evaluate the massive mode integral, and then
show that the ghost factor in fact makes no contribution.

To evaluate the massive-mode path integral, it is con-
venient to diagonalize the derivatives by means of Fourier
transformation. Denoting by S the contribution of these
modes to the action, we have
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Y

_%(ykkvka'+6pokvkk+8vkkyka+8vakykk)}h&;n)(_k) ,

(4.6)

(It is easier to include the n =0 piece even though it will
not contribute to Veff-) If we abbreviate this expression by

§= zzf )4hL'3<k>fr:*;:h( k), @D
then we have the standard result that
[ Dhyye—S=(dets)~172 . 4.8)

We evaluate the determinant by finding the eigenvalues of
% and taking their product. For each value of k and n,
the index pair (uv) takes on 10 values. Thus we can think
of ¥ as a 10X 10 matrix labeled by k and n. (It is the
fact that in momentum space, . is block diagonal with
finite-dimensional blocks that allows us to evaluate det.”
this way.)

Let p*Y be vectors satisfying p*V'k,=0 (j =1,2,3).
Then by explicit computation we find the following

(a) 47#rop ) =M, e,
where

B =kwd +kopf, j=1,2,3 4.9)

(i.e., there are three independent v’s corresponding to the
three independent choices for p*).

(b) 4%““"”w§{(’,=k“’w“"(”, i= 1,2 R
where

A2 2(k2+ ML —3MY =0 (4.10)

and w*"? are two linearly independent combinations of
¥ and kHMk". Note that Eq. (4.10) implies that
ADAD = _3p1, %,

=(k>+MHX*, j=1,2,

(c) 4.7whoxii) 4.11)

where the XYV are appropriate linear combinations of

h(n)(k){[%(Sy}»ava__’_syasvk)_Spvslv](kZ_'_ng)+(8yvk)»ko+87takuk1r)

(4.5)
[
v ktkY + 3 p,u(j)pV(j)
k2 - p(m
j::
(d) 470y (K24 M,HYVP, j=1,2,3, (4.12)

where Y*" correspond to the three independent ways of
choosing p*” and p#'® in the expression

Yuv:pu(l)pv(k) +pv(l)pu(k), (l%k ).
Thus the product of all the eigenvalues is given by

d(k,n)=—3[M,(k*+M,>)]° . (4.13)

There are five eigenvalues independent of k, corresponding
to the five nonpropagating modes in the field A,,(k)
(comprising a massive spin-1 and two spin-0 modes).
There are also five eigenvectors with eigenvalue
(k24 M,?); these are the five propagating components of
spin 2. The fact that d(k,0)=0 is a signal that further
gauge fixing is necessary in the zero-mode sector (i.e., one
must choose coordinates in ordinary four-dimensional re-
lativity). Since the zero modes do not contribute to Vg,
we need not concern ourselves with this problem.
We can now write, formally,

(detd.7)~1/2

=exp (4.14)

—+3 SIn[ —3M,"°(k2+M,*)]
n k

Our first step is to normalize this expression by dividing
by its value when ¢, =1. That is, we compute the ratio

Z[¢]
Z[¢.=1]

1 ¢c(kRs)’+n’
¢02 (kR5)2—+—n2

3 > n

~exp |4
n k

This is just a specification of the arbitrary overall normali-
zation of Z, and is without physical significance. It corre-
sponds to adding an arbitrary constant to V'g V.g; by con-
trast, a cosmological constant, which is physical, is a con-
stant term in Vg itself. Next, we use the relationship

5
] . (415

8, k*k*/k? and p'¥p'//p"2  Although there would %k
appear to be three X s, corresponding to the three possi- [ f d*x ] PymY, =1 (4.16)
ble choices of p#"Y, this is reduced to two because of the (2m)
completeness relation to write
]
Z(g.] coa [ %[ [ ge(kRsP+n?

o =exp{—7 —21n [ dsx] 4.17)

Z[g.=1] °F 23_0,, 27Rs (2m)* (kRs)*+n? s | 1S
Once again, we drop the second term since it is of the form (const) X (Ing,. ) X 83(0), which can be absorbed by rescaling of

the integration variable 4,,(x) by an appropriate power of ¢.. This leaves us with
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¢.(kRs)*+n?
(kRs)*+n?

d "k

2y 4.18)

(8(0))1/2V ff(¢c cff(¢ =1)= 27TR 22_[

(0) —2/3

is the determinant of the classical solution g,°. Its value is ¢,
Before proceeding further with our analysis of Eq. (4.18), let us return to the contribution of the ghost determinant,
Eq. (3.14). Transforming to momentum space, we find from Eq. (3.14)

MY (ke,n)= —ks[kaghs +ksgap

g

=—ksd. "' [dckqBps+ksByp+ksBysOps(d.—1)] . (4.19)
Here we have set ks= +n/R5. The eigenvalue equation for M reads '
—kspe " P[Pkgvs+ksvg+ks(de— 18,505 ]=Avy . (4.20)
If v5 =0, then this equation is satisfied with

A= _k52¢c—1/3 X
If v540 then setting 4 =5 we have
}"=-k5¢c—1/3[2¢ck5] .

Thus we have four eigenvectors with eigenvalue —ks2¢.~'/3, and one with eigenvalue —2ks2¢$.2/>. Their product is,
therefore,
10
dg=—2 |2 | ¢,~2 4.21)
Rs

and the ratio dg(¢.)/dg($.=1) is simply ¢.~2/3. Hence to one loop the ghost determinant contributes only a scaling
term (const) X Ing, X 8°(0) to the logarithm of Z(¢,)/Z(¢$.=1) and so does not affect V(o).
Returning to Eq. (4.18), we use the formula

3 f=f" drrs [T LD 422)

—2miz _
e e o e 1

to perform the mode sum. This yields

5 ck2+k 2
¢c—'/3Veff<¢c>—Veff<¢c=1>=%f(‘”‘ [¢ : ,

n
27)° k*+ks?
diq etie L 1
=) a7 _dzln - . (4.23)
+ 27T(R5)5 f (277.)4 — o +i€ q2+22 e—21rlz_l

In the first term, we have defined the integration variable ks=z/Rs; k2, however, continues to denote the four-
dimensional product k,k¥. In the second term, we have defined the dimensionless variable g, =k, Rs.
Let us focus for the moment on the second term. By contour methods, one can easily establish the formula

z+a

[° @&zH@m =27 [ 'dx Hlix) (4.24)

provided H (z) is analytic in the upper half plane, and that

2 2

2+b2

(4
NIFIE

H(z)ln

as |z | — oo in the upper half plane. We have defined the logarithm to have its cut on the negative real axis, and have

taken a,b, to be the positive square roots of a%,b%. In our case, H(z)=1/(e =™ —1) so the analyticity and boundedness
properties are satisifed, and we have for the second term
AV 1
dx——— | . (4.25)
277.) 5 f 2m )4 f e21rx__1
The x integration is easily done. Defining w, =2mg,, we have
5 1 d*w
—_— —1 ——In(1—e™¥), (4.26)
(27Rs)° | $c ] / (2m)*

ie.,
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5 k2+k<2
bV arlde)—Verlpe=D)=1 [ 4K [‘“ s

2m)’ k2+ks?

In the first term, we observe that the ks integral is con-
vergent, and can be evaluated straightaway using Eq.
'(4.24). The first term then becomes

s r kd*k
[ ) 2m(Vg.—1) .
Clearly this is quintically divergent. We define the in-
tegral by assuming the domain of integration to be the in-
terior of a large sphere in momentum space: k <A.

However, general covariance in the four-dimensional
space parametrized by x* prevents us from assuming that
A is independent of ¢.. We can see this as follows: The
coordinate system we are using, in which the background
four-dimensional metric is ¢, !/ 38,",, is related to the
standard Euclidean-space coordinate system x{ in which
the background metric is just §,,,, by

(4.28)

xt=¢. x4 . (4.29)
Now
d*k A*
= =8%0) .
@em* 327
Thus, under the scaling, Eq. (4.29), we must have
A=¢.""A,, (4.30)

where Ay is the corresponding cutoff in the standard coor-
dinate system. Therefore, in evaluating the expression
(4.28), we must cut off the first term with A=¢, /%A,
and the second term with A,y This gives

A .

- - /3_1 .
8y % )

Finally, returning to Eq. (4.27), we can extract V g(¢. ):

Ao’

Py (4.31)

(¢c——5/6¢c1/2_ =
; =

Veff(¢c) % c= (21"R5)3

%

o

20

FIG. 1. The one-loop Kaluza-Klein effective potential

781
5 1 d*w
—_— In(l—e~¥) . 4.27
(2mRs)® lqscz f (2m)* n(1—e™) @27
I A 5
Veerlde)=——+ 3B (4.32)

87 (2‘)T¢cl/3R5)5 ’

where B is shorthand for the integral appearing in Eq.
(4.27). The difference taken in Eq. (4.27) would allow for
the presence of an additional constant in

fdsx (g(O))l/ZVeff:deX ¢c—1/3Veff

but, as noted following Eq. (4.15), this can be absorbed
into the normalization of the functional integral. It is
physically irrelevant and cleanly separable from the effec-
tive potential.

Our last numerical chore is to compute f3:

(4.33)
Therefore
15
58=——=&(5)
B 47 &
= —0.39%4.

V. SUMMARY AND DISCUSSION

Our result for the effective potential consists of two
pieces: the first is positive, divergent, and independent of
the distance Ls around the fifth dimension; the second is
negative, convergent, and depends on L5 in the manner il-
lustrated in Fig. 1. This state of affairs is reminiscent of
the well-known Casimir effect in electrodynamics. There
one considers the zero-point energy of the free electromag-
netic field between two infinite parallel perfectly conduct-
ing plates separated by a distance a, and one finds that the
energy per unit volume has the form

E(@)=E,—= . (5.1)
a
Here E, is cutoff dependent, but independent of the
separation a; the second term is finite and represents a
measurable attractive force between the plates. Ej is just
the vacuum energy density of free space, and is to be sub-
tracted out in computing physical quantities.
Our computation is the direct gravitational analog of
the usual Casimir energy. The infinite term is an induced
cosmological constant, and according to the philosophy
put forward in Sec. II, we subtract it from the observable
effective potential Vg:
Vit = Vit — —— Ag® (5.2)

eff eff 8 0 - .
(Of course, if we had chosen to use dimensional continua-
tion or zeta-function regularization, the infinite term
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would have been defined to zero ab initio.) The remaining
term is then to be interpreted as an observable energy per
unit volume, which tends to make the “distance between
the plates”—in this case, the distance around the fifth
dimension—contract.

From Fig. 1, however, one sees that there is no apparent
limit to the contraction: Vg tends to — o as Ls tends to
zero. This is equally true of the Casimir case, but there
one expects on physical grounds that a natural cutoff will
appear when the structure of the plates becomes impor-
tant, i.e., when a becomes of order the interatomic separa-
tion.

The analogous cutoff in the gravitational case is the
Planck length. What we have computed is the first non-
vanishing term in a loop expansion, which is an expansion
in powers of the reciprocal of the constant multiplying the
action, i.e., an expansion in powers of Gs. Now G has di-
mension (length)®; hence the dimensionless expansion pa-
rameter must be

=—=— (5.3)

i.e., the loop expansion should have the form

(1)
Veffzyeff(1+a2’;/+a37/2+ cee ).

Here 172;2 is the one-loop term of Eq. (5.2) and «, is a di-
mensionless factor which can be evaluated by computing
the finite part of the n-loop contribution to V; presum-
ably it is of order 1. Hence the loop expansion will make
sense (and our one-loop result will be reliable) only if

Y1, (5.4)
i.e.,

Ls >>(G4)1/2=LP »
where Lp is the observed Planck length

Lp=1.6x10"% cm. (5.5)

Thus our one-loop result loses its validity if Ls <Lp. We
conclude, therefore, that the Casimir force tends to push
the fifth dimension down to a size on the order of the
Planck length, but we cannot say what happens after that.
For the theory to make sense, it must presumably be the
case that dynamics at the Planck scale or below will stabi-
lize the extra dimension at this size.

A Planck-size stabilization would have two interesting
consequences. First of all, the massive spin-2 modes are
charged and their charge is given by a multiple of the ratio
of the Planck length to the circumference of the compact
dimension. Thus a dynamics which determine this dis-
tance relative to the Planck length will, in turn, determine
the electric charge of the massive modes. If this charge is
to be a multiple of the fine structure constant a=1/137,
then the extra dimension would have to be somewhat
larger than the Planck length. A stable minimum of the
effective potential would also give rise to a mass for the
Brans-Dicke scalar, presumably on the order of the Planck
mass. This would then screen the scalar out of the effec-
tive four-dimensional theory in the same way that finite
temperature Debye-screens the long-range electric field in
a gauge theory.

The five-dimensional model we have examined in detail
is the simplest possible Kaluza-Klein scheme. It invites
generalization in a variety of ways. One can, in the first
place, have any number d of toroidally compactified di-
mensions in a D-dimensional space-time. The computa-
tion of the effective potential is not significantly more
complicated than the D =35, d =1 case we have considered
in this paper. In particular, if one looks at a five-
dimensional theory with d =2, one can interpret the
second compactified dimension as Euclidean time, in
which case the distance around it has the interpretation of
an inverse temperature 3. This case has been analyzed by
Rubin and Roth,>* who find that the attractive Casimir
force competes with the thermal pressure: If the ratio
B/Ls is sufficiently large, the fifth dimension will con-
tract; otherwise, it expands. Once can also investigate how
the Casimir energy affects d > 1 compactified spatial di-
mensions: this will be the subject of a future publica-
tion.?

Of at least equal importance, and of much greater diffi-
culty, is the problem of extending our analysis to the non-
Abelian cases discussed classically in Sec. II. In order to
achieve a spontaneously compactified vacuum, it may well
be necessary to add additional fields, either ordinary
matter!® or perhaps spinning matter,'*2% which will give
rise to torsion. Even if a sensible classical Kaluza-Klein
theory can be constructed, however, the task of perform-
ing the mode sum is likely to be very much more compli-
cated.

There is also the problem of incorporating fermions in a
realistic way. This may involve the introduction of super-
symmetry; the possible close connection between Kaluza-
Klein ideas and supersymmetry has been especially em-
phasized by Witten,?” and the various possibilities for real-
izing 11-dimensional supergravity have been discussed by
Duff and collaborators.®

Finally, we remark that if some version of the Kaluza-
Klein idea is right, it must impact on the evolution of the
early universe. Some suggestions for cosmology involving
Kaluza-Klein theories have already been advanced®?’; it
remains to be seen whether this approach can be naturally
unified with standard big-bang and inflationary cosmolog-
ical ideas.

APPENDIX A: SOME FEATURES OF FINITE
TEMPERATURE GAUGE THEORIES

A system in thermal equilibrium at temperature T is
described by the partition function
z=Se¢ 5", (AD)
1
where B=1/T. Functional integral expressions for the
partition function and for thermal expectation values can
be derived using standard methods. Euclidean “time”
runs between =0 and ¢#=p3, and the fields are either
periodic or antiperiodic in this interval depending on
whether they describe bosons or fermions. For gauge
theories, the Faddeev-Popov gauge-fixing procedure is em-
ployed with the ghost field periodic.
The Feynman rules for the quantum loop expansion are
formed from the zero-temperature Euclidean Feynman
rules by the replacement
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d3k
(2m)?

d*k
—T A2
f (2m)* 2 (42

n = Tinteger
where the discrete energy sum is over k,=2nwT for bo-
sons and ky;=(2n +1)7T for fermions. The ultraviolet
divergences are the same as those of the zero-temperature
theory. The zero-temperature counterterms can, therefore,
be used to remove the divergences and the temperature T’
can be used as the scale to define the coupling constant.

At distance scales much larger than 1/7, the theory
simplifies by, in effect, reducing to the same theory in one
less dimension. With the external momenta in Green’s
functions small compared to 7T, everything except the
n =0 mode for the bosons can be expected to decouple,
leaving only three-dimensional momentum integrals. The
only exception to this is the self-mass vﬂﬁ(q =0) of the 4,4
component of the gauge field, which is ultraviolet diver-
gent without the inclusion of the n£0 modes. When they
are included, one finds

2072

78q=0)=(N+N; /25— (A3)
for an SU(N) gauge theory with N, fermions. Thus, a
color-electric Debye-screening mass is generated, meaning
that at distances much larger than 1/g7, the fourth (elec-
tric) component of the gauge field decouples. With only
the three spatial components of the gauge field remaining
and with only three-dimensional integrations to be done,
the reduction to an effective three-dimensional theory is
then complete.

A natural gauge choice for the implementation of this
program is the static gauge

9,45=0.
It can be obtained by the addition of the gauge-fixing term
AL y=7(A L), (AS)

(A4)

where A”=(~iK,ka4) with A an arbitrary three-vector.
The corresponding ghost Lagrangian is

AL ghost=1"TA(3,m°+8f PAL7°) .

The static gauge is then obtained in the limit A— 0. It
has the following properties:
(1) The 4, propagator is static (n =0 only) with

iD% (k)= —i8%/k? .

(A6)

(A7)

At one loop, a mass is generated by the Debye-screening

mechanism.
(2) The A; propagator has a nonstatic contribution
(ko=2nmwT,n#0):

8 +kik; /ko

k2 +ko? (A%

n=0: iD{P(k)=—i8®
It also has a static (n =0) contribution which depends on
A, that is, on further gauge fixing within the static sector.
In the O(3)-covariant gauge A = —(i /§)d,

= 8 kik;
n=0: iD,-’}”(k)=—i—£g— 8,-j+(§—1)—;—7’-}. (A9)
K

(3) Only the static (n =0) Faddeev-Popov ghost sur-
vives. Its propagator in O(3)-covariant gauge is
iG(K)=—i8"¢ /K2, (A10)
and it couples only to the static 4; propagator [Eq. (A9)],
with strength g /&.

The static gauge is a natural choice for infrared studies
at finite temperature because, from the point of view of
the effective three-dimensional theory, it is physical. This
can be seen by first noting that the four-dimensional
finite-temperature gauge field describes 2 physical degrees
of freedom for each value of n. For n5£0, they correspond
to the 2 degrees of freedom of the massive three-vector
field 4;"*%. The propagator for this field appears au-
tomatically in the physical, Proca-Wentzel, from [Eq.
(A8)]. For n=0, the 2 degrees of freedom are accounted
for by the massless gauge field 4"=" and the three-
dimensional scalar 4,. Each describes 1 physical degree
of freedom.

Note added. After this work was completed, we became
aware of a paper by An Ing and Chen Shi [proceedings of
the Third Marcel Grossman Meeting (unpublished)] in
which the same effective potential is computed, for related
although somewhat different reasons. We thank E. Wit-
ten for bringing this work to our attention.
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