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Universe before Planck time: A quantum gravity model
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A model for quantum gravity can be constructed by treating the conformal degree of free-
dom of spacetime as a quantum variable. An isotropic, homogeneous cosmological solution
in this quantum gravity model is presented. The spacetime is nonsingular for all the three
possible values of three-space curvature, and agrees with the classical solution for time
scales larger than the Planck time scale. A possibility of quantum fluctuations creating the
matter in the universe is suggested.

I. INTRODUCTION

A formalism for quantum gravity can be
developed by treating the conformal part of space-
time as a quantum variable (see the preceding paper'
for details; see Ref. 2 for previous work on the sub-
ject). Such a fortnalism allows the light-cone struc-
ture of spacetime to be determined by a metric ten-
sor g;k, which satisfies the equation [Eq. (2.8) of
Ref. 1]

(n )(R;k —, g;kR)—+6t;k

= —8rrGT;k+(g;k —V';V'k)(n ),
t,„=—(n, n„)+—,

'
g,„(n'n. ) . (1.2)

The angular brackets denote the expectation value of
the quantum variables taken in the particular quan-
tum state of the conformal factor. The spacetime
geometry in that quantum state is described by the
line interval

ds'= ( n') g;kdx 'dx" .

It was shown in Ref. 1 that this formalism leads
to a consistent picture for quantum gravity. The
classical solution is shown to be of no significance
near the singular epoch. The simple, static solutions
considered in Ref. 1 showed that, near the singulari-
ty, the quantum gravitational effects modify the

classical solutions drastically, leading to nonsingular
spacetimes.

In this paper we shall examine the isotropic,
homogeneous cosmological solution to the above
quantum gravitational equations. We take the point
of view (which, in fact, motivated the whole formal-
ism) that any theory of quantum gravity that does
not remove the classical singularity is not acceptable
as a physical theory. The removal of singularities is
the major theoretical consistency criterion that can
be used to distinguish the various formalisms of
quantum gravity. Accepting a formalism which
does not solve the singularity problem will again
lead to lack of predictive power in a physical theory.
Thus, it is vital to analyze the simplest cosmological
model of our theory from this point of view.

The metric g;k which determines the light-cone
structure will depend on the quantum state of the
conformal factor. Unfortunately, we have no
theoretical principle to determine this quantum
state. It turns out that this indeterminacy manifests
itself in the solution, in the form of two arbitrary
parameters, which have to be fixed from observa-
tion. Subject to this limitation, our solution is com-
plete.

II. MAXIMALLY SYMMETRIC SPACETIME

We shall assume the spacetime to be isotropic and
homogeneous at the quantum level. This implies
that the line element has the form

ds =(n2(t)) c dt S(t)—+r (dO +sin Odg )
1 r /a— (2.1)

We have assumed here that the imposition of maxi-
mal symmetry rules out spatial dependence on n.
(This assumption is discussed in Ref. 1.) As for g;k,
we have taken the most general form, with an ex-
pansion factor S(t) (dimensionless). The variables r
and a have the dimensions of length. We have writ-

I

ten the form of the metric for the "closed"
geometry. When necessary we shall give the
relevant formulas for the other cases. The solution
differs from those considered in Ref. 1 by the ex-
istence of a dynamical expansion factor S(t). We
shall assume that the source consists of isotropic ra-
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Thus the theory contains three variables, say, e(t),
S(t), and the wave function for the conformal factor
g(Q, t)

The quantum dynamics of Q must be determined
through the action [see Eq. (4.4) of Ref. 1]

f dtS'(t)[Rttt 6ttt]—. (2.3)
16~G

Here V is the volume under consideration,

4nr dr =2m. a p,P ( 1 r 2' 2)1/2
(2.4)

and is written in teriiis of a dimensionless parameter
P. (For example, P= 1 would give the volume of the
closed universe. Our main results are independent of
the choice of P.)

This action corresponds to the Hamiltonian
2 2

H =
3

——, MS (t)to (t)q
2MS (t) aq

(2.5)

where

diation with a conforxnally invariant stress tensor,

(2.2)

From the Lagrangian in Eq. (2.3), we know that the
momentum conjugate to q is

=MS (t)q . (2.12)

Thus the operator for q [in Eq. (2.11)] must be tak-
en to be (p /M S ). In these notations, the trace of
Eq. (1.1) reads

V'(t) =to2(t)Q'(t) —A ';,
while the (p) component equation reads

(2.13)

S +v 8m.Ga

S 3c

2

Q2 Q2
(2.14)

Thus we are left with a set of coupled integrodif-
ferential equations [see (2.10) and (2.11)] in the form
of Eqs. (2.8), (2.13), and (2.14), solving which we
should be able to deterlriine S(t), g(q, t), e(t). The
functions Q ( t) and V ( t) are at once determined
from g(q, t)

To motivate the solution, let us consider the struc-
ture of the equations more carefully. Equations
(2.13) and (2.8) form a set of coupled equations for
g(q, t) and S(t) in the form

q =aQ, M = —,nP

to (t)= —+ (S +v ), v= —.1 2 c
S S2 ' a

(2.6)

(2.7)

2 2
ih' ~ = —, Mto (t)S—(t)

2MS (t) aq

V'(t) =to2(t)Q2(t) —A'; .

(2.15)

(2.16)

The energy density e(t) and the expansion factor
S(t) are to be determined by Eqs. (1.1). For maxi-
mally symmetric spacetimes, there are only two in-
dependent equations in the set (1.1) which may con-
veniently be taken to be the trace equation and the
(p) component equation. Let us define (for reasons
which will soon be clear)

A'I, =(5'ko —'])t"v'k )Q (t),
Q'(t)= f dq t]t'(g, tiq't(t(g, ti

=(q'),
V'(t) fdq t(t'=(qtiq t(t(qt), ,

=(q') .

(2.9)

(2.10)

(2.11)

(The plus sign corresponds to the closed model and
the minus sign to the open model. Flat background
can be achieved by dropping the v term. ) Thus our
equation for the wave function reads

i' = — ——,MS (t)co (t)q Q.. ay e' a'
2MS'(t) aq'

(2.8)

Once these two are solved, e(t) can be trivially deter-
mined through Eq. (2.14), written in the form

T

8]TGa
( ) Q2( )

S +v V
2 S2 Q2

0—Ap

(2.17)

~ ~

S'(t)~ (t) =S'(t) —+, (S'+v')

=a =const2= (2.18)

Thus our task reduces to finding an S(t) and P(q, t)
that will satisfy Eqs. (2.15) and (2.16). It is not clear
a priori whether the solution would be unique. One
has to use the fact that, except for quantum correc-
tions, S ( t) should follow the classical evolution.
Our previous experience with the formalism sug-
gests that one should look for the stationary-state
solutions with (q ) =Q independent of time. In
other words, any time dependence g(q, t) must ap-
pear as a pure phase factor. This suggests the fol-
lowing ansatz:
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P(q, t)=exp j, Plq),
iE dt

S'(t)
(2.19)

In the stationary states we have assumed for the
universe Q is independent of time and all the
dynamics is contained in S(t). The equation for

(r),

which leads to the following equation for P(q):

fi d
2M dq~

+ , Ma —q P=EP . (2.20)

6 S S+v
2

2=(X

can be integrated once, to give

(3.2)

Since this is just the harmonic-oscillator equation
for P(q), the solution is well known. Assuming the
universe to be in the nth stationary state, we can
compute Q and V to be [see Eqs. (2.10)—(2.12)]

Q2 (n+ —,), (2.21)

MS M S(t) (2.22)

Thus Q is independent of time, making A k identi-
cally zero. Since the Hamiltonian has an explicit
time dependence through S (t), V picks up a time
dependence. But this is exactly the time dependence
needed to satisfy the second equation (2.16). We
have, from (2.21) and (2.22),

V2 a2

Q2 S6
=ai (t) . (2.23)

S (t)ro (t)=a (2.24)

The spacetime structure can be deteririined by solv-
ing this equation. Notice that a is a purely
quantum-mechanical parameter. Its classical value
is zero, since classical evolution for S(t) comes from
the equation co=0. Thus, in fixing the state of the
universe to be a harmonic oscillator of frequency a,
we have introduced an extra constant into the theory
whose value can only be deterrriined from observa-
tion. We shall now consider the solutions of Eq.
(2.24) which determine the spacetime structure.

III. GEOMETRY OF
THE QUANTUM UNIVERSE

If the spacetime is taken to be in a given quantum
state P(q, t), the line element has the form

ds = Q c dt2 S(t)—&~(t)

a

dr +r (d8 +sin Hdg )
1 —r /a

(3.1)

The last equality follows from the definition of the
constant a in Eq. (2.18). Thus our solution satisfies
both Eqs. (2.15) and (2.16), provided the expansion
factor satisfies the equation

2 2

S = — +v+s4 s' (3.3)

Here p is the integration constant that arises in the
process. We stated earlier that once g and S are
deterrriined, the energy content e(t) can be fixed us-

ing Eq. (2.17). Using Eq. (3.3) (and the fact that Ao
is zero), we get

()= Q' '()
8m.Ga

(3 4)

3c2Q2 a2

8mGa S
2 p2

s' s4

3c2Q2 p2

8vrGa2 S4

In other words,

~(t)= 9 R p (n+ —, )
16+P aa S (t)

(3.5)

(3.6)

—r2(d02+sin Ody ) (3.7)

The equation in terms of the ~ coordinate is

2

=p — +v S (3.8)

(the top sign corresponds to the closed model). Let
us begin by considering a purely quantum gravita-
tional solution with no matter (i.e., p =0). It is clear
from Eq. (3.8) that only a positive sign is allowed
for the third term. Integrating the equation gives

S (~)= —(1+2sinh v~) . (3.9)

Thus the integration constant p deterriiines the ener-

gy content of the universe.
We have to solve Eq. (3.3) to detei mine the evolu-

tion of the universe, especially about the singularity.
In the given form, we can give solutions to (3.3) only
as parametric functions. It is therefore convenient
to write the metric as (with d~=dt/S)

r2
ds =QS(r) cdH—

1 —r /a
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The metric reads (L~ =Gfi/c3)

ds =ALz (1+2sinh ri)[dg —dx —sinh x(dO +sin Odyl)] .

Here we are using the geometric coordinates with r =a sinhx. We have also set

(3.10)

(n+ —, ) . (3.11)

The spacetime is nonsingular, and (of course) not flat because Race =a /S is nonzero. [The solution to Eq.
(3.8) with p and a set to zero, S=exp(v~) is a flat metric. ] What is more, at large epochs this universe mimics
the behavior

1

e,pp(t) = (n + —, )
8mP ' aS(t) (3.13)

ds =—2AL& sinh g[dg —dx —sinh x (dO +sin Odg )] .

I

This would be taken to be a radiation-filled universe
with the energy density (apparent)

(3.12)

ds =L~ A[x —(x —1)' cos2g]

&([dry —dx —sin x(dO +sin Odg )],
(3.20)

This leads to the concept of "matter without
matter, " wherein the quantum fluctuations lead to
the same kind of evolution as produced by matter in
expression (3.13).

Now consider the cases with p &0. We have
three models to consider depending whether the
background metric is open, closed, or flat.

(a) Open Uniuerse. The expansion factor is given

x =(p /2av) . (3.21)

It is clear that all the spacetimes are nonsingular
and "begin" with a minimum value for the expan-
sion factor. The classical limits are achieved by set-
ting a=0, when these expressions go over to the
corresponding classical solutions. The first two
solutions do not contain any other new feature.
However, notice that the third solution can exist
only when there is "sufficient energy density, " i.e.,

cosh(2vv)— p (3.14) p )2av . (3.22)

and the metric reads

ds =Lz A[(1+x )'~ cosh2g —x]

)&[dpi —dx —sinh x(dO +sin Odg )],
(3.15)

where

(Classically a=0 and hence a closed model can exist
with any energy density. ) Physically the conforirial
factor contributes a negative-energy density [as is
evident from the matterless open model (3.10)].
This feature is purely quantum gravitational in ori-
gin. The closed model oscillates between the bounds

x —(x —1)'~ (S(~)(x +(x —I)'i, x ) 1 .
x =(p~/2av) . (3.16) (3.23)

(b) "Flat" background. The corresponding ex-
pressions are

2

S (r)= +p 2, (3.17)

ds =L~ A

2

+p

X[c dH dr r(dO +sin O—dip )]—. (3.18)

(c) Closed model. This model exists only for
p & 2av. The expressions are

By the conventional procedure one can associate
the temperature T' cc E'~ for the radiation. Equa-
tion (3.23) implies that the temperature will have a
maximum and a minimum value. From the experi-
mental value of helium abundance one can set a
lower bound on T,„which will lead to an upper
bound on a. This is similar to the "bouncing
cosmologies" model suggested in a different con-
text. There is still a large degree of freedom left in
the choice of a.

IV. CONCLUSION AND OUTLOOK

2
Sz( ) P P

2v' 4v4

' 1/2
a cos(2v~), (3.19)

The present forraalism of quantum gravity arose
from an attempt to understand the question of
singularites. Since the initial investigations revealed
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the importance of quantum conformal fluctuations,
the forinalism was developed with the conformal
factor as the quantum variable. Two criteria must
be satisfied by such a model. (i) The solutions for
cosmological contexts must be nonsingular. (ii) The
classical limit must be preserved. We have now
demonstrated that the maximally symmetric solu-
tions of our theory satisfy these criteria. Thus the
formalism is theoretically consistent.

Can one do better than that? Are there any new
features in the formalism? We believe that two such
possibilities merit attention. These possibilities al-
low for the creation of the matter from the quantum
gravitational processes.

Notice that what we have presented is only a spe-
cial solution to the equations that assumes S co to
be a constant a . This allows, through Eq. (2.17), a
1/S dependence for e(t) It i. s possible that there
are other solutions in which e will start at zero, rise
to a large value, and start falling as 1/S . Such
models will involve a different quantum state for the
universe, but will demonstrate the creation of the
matter. While an analytic solution is difficult to ob-
tain, we give below a qualitative argument to show
what is involved.

Since such a model cannot accommodate a con-
stant a (and since a-0 corresponds to the classical
limit), let us assume

a=a) for g &g

=a2 for g & g .
(4.1)

We assume that the universe made a transition from
a quantum to a classical limit around ri=g, which
is taken to be close to zero (very early epoch). Cor-
respondingly, we expect a to be almost zero with
a~ &&a2. In a realistic model, of course, a(t) will
drop rapidly (but continuously) at g-g. By assum-

ing the universe to be an empty, quantum gravita-
tional spacetime for g & g and an open model with a
matter density p for ri&q, one can accommodate
the matter creation in the theory. Continuity of the
metric across g =sl leads to the condition

21+282=282, i.e. , 82
2' 2v

CX2V

2

The energy density for q & ri goes with time as

a S (t)
(4.3)
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Only an analytic solution (which would imply the
continuity of all derivatives of metric at ri=g) can
give more relations between p, ri, a2, and a~. Such a
model is feasible because (i) nontrivial matterless
solutions exist, (ii) a conformal factor provides a
negative-energy density.

A less esoteric method of producing matter is the
following. Let the universe start without any matter
content and expand because of the negative-energy
density of the conformal factor. This expansion will
lead to pair creation in the standard fashion. How-
ever, a universe at low-n states can have very high
curvatures producing a large quantity of matter.
This creation will lead the universe into one of the
matter-filled solutions (for a similar idea, in an en-
tirely different formalism, see Ref. 5).

Both the possibilities can lead to definite predic-
tions based on quantum gravity and are under inves-
tigation.
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