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A model for quantum gravity is presented by treating the light-cone structure of space-
time as classical and the conformal factor as a quantum degree of freedom. The motivation
and the details of the formalism are discussed. The approach is used to discuss the question
of singularities in the cosmological models. It is shown that one can introduce the concept
of stationary states for the quantum geometry, in analogy with the stationary states of sim-

ple quantum systems. The quantum stationary geometries (QSG's) avoid the classical singu-
larities. The light-cone structure is determined by a set of equations involving the expecta-
tion values in the QSG concerned. The cosmological implications of the formalism, espe-
cially to matter creation, Aatness, etc. , are discussed. The theory is conformally invariant in
the quantum level.

I. GRAVITY —CLASSICAL AND QUANTUM

Electromagnetism and gravity are the two long-
range classical fields. Maxwell's equations describe
electromagnetism while Einstein's theory of general
relativity is now taken to describe gravitation ade-
quately. However, classical physics is only a limit-
ing case of quantum theory. There exists a host of
experimental results (photoelectric effect, Compton
effect, . . .) which cannot be explained by classical
electromagnetism. On the theoretical side,
Maxwell's equations face problems of divergence
when applied to discuss the self-force of a charged
particle. Thus Maxwell's equations are inadequate
beyond a particular domain —both theoretically as
well as experimentally.

The problem was tackled by quantizing the elec-
tromagnetic field. Earlier attempts were successful
in describing the simple experimental results, but
failed (due to divergences) when higher-order correc-
tions were attempted. The problem was finally set-
tled by the development of "renormalizable quan-
tum electrodynamics" due to Feynman, Schwinger,
and Tomonaga. The theory, often heralded as the
most successful of physical theories, gives a
prescription for computation of observable quanti-
ties.

What is the situation regarding gravity? Is a clas-
sical framework adequate or do we require a quan-
tum version of the theory? Various considerations
seem to indicate the need for "quantization of gravi-
ty."

To begin with, classical gravity is bedevilled by
singularities, which shows an inconsistency of for-
malism. Powerful theorems, proved in the sixties,

almost conclusively rule out classical solutions to
the crisis. Conceptually —if not experimentally—
quantum gravity has become a necessity.

Cosmological considerations emphasize this need
further. Classical general relativity leads automati-
cally to the conservation of energy and momentum.
But conventional "big-bang" models require the
violation of energy-momentum conservation (at
least) at one event, conventionally identified with the
singularity. An extension of the theory, viz. quan-
tum gravity, is needed to give meaningful answers to
questions regarding the "creation of the universe. "

Quantum gravity may be required from a purely
operational point of view as well. When the matter
is quantized but gravity is not, it is difficult to find
a suitable generalization to Einstein's equations.
(There is even a claim that the simplest possible ex-
tension may not be experimentally tenable; see Ref.
6.)

The above considerations merely establish the
need for an extension of the classical theory of grav-
ity but does not indicate any specific framework (ex-
cept, of course, that the above problems must be
solvable). Classical gravity is conceptually very dif-
ferent from other classical theories inasmuch as it
plays the dual role of field and spacetime geometry.
This has led to different approaches to quantum
gravity which may be separated into two groups (i)
attempts that treat gravity as spacetime geometry
and proceed to "quantize the spacetime, " (ii) at-
tempts that treat gravity as a field in the flat-
spacetime background and proceed to quantize this
field. Unfortunately, both kinds of attempts lead to
difficulties.

In the former approach, one reduces the Einstein
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action to canonical forni and attempts some variant
of the canonical quantization. All the different
methods face a certain level of operational difficul-
ties, e.g., choice of variables, constraint equations,
etc. and one major conceptual difficulty, viz. how to
interpret a quantized spacetime geometry. The
structure of physics demands the concept of well-
defined spacelike, timelike, or null separation be-
tween the events (in other words, the light-cone
structure must be well defined). When all the metric
coefficients are treated as quantum variables, the
light-cone structure becomes "fuzzy" and undergoes
quantum fluctuations. (It is not possible to decide a
priori which two events are connected by a spacelike
interval, for example. ) Since the concept of space-
like hypersurface itself is ill defined, even posing the
problem of evolution becomes difficult.

One must also notice that this approach has not
led to a clear solution to the problem of singulari-
ties. Various authors have expressed different views
on this matter. s Also, the questions regarding the
big-bang singularity and creation of matter remain
unexplained.

The second approach to quantize gravity, treating
it as a field, is free from such conceptual difficulties
but suffers serious setbacks of purely operational na-
ture. The theory is perturbatively nonrenormaliz-
able and a nonperturbative structure is largely un-
known. Euclidean and lattice extensions of the
theory are also not free from ambiguities. ' (Two
recent forraalisms, that of supergravity" and "in-
duced gravity, "' however, show some promise. ) It
is even possible that the theory violates unitarity.
No modification of Einstein s theory —allowed
within the classical tests of gravity —is known that
is free from these objections.

We discuss in this paper an "in between" attempt
at quantum gravity. We believe that the failure of
the conventional approaches warrant the introduc-
tion of new physical assumptions. Classical gravity
plays the dual role of field and geometry. We
respect this duality in the quantum level as well and
use a foiiaalism which has the following feature. It
treats the "field aspect" of the gravity as quantum
mechanical and the "geometric aspect" as a classical
c-number entity. Various aspects of the formalism
and some of the results are presented below. A de-
tailed discussion of the maximally symmetric
cosmological solution is discussed in the following
paper. '

The theory presented here appears to be capable
of tackling the various questions which were raised
earlier. In some places we shall use operational as-
sumptions similar to those made in conventional at-
tempts. We wish to mention two of these assump-
tions before proceeding further.

The first one relates to the imposition of sym-
metries on the quantum dynamics. Consider, for ex-
ample, the homogeneous Bianchi cosmologies.
These cosmologies can be represented, at the classi-
cal level, by a set of functions of time. To find the
corresponding quantum theory one often treats these
variables as q numbers. This "quantization of a
homogeneous spacetime" is assumed to be the same
as a "homogenized version of quantized space-
time. "' One is forced to make this assumption be-
cause of the lack of complete knowledge about
"quantized spacetime, " in general. We shall also
resort to this assumption in our theory.

The second point is related to general covariance
of quantum theory. Investigations about quantum
fields, in curved spacetime and accelerated frames,
have indicated the observer dependence of certain
quantum processes. ' More precisely, though a
quantum-theory Lagrangian may be generally co-
variant, the details of the processes can depend on
the choice of time coordinate. One must notice that
this feature has nothing to do with even gravity (let
alone quantum gravity), and arises purely from the
dependence of conventional field theory formalism
on the choice of time coordinate. It is very doubtful
whether one can avoid this dependence in quantum
gravity (this dependence is noticed in conventional
approaches; see Ref. 16). There can also be a physi-
cal reason as to why such a dependence need not be
avoided. Loosely speaking, the quantum state of the
spacetime is going to be produced by a "measure-
ment" made by an observer. The setting up of the
clocks and rods for the observer is certainly an in-
tegral part of the measurement. Thus the quantum
state can very well depend on the coordinate system
chosen, especially on the choice of the time coordi-
nate. This problem is conventionally bypassed by
making a "natural choice" for the time coordinate.
We shall also resort to this operational technique
when the need arises. We would like to stress that
these two aspects are common to all approaches of
quantum gravity and have no specific connection
with our foririalism.

II. BASIC FORMALISM

The causal relationship between events is decided
by the light-cone structure. As we said before, we
will follow an approach which quantizes the field
aspect of spacetime geometry retaining the c-number
forinalism for the light-cone structure. What is this
field aspect? In other words, what degree of free-
dom remains in the metric tensor after the light-
cone structure is fixed? It is clear that two metrics
grk aild
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g;k =Q'(X')g;k (2.1) tion from a conformal factor Q&(x) at t& to Qz( x) at
t2 T. his is given by

will have the same light-cone structure. Thus the
conformal degree of freedom of the spacetime
geometry can be treated as a quantum variable,
without affecting the light con-e structure. We shall
treat Q as the quantum variable and treat g;I, as a c
number metric. This choice has two major addition-
al advantages. (i) The split up in Eq. (2.1) is general-
ly covariant. When the coordinate system is
transformed, Eq. (2.1) is retained as long as Q
transforms as a scalar and g;k transforms as a ten-
sor. (ii) As we will see below, the measure for the
quantum functional integral is well defined for the
conformal factor, removing one major mathematical
difficulty. This allows an exact solution for many
problems.

The physical interpretation of Eq. (2.1), of course,
has to be modified when Q is a quantum operator.
One should use a suitable expectation value (we will
discuss this in detail later) and write

(2.2)

The metrics in various quantum states are confor-
mally related to g;k and share the same light-cone
structure.

The transition from classical to quantum theory is
conventionally made by using Feynman's path-
integral approach. ' In the case of gravity one nor-
mally proceeds as follows. Suppose the spacetime is
foliated by a family of spacelike hypersurfaces
parametrized by the "time" coordinate t. The tran-
sition amplitude from a given three-geometry S

&
at

t, to 9'z at t2 is (postulated to be) given by

K(3$zt2, S&t&)= g exp —J
paths

(2.3)

d= f Rv —gdx

where J is the classical action for Einstein's theory
and the "sum" is over all metrics with correct boun-
dary conditions. One minor problem arises because
of the fact that the Einstein action J contains second
derivatives of the metric. To avoid this it is better
to use the Einstein action along with the Hawking
counterterm' in the form

K[Q2(x)t2,'Q&(x)t~]= g exp —J[Q]
Run

(2.5)

where J(Q) has the form'

J[Q]=- f (RQ2 —6();()')v —g d x+d
1 rr

(2.6)

(the surface term arising from the second derivative
of Q is canceled with the Hawking surface teria).
The sum over paths can be rigorously defined be-
cause of the quadratic nature of the action in Eq.
(2.6), provided J is also quadratic in Q. It is diffi-
cult to decide on a suitable foririalism for treatingJ, and each type of source must be treated
separately. We shall be mostly concerned with
sources which are conformally invariant (like elec-
tromagnetic radiation) for which J will be indepen-
dent of Q. There is a basic conceptual difference be-
tween Eqs. (2.3) and (2.5). Strictly speaking, Eq.
(2.3) is not in the proper form because the three-
geometry S carries the information about the time
coordinate as well (at least in a wide class of mani-
folds; see Ref. 1, Chap. 21). Thus there will be cases
in which it is inappropriate to add the time labels
separately. However, in Eq. (2.5) we consider the
conformal part as a scalar degree of freedom, which
cannot "carry" any further inforniation. Thus the
time labels in Eq. (2.5) are quite necessary. This is
only a technical distinction because, in the future,
we will be concerned only with the developments
based on Eq. (2.5).

We also have to deterrgiine the equations satisfied
by the metric g;k. This is done as follows. We
quantize the conformal factor Q in an arbitrary
background metric g;I, . Once this is done, one can
calculate the expectation values (Q ) and (();QO'Q)
in the quantum state of the system, which will allow
one to treat the action J as an effective action for
the classical background as

I ft= f (R(Q2) —6(fl'(), ))v' —g d4x +{X

+ f Xv+6 d x+7 (2.4) (2.7)

where K is the trace of the second fundamental form
induced on the boundary Bv, hz„ is the induced
metric on the surface, and J is the matter action.

In our fornialism the quantum geometries can
differ from g;I, only in the conformal factor. Thus
one can ask for the probability amplitude for transi- 8~GT;k + (g k U ——V; Vk ) ( Q ), (2.8)

The variation of this action with respect to the
metric g I, gives the equations for the "background"
metic gg 3,S

(Q ~(& k
— gk&)+«.k

1
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III. STAGE ONE —QCF IN
A SINGULAR SPACETIME

Classical gravity gives adequate description up to
length scales of the order of 10 cm. Thus we ex-
pect QCF to be significant only near the strong
gravitational field regime, especially near singulari-
ties. The physical concept of QCF can be illustrated
nicely by considering a radiation-filled spacetime.
Such a spacetime (homogeneous, isotropic, radiation
filled) has a metric

I

ds'=(Q'(t))S'(t) dt' dr
1 kr—

where

tk = —(n;Qk)+ —g;k(n, n )

and V; represent covariant differentiation with
respect to x'. The quantization has to be perfornied
in a given metric g;k, which in turn depends on the
quantum state via Eq. (2.8). It is clear that we are
involved with a complicated set of coupled equa-
tions whose consistent solutions will deterinine the
nature of quantum geometries.

We shall now proceed to discuss various aspects
of this fornialism, especially in the context of quan-
tum cosmology. In order to make headway with the
equations we shall proceed in three stages. First of
all, we shall treat the metric tensor as a given classi-
cal solution and study the effect of quantum confor-
mal fluctuations (QCF) in this spacetime. This cor-
responds to neglecting the back reaction of QCF on
the metric g;k. We shall show that near any singu-
larity of g;k, the QCF diverges. Thus the back reac-
tion cannot be neglected near the singularity and one
has to use the full foiinalism. In the second stage,
we shall study the nature of quantum states, which
are important near the singularity. In the last stage
we discuss the self-consistent solutions for some
simplified cosmological models. A full discussion
of homogeneous, isotropic universe is presented in
the accompanying paper. '

The evolution of QCF is determined by the kernel

K[nzt2, Q]t] )

l
t exp ~—

x f dtS (t)fl V

(3.3)

We have used Eq. (2.6) and the facts that (i) R is
zero for the given metric, (ii) J~ is independent of Q
for the conformally invariant radiation field. We
have written

r dr
V =4m

(1 kr )'~— (3.4)

im «2 —ni)'
K[nz, n]]=F(1.$7.])exP

A'z 72 T]

where F is an arbitrary function, and

3V '2 dt
8m.

' '] S2(t)

(3.5)

(3.6)

To understand the physics behind this kernel, con-
sider how it propagates a wave function P(n]) in
time. We shall assume that the wave packet was a
Gaussian with the classical mean ( Q ) = 1 and a
given dispersion. That is,

1/4
1

2770
exp

(Qi —1)
4o.

(3.7)

for the region of space under consideration. (In the
case of a closed model this can be taken to be the to-
tal volume of the universe; otherwise one can limit
at the particle horizon. Our main results are in-
dependent of this choice. ) This path integral can be
easily evaluated' to give

—r (d8 +sin Odg ) (3.1)
The wave function at any other time t2, found by in-
tegrating

Here we have already imposed the assumptions of
homogeneity and isotropy on Q(x') and have made
it a function of time alone, in accordance with the
discussion in Sec. I. The expansion factor S(t) has
the classical value

S[]t (k =0),

1/2

I fin t ) I'=
2no(t2)..

(Q2 —1)
2o. (tz)

exp

tft[f)2 22] fdf)tf [f)222;f)=222]2(2[f)2] (3.8)

is given by

S(t)= Sosint (k =+ 1),
Sosinht (k = —1) .

(3.2)

where

(3.9)
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o (t2)=o (ti) 1+2 = 2

4m o (ti) '] S (t)
L

2

(3.10)

where J is the classical value of the action. ' By a
straightforward but lengthy analysis one can express
the classical value of the action J in terms of G (x,y)
as (see Ref. 19 for details)

Substituting the forin of S (t), we get

2 2 fi 1 1
cT2 =oi 1+

4m'o, 4 S,4
(k =0)

d f=f A, , (x„x,)A, (x~)(),, (x, )d3x, d~x,

+ 22 X2~ X2 2 X2 2 X2 X2 X2

+2f f d»(x„x,)(),,(x, )(),,(x,)d'x, d'x2,

=oi 1+
4m'o, 4 where

(3.14)

(cott2 —cofti )
1 2

S[]'

=o] 1+.
4m 2O-, '

X (cotht2 —cothti) (k = —1) .1 2

S[]'

A]](x]x] ) =

222( X2X2) =—

—g) X2 X2~XI

X G(x2xi),
ti

—g2 X) X, X)

X G(x2xi),
t2

(3.15)

ClG+ —,RG =5(X,Y)( —g) (3.12)

Assuming that the source terin J~ is also quadratic
in 0, one can perform the path integration and ob-
tain

I(). [/2, /i] =y'exp —J[/2/i] (3.13)

(3.11)
One major feature is common to all these disper-
sions: they diverge as t —+0. In other words, the
wave function becomes more and more delocalized
and spread out as the singularity is approached.
Since the mean value of a distribution has a meaning
only when the dispersion is finite, one can conclude
that the classical solution ceases to have any signifi-
cance near the singularity. The classical evolution,
so to say, is drowned in the sea of quantum
geometries. One can no longer neglect the back re-
action on g;k via Eq. (2.8). Near the singularities,
the full equation must be considered.

The question may arise as to whether the result is
sufficiently general or whether it is a consequence of
the particular symmetries that are present in the ex-
ample. Though one can easily show that the result
extends to various other simple systems, ' a general
proof would be comforting. Such a proof, indeed,
can be given provided one can get a handle on either
the source term J or on the form of the metric
near the singularity. We shall briefly indicate the
line of proof below (see, for details, Refs. 19 and 20).

Consider the Green's function associated with the
classical variational equation, for the action in Eq.
(2.6),

A]2(xi, x2)= G(xix2)

In the above equations we suppressed the time coor-
dinate and indicated by G ' the inverse of the
Green's function G.

When the kernel is used to propagate the wave
functional (since 0 now can depend on the space
coordinates) by the equation

p[Q, (x)] fu(), , [x=]K[A,(x)t, ;Q, (x)t, ]

Xg[Q](x)], (3.16)

it is the "cross term" A ]2 of Eq. (3.14) that retains
the "memory" of the initial state. Thus the final
state will have total uncertainity about Q2 if Biz
vanishes at some event. In other words, the disper-
sion will diverge at the singularity if the Green's
function diverges at that event.

If one assumes that the source consists of dust [a
slightly modified formalism is required with (0—1)
replacing 0; see Ref. 19], one can prove this fact by
considering the conforirial invariance of Eq. (3.12).
If no specific form is assumed for the source, it is
necessary to use a sufficiently general foriri of the
metric near the singularity. Such a metric is given
by Belinskii et al. One can explicitly solve for the
Green's function near the singularity and demon-
strate the divergence.

Either way, it is clear that QCF diverges near the
classical singularity neccessitating the use of our full
formalism. In other words, the classical metric
which is obtained by neglecting the back reaction of
the conforinal fluctuation terms in Eq. (2.7) is not
valid near the singularity.
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IV. STAGE TWO —QUANTUM STATIONARY
GEOMETRIES

Classically, a radiation-filled Friedmann universe
is described by a single function, S(t). This goes to
zero at t =0, making the spacetime singular. How-
ever, we have just now reasoned out that the classi-
cal picture is not valid near t =0. What kind of
quantum states are relevant to our problem?

An analogy might be helpful. Consider the elec-
tron in the hydrogen atom. Classically, it is
described by a function q(t) that spirals down to the
singularity. But quantum mechanics avoids this dif-
ficulty by introducing a set of well-defined station-
ary states. The quantum uncertainty prevents the
electron from reaching the origin and provides a
well-defined ground state. Can this analogy be used
in the case of the collapsing universe? A simple ar-
gument shows that it may be possible. Consider the
metric of the collapsing universe with the quantum
corrections (0 ). This correction has the effect of
replacing S (t) by

where we have made the substitutions

3 acq=aQ, M= —ir

L
(o= —,V= d xV' —g .

a

(4.5)

5J=O q(t)=qpsinrot (4.6)

(with a suitable origin for time). This gives the form
of solution for the classical radiation-filled model, as
it should. The quantum dynamics, of course, can be
analyzed by calculating the path-integral kernel.
But since we are now interested in the stationary
states of the system we shall go directly to the
Schrodinger equation, which reads

BP fi 8 P (4.7)
t 2M gq2

This is just the action for the hai irionic oscillator of
frequency to. The classical solution is

S,ff —(0')S (t) =[1+o'(t)]S'(t) .

It is easy to see that near t =0
(4.1)

Incorporating the extra minus sign into the "energy"
(which has no physical meaning in our case), we can
write the solution

ds2=(g ) c dt
dl'

1 —r2/a 2

—r2(d8 +sin Odg ) (4.3)

2

S,fr (t)—
4m Sp a (ti)

In other words, S is bounded from below by a pure-
ly quantum-mechanical term, which provides, in
some sense, the "ground state for the geometry. "

This suggests that one should look at the station-
ary states for the quantum geometry, rather than the
kernel. Given the action for the system one can at
once write down the Hamiltonian. However, as long
as we treat S(t) and Q(t) separately, the Hamiltoni-
an will contain S(t) and will be a function of time,
excluding the existence of stationary states. (More-
over, we will still be "tied" to the classical solution. )
In order to tackle these difficulties, we shall treat
the overall conforrnal factor as the quantum vari-
able, and consider the metric to be

(4.8)

P„(q)=(2"n!)
1/4

n 9'
Mto

1/2
Mcoq

exp
2

where H„is the Hermite polynomial,

(4.9)

d hg

H„(y)=(—1)"e~ e (4.10)

2
377

2

(n+ —, ) . (4.11)

Thus the stationary states of the quantum geometry
are the same as the stationary states of a harmonic
oscillator. In particular, the conforiaal factor has
the expectation value

4 g2J= J Ch(Rfhh 6fh')—
16m.G

f2= ——,'M f Ch(g' hhh gh), —(4.4)

(we have switched over to normal units; note that Q
is dimensionless and r and a have dimensions of
length). The action governing the conforuial factor
1S

Qbviously the classical collapse cannot proceed all
the way and must stop at the lower bound,

r '2

(4.12)

The spacetime geometry (when the universe is in the
nth stationary state) is given by
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2 2 2 2ds =(Q )„cdt —
2 2

r—(dB +sin Bdg )
1 r —/a (4.13)

=L& {n+—, )[drl dg— si—n g(dB +sin Bdg )] . (4.14)

With this we have completed the analogy between
an electron in the hydrogen atom and the collapsing
universe.

There remains the question as to what the present
quantum state is of the universe. In other words,
how can one go from Eq. (4.14) to the classical lim-
it? Mathematically speaking, the problem is the
same as that for any harinonic oscillator, say, a bob
oscillating at the end of the string. The classical
limit can be achieved by postulating that it is in a
large-n stationary state, or in a coherent state of the
haiirIonic oscillator with the probability func-
tion

~
g(q, t)

~

=N exp — (q —qosincot)2= Mco 2

In the latter case the metric has the form
r

dsz= qo2sin g+ Lp3~

(4.15)

X[dg —dX —sin X(dB +sin Bdg )],

(4.16)
which again has the same lower bound.

The above mathematical answer does not, howev-
er, really help one to decide the quantum state of the
universe. This conceptual problem is related to the
question of what is meant by a measurement of the
state of the universe —since it is the measurement
that produces the state. Notice, however, that we
have not yet used the "back reaction" equation to
deterrlline g;k. This will put some restiiction on the
wave function %{q,t) but the basic problem must
await a conceptual advance for its solution.

We have solved the quantum dynamics of the
radiation-filled universe exactly. How does the in-
troduction of some extra matter affect the system?
For example, can an addition of a part in the action,
represented by

J;„,=Vf dtp(tl, (4.17)

cause transitions between energy levels?
Notice that since the length scales associated with

the universe is —10 cm and Lz —10 cm, the

quantum states have

an=, =10'". (4.18)
Lp

If the proper length scales in a region of size L
change because of a transition from n to m, we have

m —n

Pl
(4.19)

Even if one assumes that &L /L —10 ' are ob-
servable, we need transitions by

m n= 1—0 &( 10' —10' (4.20)

This requires the p(t) to vary extremely rapidly. In
fact, it must have significant Fourier components at
frequencies of the order of

v=co(m n) =——(m n)-—10s3 Hz . (4.21)
a

[For comparison, v(-p/p) of matter in the early
universe is of the order of unity. ] One can be
reasonably sure of the stability of stationary states as
far as macroscopic astrophysics is concerned. Of
course, at the microscopic level, length scale transi-
tions are taking place all the time. Even an ultra-
low-frequency variation of —10 ' Hz is enough to
cause transitions of the order of b,n —1. Since no
energy distribution is stable to this order, we have to
conclude that definite lengths cease to have any
meaning at around the Planck length.

This structure of "spacetime foam" can also be
arrived at in a different way. One can consider the
conforriial fluctuations around the flat-space back-
ground, using the action

f d x(Q;t)') . (4.22)

By standard analysis, ' ' one can construct the
ground-state wave functional that will give the prob-
ability distribution for finding various confoi-iridal
factors in the flat vacuum; which turns out to be

r

@[Q(x )]=N exp
1

Sn. LP

((t.-„Q)(Vyt))
X d xd

i
X—Y(2

(4.23)
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As one can see, rapid variations are possible at the
Planck length scales.

Before concluding the section we would like to
make a comment regarding the concept of stationary
states in other models of the universe. In particular,
one can talk of stationary states for degrees of free-
dom other than the conformal degree of freedom
(though it is against the spirit of the present discus-
sion, it is helpful to understand the mathematical
structure of the theory). For example, the homo-
geneous Bianchi universes can be described classical-
ly by the action

(4.24)

e3A[6$ (P 2+P 2)]+e3ARQ+L

(4.25)

Here the metric is given in teriiis of the variables
(p) p2~) by

ds =dt g;k(t)o—b

g k(t) =e"(e '
) k .

(4.26)

The one-forms cr' satisfy the commutation rules

[o akI=c a(~j (4.27)

with cJ;k being the structure constants of the isotro-
py group. One can study the wave functions of the
stationary states g(P&, P2, A, ) in exactly the same way
as before. It turns out that these wave functions
vanish at the classical singularity thereby leading to
zero probability for its existence. The same result is
true for the simplest case of an interacting field as
well.

This concept of stationary states can also be ar-
rived at from a superspace analysis. The superspace
is the space of three-geometries modulo coordinate
transformations. One can introduce a metric in the
space of three-geometries and write an action

V. STAGE THREE—SELF-CONSISTENT
SOLUTION

We have now obtained the stationary states for
the confoiiiial factor. But two features of this solu-
tion point to an incompleteness. (i) In Eq. (4.3) we
have assumed a form of gik which is again "God-
given. " (ii) In Eq. (4.5) we have obtained the classi-
cal limit without any reference to the source
strength. In fact, the source is completely eliminat-
ed from discussion because of conformal invariance.
In order to justify the choice of the background
metric, we have to solve the complete set of equa-
tions, and prove the consistency of the formalism.

Let us consider again the spacetime presented in
the previous section,

ds =(g2) c dt
dr

1 —r /a

—r (d8 +sin Odg ) (5.1)

Suppose the spacetime is in the nth stationary state.
Since the Harniltonian corresponds to that of a har-
monic oscillator, we have the results

r

(n') = 1(n+ —,), (5.2)

1(n+ —, ) . (5.3)

of spacetime geometry in terriis of a classical metric
by a description in teiiiis of quantum stationary
geometries. This should allow us to discuss the
behavior arbitrarily close to a singularity. However,
one task remains: even in this section we have as-
sumed a particular form for the "background. " It
remains to be shown that this form is consistent
with our "back reaction" equation.

J= f „„6+fRdl, .

Here A, B stand for a pair of indices, and

(4.28)
The metric g;k has to satisfy the equations, see Eq.
(2.8),

(0 )(R'k ——,5'pR)+6t'k
1

GAB =G(ij)(lm) 2 (gilgjm +gimgjl gij glm ) ~ 8~G+li+(+k+ V Vk)(n ) (5.4)

R=g( R),
(4.29)

(4.30)

where R is the three-curvature of the surfaces of
homogeneity. By considering the same action to
govern the quantum gravity, one can formulate a
path integral in the superspace. ' This analysis
leads to the same results as before.

To summarize, we have replaced the description

Since (0 ) is independent of time in a stationary
state, the second term on the right-hand side van-
ishes. For a homogeneous, isotropic spacetime there
are only two independent equations in the set (5.4).
These may be taken to be the trace equation and (00)

component equation. The trace equation leads to

(0')co'= (0'),
which is identically satisfied in the stationary states.
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(5.6)

3 Pic (n+ —, ) .
8m' a' (5.7)

We get the interesting result that energy density is
quantized if the quantum gravity equations are to be
consistent. Notice that this result is obtained
without using any form of quantization on the
matter variable. Classical gravity can lead to the
classical dynamics of the source in a natural fashion;
can quantum gravity lead to at least some features
involving the quantum dynamics of the source'?
Such an attractive possibility is suggested by Eq.
(5.7).

In this particular example, the conforraal invari-
ance of the source simplifies matters considerably.
Hence it is important to see whether the results are
valid for other types of sources. The analysis can be
repeated for other types of sources. If we take the
source to consist of dust with the energy-momentum
tensor

r'„= ( 1,0,0,0),
we still obtain a quantum condition

4

n. G a

(5.8)

(5.9)

which shows that conformal invariance is not an
essential ingredient of this feature.

Thus we have produced a static, self-consistent
solution to our coupled quantum-gravity equations.
This completes the logical structure of the formal-
ism. In order to explore further, one has to consider
the solutions to Eqs. (2.5), (2.6), and (2.8) under vari-
ous circumstances. The complete solution, in the
case of a maximally symmetric cosmological model,
is given in the following paper. ' Here we shall con-
sider some general features of the equations.

The equations differ from Einstein's equations by
the extra terms which involve the derivatives of Q.
Since Q and Q are going to become canonically re-
lated variables, one expects nontrivial values for
(Q ) and (Q;Qk) in any state. (By choosing sta-
tionary states, one can avoid the derivatives of
( Q ).) We see that t;k, which is based on the expec-
tation values of the form (Q;Qk ), has the structure
of the energy-momentum tensor for a negati Ue

energy scalar field. This leads, in a qualitative way,
to two possibilities. First, the solutions of these

The (0) component equation, however, is nontrivial,
giving

r

(Q') — — —3(Q') +8~Ge=0,
2 a2 a2

equations could be nonsingular because of the
predominance of the negative-energy field over
matter near the singularity. Second, notice that the
energy-momentum tensor of matter T'k is no longer
conserved. Only the combination of t;k and T~k to-
gether is conserved. This allows for the possibility
of matter creation at the expense of gravitational en-
ergy. Since the result is important only near singu-
larities, macroscopic energy-momentum conserva-
tion is not violated, within observable limits. [Simi-
lar ideas for creating the matter have been proposed
before, (see Ref. 30), but the formalisms are entirely
different. ]

The equations also lead to another interesting re-
sult, which goes to confirm the above view. A flat
vacuum metric is a perfectly valid (though trivial)
solution to the standard classical Einstein equations.
However, stationary-state solutions with flat
(g;k

——rI;k), vacuum (T~k =0) conditions do not exist
for our equations (2.8). In some sense, quantum
conformal fluctuations lead to the creation of
matter, which may be interpreted as the "creation of
the universe. "

Such an interpretation of big bang leads to a more
concrete prediction. One can consider the probabili-
ty amplitude for the transition from flat space to a
maximally symmetric universe. Since the maximal
universes are all conformally flat, this question can
be easily analyzed in our formalism. It turns out
that this probability is a maximum for the flat
Friedmann model, with zero curvature for spacelike
hypersurfaces. This could be a purely quantum
gravitational solution to the flatness problem. '

VI. CONCLUSION AND OUTLOOK

There are two aspects of the general formalism
which we would like to point out. Notice that our
basic equation (2.8) is conformally invariant. How-
ever, we have conformal invariance at a much
"better" level than what is usual. In standard con-
forraally invariant theories of gravity involving a
scalar field and a metric (P and g;k, say) the equa-
tions will be invariant under the transformation

g;k f g;k 4 0f2 —1 (6.1)

However, P has no direct role to play (in standard
theories) in the spacetime geometry. Thus, from the
very definition of the confornial transformation
(g;k ~f g;k), the spacetime geometry is not invariant
under the transformation. (After all one can go
from flat space to a closed Friedmann model by a
conformal transformation. ) Thus in conventional
approaches "conformal invariance" is restricted to
the form of the equations alone (as an example, see
Ref. 33). However, in our model under the transfor-
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mations

(6.2)

not only the equations of motion but also the space-
time interval remains invarian. , i.e.,

ds = (II )gtkdx'Ck"= (I)t )gt'kdx'dx" . (6.3)

Thus the theory, at the quantum level, is truly con-
formally invariant. In this sense the similarity of
the equations with those in the conformally invari-
ant theory of Hoyle and Narhkar is noteworthy.
Nevertheless, the significant difference pointed out
above (that 0 is part of spacetime geometry) must
be kept in mind.

This conformal invariance is broken when the
choice is made for the quantum state of the
universe. As we have remarked earlier, the "mea-
surement made by the observer on the universe"
(whatever that means) causes this breaking of sym-
metry. In a given "conformal frame" so chosen, we
will get Einstein's equations in the classical limit,
when (O'Qk) can be neglected. This term cannot
be neglected near the singularity and hence we get
the nontrivial quantum aspects of the theory. In
this way, the formalism is similar in structure to at-
tempts that treat gravity as a low-energy effective
Lagrangian theory. '

As regards the creation of matter from the
negative-energy term, the theory is reminiscent of
the steady-state models for the universe. " However,

there is one major difference. The 0 field arises
from quantum theory and does not require the intro-
duction of an ad hoc "coupling constant" to matter.
Moreover, a natural dynamical equation for the con-
formal factor is available in the form of the quanti-
zation prescription. (This also helps one to have the
right number of equations. ) Above all the negative-
energy field is not an extra structure but an integral
part of the geometry.

It will be noticed that the transformation from 0
to a P by the substitution 0 =GP will eliminate
the Newtonian constant of gravity, G, from the
equations. In the stationary state 0 always appears
with a (constant) scaling freedom. It is not clear
whether G can be predicted by the theory and, if so,
whether it evolves in time.

We have presented here an approach to quantum
gravity which seems to show promise It. is rather
unfortunate that the formalism is very different
from conventional ones, making it difficult to com-
pare the results with other approaches. Evidently
three tasks remain to be achieved. (i) Connect up
this approach with other formalisms of quantum
gravity so as to compare and contrast the results.
(ii) Consider the solutions to quantum gravitational
equations under more general conditions. (iii) Pro-
duce a formalism in which the matter variables can
also be treated (more realistically) as quantized. All
these aspects are under investigation.
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