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Strong-coupling quantum gravity. II. Solution without gauge fixing
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The quantization of a strong-coupling limit of general relativity begun in a previous paper
is continued. The theory is quantized without fixing a gauge since in this form the problem
of properly taking into account the gauge degrees of freedom can be directly attacked in the
perturbation theory. The formalism of the scattering theory on R)&SL(3,R)/SO(3) is
developed with strong use made of analysis on that space.

I. INTRODUCTION

In a previous paper' (to be referred to as I), a
strong-coupling limit of gravity was quantized in a
fixed gauge. The chosen gauge simplified the
mathematics in the quantization, and clarified the
connection between the strong-coupling limit and
earlier work on quantum cosmology. In addition,
the gauge-restricted theory has an appealing geome-
trical interpretation. However, this gauge is not
convenient for use in the further development of the
strong-coupling theory; in particular, the proper
contribution (if any) of gauge-fixing ghosts cannot
be reliably computed yet. In the present paper a
strong-coupling formalism is developed in which all
components of the metric are quantized. There are
gauge degrees of freedom included among the g;j,
but the proper way of taking this into account will
not be discussed and the content is largely formal.

The strong-coupling limit of general relativity
considered here is obtained by taking the Hamiltoni-
an generator

G" m'4. "'—ir ' ' RZ
=Kf jikl'7l 'lT —K g

1

Gijk! p (gikgj! +giigjk gij gk! )

(g= detg;J, R =scalar curvature of g;j,
=conjugate to g;j, and ir=16~G/c ), and replacing
if by

—1/2 ij klPC p —g Gijkirr rr

The idea of looking at this limit as a basis for quant-
ization (in addition to much of the point of view
adopted in the present paper) seems to have been
first put forward in Ref. 2.

This strong-coupling limit is characterized by the
ultralocality of the dynamics, i.e., in this limit the
terms in the full Hamiltonian containing the spatial
derivatives that couple the dynamics at different

spatial points have been eliminated. The light cones
have closed up to become lines, and the causal struc-
ture of the theory is trivial. The quantization of
(1.1) is to be used as the starting point for a pertur-
bation theory with perturbation potential g'/ R.

In a strong-coupling quantization the metric
operator must be quantized as a whole without being
divided into background plus perturbation. The
positive definiteness of the metric operator g;j leads
to the consideration of the variables

2(gil~ I+~ igj!) 1The. se va6ables generate the
action of GL(3, R) on the space of g;J's. There is an
invariant metric on this space, namely G;jki, and this
metric has signature ( —+ + + + + ). The signa-
ture of the metric implies that there is one "time-
like" coordinate among the g,j's which is found to
be

1r= —, lng, (1.2)

and its canonical conjugate (a timelike, hypersurface
orthogonal Killing vector) is

77 7Tg ~ (1.3)

Pj ——m.j.——,5!m, P =0, (1.5)

satisfying

Ig;,.(x),P!"(x')I = , (gi; P,"+gi,P;" —, g;,P!")5(x,x')—, —

(1.6a)

IP (x),P! (x')
I
= , (Pi5j Pj 5I )5(x,x—') . —(1.6b)

Factoring these timelike variables out of the g;j, m.!
leads to the consideration of the symmetric space
5=SL(3,R)/SO(3) parametrized by

gij e gij ~ detgij = 1

with
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The variables (1.5) generate the action or SL(3,R) on
S with (1.6b) being the bracket relations of those
generators.

In terms of these variables the generator (1.1)
takes the form

(1.7)

Notice that {Pi,PiPJ] =0, i.e., P&Pj corresponds to a
Casimir invariant on sl(3, R) [the Lie algebra of
SL(3,R)], and PjPJ is directly related to the
Laplace-Beltrami operator on S. ' The Poisson
brackets (1.6) imply that (1.7) is not the Hamiltonian
for a linear field theory, and, in fact, it is only as a
result of its ultralocality that a quantization of (1.7)
is possible. The quantization of nongauge, ultralocal
field theories has been accomplished by Klauder,
and we apply his methods to general relativity.

The full metric contains gauge information as
well as the dynamical degrees of freedom. The
problem for ultralocal quantization is to find the
proper method of eliminating the contributions of
the gauge modes. For weak-coupling quantum field
theory the most convenient way of doing this is to
introduce ("probability eating") ghosts. These
ghosts are needed to guarantee the unitarity of the S
matrix, and the form of the ghost interactions can
be derived from this requirement. ' The space-
time S matrix is not relevant in strong-coupling
quantum gravity, and the proper method of elim-
inating the effects of the gauge modes in ultralocal
gauge theories needs to be discovered. The most
direct method of doing this (i.e., the method requir-
ing the fewest prejudices) is to quantize the theory
ignoring the need for ghosts, develop the perturba-
tion theory, and then see how it needs to be modified
in order to give physically acceptable results; that is,
we want to follow the spirit of Feynman's original
discovery of the need for ghosts in weak-coupling
gauge theory. The present paper provides the
preperturbation quantization of the strong-coupling
theory with all components of the field present.
From this first step the discovery of the strong-
coupling analog of gauge-fixing ghosts may begin in
the perturbation theory. The need for quantization
without explicit gauge fixing is reinforced by the
difficulty in expressing the perturbation potential
g'~ R in terms of the dynamical degrees of freedom
for the gauge used in I.

The paper is organized as follows. In Sec. II the
Hilbert space and basic field operators are intro-
duced. Section III gives the Hamiltonian operator,
and the scattering formulation of the perturbation
theory is discussed. The paper ends with a discus-
sion of the results. In addition to the main body of
the paper are two appendices, the first giving a rep-

resentation of the generator of coordinate transfor-
mations on the Hilbert space given in Sec. II, and
the second deriving the form of plane-wave states on
RXSL(3,R)/SO(3). Throughout the paper the coor-
dinate label x represents a point in a coordinate
patch on a compact, three-dimensional manifold.

II. FIELD REFRESENTATION

{v)r', vri j = , (~i'5j —m~5i)—, (2.2)

where factors of 5(x,x') have been suppressed, and
will continue to be suppressed. The choice of vari-
ables ~j is made in order to be consistent with the
positive definiteness of g,j.

We mentioned in the Introduction that it is con-
venient to decompose these variables into

~= —, lng, (2.3)

7Lj=~ Lj i

i i & iP =m — n.5—J J 3 J

which satisfy

{r,m [=1,
{~,Pj ] = {m„PJ ] = {m. ,g;j ] =0. ,

k & — k — k 2- k
{g&j~Pi ] 2 (gli5j +glj5i 3 gtj51 ) ~

{P',P j = —,(P'5. —P 5') .

(2.4)

(2.&)

(2.6)

(2.7)

(2.8)

(2.9)

(2.10)

It is this set of fields (2.3)—(2.6) that we will
represent as quantum operators satisfying the com-
mutation relations associated with (2.7)—(2.10).

We define the Hilbert space" H by starting
with Pock creation and annihilation oper-
ators A (x,Q, y;j) and A(x, Q, y;&) and a fiducial
state

~
0) of unit norm satisfying

[A(x,Q,yj),At(x ', Q', y'j)]

=5(x, x ')5(Q, Q')5(yJ. ,yj),
[A,A] = [A t,A t]=0,
A(x, Q, yj) i

0) =0,
(2.11)

(2.12)

where Q C R and y,j is a symmetric, positive-definite

As discussed in the Introduction, and, more exten-
sively, in I, the classical fields that are to be
represented as quantum operators are the three-
dimensional metric g;j (signature + + + ) and ~j,
the generators of GL(3,R). These variables satisfy
the Poisson brackets

k & k k
{gij ~l ] (gli5J +glj5i )
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matrix of unit deternunant, i.e., a point of the
symmetric space SL(3,R)/SO(3). The Hilbert space
H is the closure of the span of the set given by linear
combinations of arbitrary powers of A acting on

An overcomplete set of states (i.e., a set such that
the closure of its span is H, but not all elements of
the set are linearly independent) for H is determined
by

(f) —=exp ——,f (f (
dxdQ dy exp fdxdQ dy f(x,Q,yz)A((xQyj) , (0) . (2.13)

The c-number function f ( x, Q, y;z ) is taken to be
square integrable in the measure dx dQdy with dy
being the measure on SL(3,R)/SO(3) induced by the
Haar measure on SL(3,R) (see Appendix B). The
first exponential in (2.13) guarantees that

~ f ) has
unit norm. Denote by I the space of functions f.
This space is itself a Hilbert space and (2.13) pro-
vides a mapping from I to an overcomplete subset of
H. The states

~
f ) are eigenstates of the operator A,

A(x, Q, yj) i f )j=f(x,Q, yj) i f )j, (2.14)

and the inner product of any two of these states is
given by

where

(f f') fdx dQ dy=f'f',

(2.15)

ee(x) —i f dQ dyB"= B, (2.17)

(rj(x) fdQdyB yJB=,

Pj ( x ) if dQ da B=(p' —p' )B

with

(2.18)

(2.19)

pj =yjl
il

(2.20)

8(x, Q, ;y)j=A(x, Q, y)(j+C( Qy; )j. (2.21)

The c-number function C(Q, y,z ) in (2.21) is taken to

and
~ ~ ~ ~

is the associated norm. H is the space on
which the field operators act, but when discussing
the dynamics of the theory it is more useful to work
with l.

The representation on the space H of the field
operators is ' '

r(x) fdQdyB)(x, =Q, yxi)QB(x, Q, yeq),

(2.16)

be real, and it satisfies

f Ce(Q, y, )dQdy= (2.22)

It is easy to check that (2.16)—(2.19) satisfy the
commutation relations assocated with (2.7)—(2.10)
[use needs to be made of the identity

ykl — (~k~!+~1~k ykly )]
(J

The translation (2.21) of the operator A by the
non-square-integrable function C implies that the
operators 8 are unitarily inequivalent to A. "'
This translation is necessary to ensure the unique-
ness of the state

~
0), the irreducibility of the com-

mutation relations, and that the spectrum of the
field operators is continuous. ' If two different
operator representations (2.16)—(2.19) are formed by
translating A by two different functions C and C',
then the two representations are inequivalent if
C —C' is not square integrable ' (if three-space is
not compact then the representation for different
C*s are always inequivalent). The function C thus
determines the representation, and, as we shall see,
determines a potential term in the Hamiltonian.
Note that the relation

(2.23)

establishes a close relation between
~
0) and C

through the action of the operators (2.16)—(2.19).
There are several ways to restrict the choice of C.

The most important restriction comes from the fact
that the functional form of C determines a contribu-
tion to the Hamiltonian operator (this results from
the requirement A p ~

0) =0, see below). If A p is to
transfoiirI under coordinate changes as a scalar den-
sity, then this C-dependent part of A p must corre-
spond to a cosmological constant. This implies that
C must be an eigenfunction of the operator
b,s —8 /BQ, where h~ is the Laplace-Beltrami
operator on S. A result of this requirement is that
the operator A p commutes with ~ which means that
the dynamics generated by A p are conformally in-
variant since vr generates conformal rescalings of the
metric g,j
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[e gj(x)e
i—ji((x,')yy{,x')dx' i f i((x')m(x')dx'

e —3k(x)g (x ) )

In addition to the restriction resulting from A o be-
ing a scalar density, one can impose other, less well-
motivated, conditions on C. For instance, (2.23) es-
tablishes the connection between C and the "ground
state"

~
0), and it might be natural to assume that C

is Q-time independent. A different restriction is
that C be such that A;

~
0) =0. This is discussed in

Appendix A where it is found that this implies
C=e 9+f . A final possible restriction is to force
A o to be the conformally covariant wave operator
on R&&S. The scalar curvature on R)&S is a constant
so this can be done consistently with the restriction
that ~o be a scalar density. None of these possible
restrictions on C is compelling; so below we make
the simplest possible choice, C = 1.

The choice of C should ideally be such that the
field operators are well defined. For example, if C is
too singular, then it is easy to see that

( 0
) g;, )

0 ) =Jd(2 dy y;, C'((3, y;, )

is not finite. The requirement that C be an eigen-
state of b,s —8 /BQ has the embarrassing conse-
quence that the field operators are not well defined,
and a method of regularizing the attendant infinities
needs to be found. Any choice of C that makes the
field operators finite will of necessity result in a po-
tential contribution to A 0 that does not transform
as a scalar density. Since we are dealing with a
gauge theory, not all of the components of the field
need be properly defined, self-adjoint operators; only
the dynamical degrees of freedom need have this
property. A possibility that suggests itself is that
the gauge invariance can be broken and simultane-
ously the dynamical fields made well defined with a
single choice of C. Whether this can be done con-
sistently is not yet known.

The simplicity of ultralocal theories is to a large
extent the result of their reducing to the study of the
Hilbert space l. The states

~ f ) are convenient for
taking expectation values, for instance

(f )P&(x) )f') =i fd(2 dy f"(x,Q, yei) yj —yj
im im

f'(x Q rki) . (2.24)

The expectation value in H reduces to one in I when using the overcomplete set of
~ f ). Notice that the dif-

ferential operators in the right-hand side of (2.24) do not act on the x dependence off and f . The same will be
true of the Hamiltonian operator (3.1) which is what one would expect of an ultralocal theory.

The simplicity found in working in l can be increased by a judicious choice of complete set of states in I such
that the image of this set in H is overcomplete. One convenient set of states is derived from the generalized
coherent states in H,

i fdx V(x—)yix) —if 03 (x)g~(x) i f T(x)yy(x) i f 8'(x)P/(x))
( & ( yge e e (2.25)

where e =0 and co have five independent components corresponding to the five components of g„,. The ele-
ment of I corresponding to (2.25) can be found by computing f „, ;El, where

(2.26)

The result of this computation is

(2.27)

Not all of the states (2.25) are particularly useful for the remainder of this paper. It is most useful to take
the plane waves e ~ b(Q, r) (discussed in Appendix B where now co,k,b are functions of x) as a complete set of
states in l. The corresponding states in II are

)m(x), (x2), b x))(=exp fdxd(2 dy[e xe((2yg) —C]A)(x,,(2,ye) )0) (2.28)

satisfying

(2.29)

The plane waves are not square integrable, but, this
can, as usual, be overcome by forming wave packets.

We finally mention the proper definition of prod-

ucts of operators in this type of representation. ' '
Naively, given a functional of the matrix F(~,gf. ),
the corresponding quantum operator is

F(e,gj)= fd(2 dyB F((2,yb)B . (2.30)

As discussed in Appendix A, the quantum operator
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F will not necessarily transforni under changes of
coordinates in the same way as the classical F. This
can often be corrected by multiplying F(Q,y,j) in
(2.30) by e" for some appropriate constant k. The
extension of this discussion to more general com-
binations of fields and momenta is straightforward.

with lim, p C, = 1, computing physical expressions,
and then taking e~O. Physical quantities would
hopefully be finite as the regulator is taken away. A
choice of C, that also represents the possibility of
gauge fixing is

C, (Q,y;J ) =e + (3.6)
III. THE HAMILTONIAN

AND SCATTERING THEORY

(3.2)

where Az is the Laplacian on SL(3,R)/SQ(3) (see
Appendix 8), and V(Q, y,j ) is a regularization term
(an analog of the —, in the harmonic-oscillator Ham-
iltonian after normal ordering) determined by

A p~ 0)=0.
This implies that

(3.3)

(3.4)

The form (3.1) represents a specific choice of factor
ordering in (1.1). Other choices are possible, but this
is the simplest.

If the commutator of (3.1) with A; of Appendix
A is to be that of a scalar density, then V(Q, yj ) can
only be a constant. This restricts the form of
C(Q, yj) to be an eigenfunction of hs —8 /BQ .
For the sake of simplicity we will choose C= 1

which implies V=O, but, as any choice V=constant
merely represents a shift in the spectrum of h, this
choice is formally not as restrictive as it might seem.

For the choice C= 1 the field operators
(2.16)—(2.19) are not well defined; so some method
of regulation will eventually need to be adopted. As
mentioned previously, not all components of the
metric operator need be well defined, since not all
components are physical. To regulate the theory
one can imagine taking

C =C, (Q, yj. ) (3.5)
I

The representation on the Hilbert space H of the
Hamiltonian operator A p in (1.1) is

A c(x)= fdt) dy8 (x(tys )h, 8(,x(tye ),, ,

(3.1)

where r+ and r are as in Appendix 8 for some
fixed direction b. This choice will regulate those
components of g,J corresponding to r+, r but those
components corresponding to the coordinates on the
orbits of blab ' are left unregulated. This choice of
C, also leads through (3.4) to gauge-breaking terms
in A p. This inspires the conjecture that choosing
(3.6) is equivalent to the choice of gauge in I, but, in
its current state, ultralocal gauge field theory is far
from being able to confirm this conjecture. For the
remainder of this paper we will simply use C=1,
and leave the problems and complications of regu-
larization and gauge fixing for the future.

The operator h in (3.2) is not multiplied by the
e n~ that one might expect from the classical
scalar density g

'~ G,zkim
"m.". This fact is formally

equivalent to similar choices made for very different
reasons by Misner' and Teitelboim. It is (3.1) with
the choice (3.2) that behaves under coordinate
transformations as a scalar density as is discussed in
Appendix A.

The treatment of the variable ~ associated with
the intrinsic time requires further discussion. This
variable is taken to be nondynamical, and this might
indicate that it should be eliminated by imposing a
gauge condition of the form w=P (other canonical
variables). This is known to be incorrect. Any
such attempt to eliminate the intrinsic time by a
canonical gauge condition will eliminate not only
unphysical modes, but physical ones as well. The
basic point is that the Hamiltonian A p is quadratic
in the momentum conjugate to w; so eliminating r
and m by fixing a gauge and solving A p=0 for m

will force a choice of sign when solving ~2=6''Pj
for vr. The result of this choice will be to eliminate
either all of the positive or negative co 's (2.28) from
the theory, i.e., either the expanding or the contract-
ing geometries are eliminated. This is physically
unacceptable, su t), Bybtb, and fdB must be in-
cluded in the field operators (2.16)—(2.19) and (3.2).

The Hamiltonian operator has particularly simple
matrix elements with the states

~
co, k, b ). These ar.e

(r»', h', b'(A c(r», h, b) =(r»', h', b'(r», h, b) fdtt dye' tahe.
=(r»', h b (r», h, b)[ —r»'('x, )'+h»'(x)+t '(x)+ —,]f dt) dye" a „e
=(co,k, ,b

~
co, l, ,b)[ —co (~)+A, + (x)+A, + , ]5(co',k', b', co—,Ab) . (3.7)
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A o i
co, A, , b ) =0 . (3.9)

The best way of extracting physical information
from perturbation theory applied to the above for-
malism is as yet unknown, and all that we can do is
make a guess. The close connection between the ul-
tralocal quantizations for the full gravitational field
and earlier work on quantum cosmology was point-
ed out in I. A main result of quantum cosmology'
was the treatment of cosmology as a scattering prob-
lem in superspace. The asymptotic states in this
scattering theory were usually quantum Kasner
universes, and the scattering potential was deter-
mined by the scalar-curvature contribution to A i.
It is known that the most general metric solution to
the classical, ultralocal equations of motion has a
foiiii that can be interpreted as an independent Kas-
ner universe at each spatial point'
(Gjki~'Jm"'=0 de. fines the light cone in superspace;
Kasner universes are solutions traveling on the light
cone). Using this fact and the analogy with quan-
tum cosmology, we guess that an S-matrix theory on
superspace (for us the space of g;J ) is the proper way
of formulating the perturbation theory. The Hilbert
space of asymptotic states will be that spanned by
the physical states (3.8) of the ultralocal theory, and
the perturbation potential R will induce transitions
between the asymptotic states and thereby define an
S matrix. In the remainder of this section an out-
line of this S-matrix theory will be given following
the lines set out in Ref. 18. The problem of actually
computing finite S-matrix elements based on the
perturbation R will not be discussed here. This
problem is currently under investigation, and the re-
sults will be presented in a future publication.

Another conceptually important fact about the
classical ultralocal theory is that it provides a
description of the behavior of the gravitational field
near a large class of singularities. ' '6 This is what
one might expect of a strong-coupling limit. The
space of states

~
co, l,,b ) may be considered as a col-

lection of states that either expand out of (positive
co) or collapse into (negative co) a singularity. This
follows from the identification of Q with —, lng
as the intrinsic time. As Q ~—oo, the geometry be-
comes singular.

The Hamiltonian operator (3.1) is a Klein-Gordon
operator, and norrrially the quantization of this sort
of operator proceeds through second quantization.

The quantity (co, k, , b
~
co, l,,b) would be equal to

one for noi iiialized states, but here is roughly
exp[5(0) —5(0)]. We call the states

~

co, k, , b ) satis-
fying

co (x)=A, +'(x)+& '(x)+ —, (3.8)

physical states since they satisfy the constraint

In the present case that would mean converting the
elements P of I into field operators. This would
represent a third quantization of the above theory,
and the Hilbert space on which the new field opera-
tors act would be interpreted as multiuniverse states
(there would be operators to create and annihilate
universes). It would take a brave physicist indeed to
fully face the physical and theological implications
of such a formalism. Luckily for this author it is
not necessary to follow this path. A fully consistent
quantum scattering theory can be based on the
above formalism without modification.

Historically, fully consistent first quantizations of
Klein-Gordon operators have depended on studying
the Schrodinger equation

hP =i (3.10)

FIG. 1. Single-line diagrams.

where 8 is an auxiliary time parameter identified
with the proper time. ' ' The theory is formulated
in such a way that it is causal in the time parameter
8, but, since 8/BQ occurs in h as 8 /BQ, the intrin-
sic time parameter Q can both increase and decrease
(expansion and contraction in our case, particle and
antiparticle for the Klein-Gordon equation). The
theory so constructed is a single-particle theory and
only "single line" diagrams (Fig. 1) can be described
(the arrows on the lines point in the direction of in-
creasing 0, the vertical direction on the graphs
represents the intrinsic time Q). When formulating
these theories as scattering theories, all reference to
the time 0 disappears. The most complete such for-
mulation is found in Ref. 18, and the remainder of
this section is largely lifted from that paper. Other
relevant references are those of Stuckelberg, ' Feyn-
man, and Nambu. '

The S-matrix theory will be formulated directly
on the Hilbert space l. By using (2.13) and (2.15)
this scattering theory can be immediately taken over
to the field Hilbert space H (e.g., the unitary scatter-
ing operator defined explicitly on l below implicitly
defines a unitary scattering operator on H). In the
following (

~
) will represent the inner product com-

ing from integration in the measure dQ dy. In gen-
eral the result of such an integration will be a func-
tion of x.

The plane-wave states are nornialized by
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(e~ (» ),v(» ),b (» ) I
e (»),A(»), b(»)) 5(~(x) (x))5 (~(x),~'(x))5' '(b(x), b'(x))5'3'(x, x ') . (3.11)

The nonobvious 5' '(x,x') contribution in (3.11)
comes from the fact that if wave-packet states

g CO X ~ X, X g CO X ~ X, X

Xdx dko p, '(A, )dA, db

Equation (3.11) is defined such that the appropriate
inner product is obtained when multiplying (3.11) by
g* and g' and integrating over all primed and
unprimed variables, x and x' included. The S ma-
trix defined below will thus depend on x and x'. Let
co'(x'), A, '(x'), b'(x') be denoted as a group by i (x')
and k0, A, ,b by f(x). The scattering amplitude to go
from wave packet g' to g is given by

y(~)i(~i X g l X X X l

with di and df being given by de p '(A, )dk, db, as
defined in Appendix B. From now on we will drop
the 5'3'(x, x') from (3.11) with it being understood
that the appropriate expressions depend on x and x'.

The plane waves are eigenstates of h satisfying

he~, g, b=E~ pe~, g, b ~

where

E~ g= —ko +A+ +A, + 2

(3.13)

(3.14)

g CO X y X p X e~(~) g(~) b (~)

XCko P '(A, )d A, db

[and similarly with g'(co'(x'), A, '(x'), b'(x'))] are used
in (2.15) the resultant inner product is

[e,A, b I
e ', k', b'] 5 '5 (~ ~ )5 (b b )

(3.16)

and co in (316) is equal to (A+ +A, + —, E)'i . —
The [ I ] inner product is just the absolute value of
the Klein-Gordon inner product, i.e.,

(4 l))1= i fd)' '))* (3.17)

This is simply the inner product determined by the
complex structure on the space of solutions to the
Klein-Gordon equation. Notice that (3.17) is in-
dependent of the intrinsic time without having to fix
a gauge to eliminate it.

If the interaction potential Vis independent of the
time (as it is for gravity), then the E ~ eigenvalues
for the initial and final states are the same. In par-
ticular, physical states (E=O) scatter only into other
physical states (although internal lines can go off-
shell).

The scattering matrix elements are given by '

I

(the 8 dependence of such states is e " ). The
physical states are those with E=O, (3.8).

If instead of co,A, ,b we parametrize the states by E,
e= si gn(co ),A, ,b, we find that'

~,b I e,~,b) =2~5« — '», ),b I e,~,b]

(3.15)

where [ I ] is given by

Sfk=(@(f) I @( ) ) 2«5(—Ef Ek)[(4—(f) I

V
I 4(() ) —(@(f) I

V&(Ek) V
I @(())+

where

P(E;)= f e ' d)),

(3.18)

(3.19)

and i and f label initial and final states of definite energy E; and Ef. P(E; =0) is just the propagator derived
in Appendix B. Using (3.14) we find

Sfi (0(f) I
S

I
())'(())=2~5« —Ef )['(i)(f)

I
S

I y(;)]
2n.5(E; Ef )Sf; . — — (3.20)

From (3.20) it immediately follows that unitarity of Sf; in the inner product (
I

) is equivalent to the unitarity
of Sf; in the inner product [ I

]. The perturbative forixl of Sf; is

sf =[@(f)I@(|)]—i[(0(f) I
v If())—(0(f) I

vI'«)v I@())+ (3.21)
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S (3.2)

In the development of the scattering theory the rela-
tion between the full inner product with its integra-
tion over 0 and the Klein-Gordon inner product is

as follows from (3.18). For a scalar field (3.21)
gives, for a restricted set of processes, the same
answers for scattering probabilities as quantum field
theory. 's We conjecture that it is the proper object
to compute in ultralocal gravity. If the potential V
contains no spatial derivatives, then

Sf ( )'( ') —Sf ( )'( )5(x,x'), but for perturbations like
g'~~R there can be contributions to Sf; that are for-
mally proportional to things like 5;;(x,x'). We have
not yet been successful in making sense of this type
of perturbation theory, but work in this direction is
currently in progress.

It is helpful to review some of the steps involved
in developing the above formalism. The canonical
treatment of gravity leads one to consider the con-
straint

A ~ =G;~k(n'~~"'+ V(g;J ) =0,
and dropping the potential V leads to the ultralocal
Hamiltonian A 0. It has been found useful to think
of A 0 as a differential operator on the space of
metrics. The natural metric to put on this space is
G,jk( which as signature ( —+++++ ), and, as a
result of this hyperbolic signature, A () is identified
with the d'Alembertian on the space of metrics. The
hyperbolic nature of this operator is an essential at-
tribute of a symmetric tensor field, and the analo-
gous operators for the scalar and Yang-Mills fields
are elliptical. As a result, many of the above con-
siderations (e.g. , states developing forward or back-
ward in an intrinsic time) are, in field theory, essen-
tially unique to gravity (the relativistic free particle
shares many of these properties with gravity ).

The dynamical generator A 0 contains the time-
like momentum squared, and as a result A 0 cannot
be eliminated as a constraint by fixing a canonical
gauge (this also applies to the constraint
P&P„+m =0 for the free particle). Such a gauge
would fix an intrinsic time; thus for gravity there
can be no attempt to eliminate an intrinsic time as a
canonical variable. This means in the quantization
of the relativistic free particle that x must be a
quantum operator along with x'. ' For ultralocal
quantum gravity we must include the variable 0
(identified with the intrinsic time) in the quantiza-
tion, i.e., there is a field operator associated with it,
and the relevant inner product includes an integra-
tion over dQ. The operator ~0 is identified with
the Klein-Cxordon operator

made clear [{3.15)—{3.17)].
Solutions to the classical ultralocal theory are

such that for a fixed x the metric is in the form of a
Kasner metric. ' In this sense one speaks very
loosely of an independent (ultralocality means no
correlations) Kasner universe at each spatial point.
Quantum mechanically the physical plane-wave
states [i.e., those satisfying (3.8)] can be thought of
as independent quantum Kasner universes' at each
spatial point. The scattering theory will describe the
scattering between these states (when unambiguous
calculation becomes possible). At a fixed point x
there are four basic processes, i.e., an expanding
"universe" bounces off a potential into another ex-
panding "universe", the potential scatters an ex-
panding "universe" into a contracting one, and the
0 time reverses of these processes. For a fixed x
there are no "multiuniverse" processes. The general
scattering event will of necessity be very complicat-
ed since "universes*' at neighboring points will cou-
ple through the spatial derivatives in the perturbing
potential. There will be a full scattering formalism
in R && SL( 3,R)/SO(3) at each point x with the
scattering at x being influenced by what is happen-
ing at x +5x.

The word universe has been thrown around pretty
freely above, so it is appropriate to mention that, in
its present form, the above formalism has nothing to
say about the macrocosmic universe. Strong-
coupling gravity is applicable to the short-distance
behavior of the gravitational field, and therefore
might prove to be important for understanding the
extremely early universe. We are now far from be-
ing able to say anything about this.

IV. DISCUSSION

There are two major questions raised in the above
for which there are at the moment no definitive
answers. The first has to do with the type of repre-
sentation chosen. For ultralocal theories there exist
straightforward generalizations of the standard Fock
representation in addition to the type of representa-
tion that we have chosen, but these Fock representa-
tions are not applicable to interacting ultralocal
theories (gravity is self-interacting). The affine
variables vrj' fit naturally into the representation that
we have chosen, but not into the standard Fock rep-
resentation. ' There are also more complicated ul-
tralocal representations of the affine commutation
relations, but as the one that we have chosen is the
simplest, it seems natural to devote our energy ini-
tially to it.

The other major question concerns the choice of
C(Q,yj). The range of possible C(Q, yj. ) give a
wide range of possible theories although the require-
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ment that A 0 be a scalar density severely restricts
the possible C's. As a consequence of this restric-
tion the field operators are undefined (infinite). If
the infinities are to be regulated the coordinate
transfoirgkation behavior of A o must be changed. It
is hoped that the tasks of regulating the infinities
and fixing a gauge may be done simultaneously, but
at the moment more work on this is required. The
choice C=1 drastically simplies the foiirkalism, but
more general choices cause no problems in principle.

In its current state strong-coupling gravity is very
forrkial. There are purely technical barriers to our
being able to do concrete calculations. These in-
clude not knowing how to fix gauges and determine
the associated analog of Faddeev-Popov ghosts, and
regulating the ultralocal limit. The major problem
is to develop the ultralocal perturbation theory, and
definitive answers to the problems of gauge fixing
and regularization await this development.

In addition to these technical details the theory re-
quires an injection of physics. We are not yet com-
pletely confident of what it is that we want to calcu-
late. For Fock-based field theories the classical con-
cept of particle plays a large role in keeping the for-
malism from being sterile. The corresponding con-
cept for ultralocal gravity comes from homogeneous
cosmology. We have some understanding of the
classical behavior of gravity in the ultralocal limit

I

with the important ideas coming from homogeneous
cosmology. In the next paper we will exploit this
classical understanding in a semiclassical approxi-
mation to the quantum field theory.

ACKNOWLEDGMENTS

The author would like to thank G. Francisco, M.
Henneaux, C. Isham, J. Klauder, and C. Teitelboim
for helpful discussions. This work was supported by
Science Research Council Grant No: GR/A61463.

APPENDIX A COORDINATE
TRANSFORMATION GENERATOR

The main part of this paper concentrates on the
dynamics of ultralocal gravity, but coordinate in-
variance is an important part of the theory and it is
useful to have an explicit representation on the Hil-
bert space of this theory of the generator of coordi-
nate transformations A;. This we do below as well
as discuss the coordinate transformation properties
of some important operators and the forrgk of a
coordinate-invariant "ground" state

~

0).
We will assume that Q,y;i are not functions of x.

This simplifies the foririulas, but it is not a neces-
sary assumption. To derive the results of this ap-
pendix (under this assumption), it is necessary to use
the following relations:

B, ' '; ' B '+B ' B;
B x, , a, Bx, , ;xx' (A1)B, ' '; ' ' —B

+2 B aB,i,sa (A2)

where a and Ii are arbitrary operators for llled from 0, y~j, a/aQ, a/ay;i.
The operator A; is determined by the requirement that it gives the proper coordinate transforrgiation

laws for the metric g „and the affine momenta ~l' where

g „fdy dQB k „B=,

x): fdy dQ B)(pj pj)B' (A3)

(A4)

1 i a a
i-'J. —yil a . + 3 i an il akyil 'il

The generator A; can be written in the form

(A5b)

B;(x)=—2x) (x)+x„;(x)——fdy dQ(B;B B)B;), — (A6)

where



738 MARTIN PILATI

(A7)

and similarly for mk;. It is easy to check [using (Al) and (A2)] that

g (x), fdx'g'(x')A;(x') =i(g „;i'+ ;gi'„ +g;„i' ),

x„ (x), f dx g('x ')A'(x , ) 't(x„=,i' +x, i' —x„'i, +x„ i', ), (A9)

[A;(x),A j(x')]=i[A;(x')5 j(x,x') —~j(x)5;(x',x)], (A10)

as one requires of a generator of coordinate transfor-
mations. The (B;B BB—;) term in (A6) is just the
translation generator for a flat-space ultralocal
theory'; so its appearance is not surprising even
though nothing similar is in the classical expression
for A;.

Now that we have an expression for A; the coor-
dinate transformation behavior of operators other
than the basic ones can be investigated. For in-
stance,

operator by a constant.
The expression (A6) can be used to find C(k, yj)

such that

(A15)

Equation (A15) implies that

f dQdy(d(8 (0) 2p';+—g[px — g]—

V(x ) = fdy dB B ( (],yxi )B (x, (],yj ) (A 1 1) X C(k, yj ) =0

is, strictly speaking, undefined, but formally it
transfoi ries as a scalar density, i.e.,

[V(x), fd i (x)~x;(')]=x((V;i'+ Vi';) .

(A12)

for all P Hl; so

—2p;++pi, ——5,' C(k, y~j) =0 .
2

(A16)

This is an unexpected result since the obvious repre-
sentation for the classical scalar density g '/ is

fB k '/ B which does not transform as a scalar
density, instead (All) does. In fact, this sort of
naive identification between classical field and quan-
tum does not in general preserve behavior under
coordinate transformations. The most important ex-
ample of this is A 0 ——g '/

(mzm~ , a ). W—e have
taken the quantum realization of this to be

Assuming that C(k, yj ) is of the form

k —3/2 —(9/2]Q
~ Yij

(A16) implies

3P= ——,

(A17)

(A18)

(A19)

without a k ', since it is (A13) that satisfies

(A13) i.e., f is an SL(3,R)-invariant function of yj. , so f is
constant. If C(k, y,z. ) is of the form

A p(x), fdx'i'(x'W;(x') k —3/2 —(9/2)Q
7 (A20)

=i(A o;g'+A og'';), (A14)

i.e., transforms as a scalar density. Notice that as a
result of (All) and (A12) a cosmological constant
term Ag'/ in the classical Hamiltonian results in re-
placing

()

BQ ()Q
—5, by — —As+A, ,

i.e., in translating the spectrum of the differential

then (A15) is satisfied. The steps involved in deriv-
ing (A20) depended on k, y,&. being independent, but
the result is the same even when this restriction is
lifted.

The function C in (A20) is very reminiscent of
similar functions used for ultralocal scalar
fields. ' ' Here it is very much more singular than
there, because the integration measure is
dQ ()(:k 'dk and because there is no dependence on
y,j in (A20).
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APPENDIX 8: PROPAGATORS
ON SL{3,R)/SO(3)

where t denotes transposition, and a and n are ma-
trices of the form

y =naa'n', (81)

In this appendix the discussion of SL(3,R)/SO(3)
begun in I is extended. In particular, the propagator
for the wave operator hB —8 /BQ [hB is the
Laplace-Beltrami operator for SL(3,R)/SO(3)] is
computed in momentum space (following the discus-
sion of Ref. 28), and the configuration space form is
discussed (following Ref. 29). Most of the presenta-
tion of the material here was developed in discussion
with the authors of Ref. 28. None of this material is
original with this paper, but a very detailed discus-
sion is given, since extracting the relevant informa-
tion from the mathematical literature is difficult
and the content of this appendix is so important for
the problem at hand (as important here as Fourier
analysis on R is for ordinary quantum mechanics).

For finding a complete set of eigenfunctions for
the operator hB, it is convenient to work in a special
coordinate system on S, the five-dimensional mani-
fold of 3)&3, symmetric, positive-definite matrices
of unit determinant (this choice of coordinates will
be an analog of choosing Cartesian coordinates for
R"). We make use of the fact that an arbitrary ele-
ment y of S can be uniquely written in the form o

e" O

a= 0 e'
0

(82)

0 0 e
—(r&+r2)

1 n) n2

n= 0 1 n3

0 0

(83)

G(dy, dy) =tr(y 'dy y 'dy),

or, expressed in terms of y,

G kl (sky!+ jtpk p Pt)

(84a)

(84b)

Expressions (Bl)—(84) imply that the line element
in the r), rz, n), nz, n3 coordinate system is given by

The matrices a form a maximal Abelian subgroup A
of SL(3,R), and the matrices n form a unipotent
subgroup X. The coordinate system that we choose
for S is given by r), rz, n(, nz, n3.

The appropriate SL(3,R)-invariant metric for S
(Refs. 5 and 31) is

G(dy, dy)= 8[(dr) ) +(drz) +dr)drz]+2e ' ' (dn) ) +2e ' (dnz) 4e — ' '
nd)ndzn3

—2(zr&+r() 2
—2(2r(+r2) (85)

It is convenient to define the coordinates

r+ ——W6(r) +rz), r (/2(r) rz)—
in terms of which the line element is

G(dy, dy)= (dr+) +(dr ) +e (dn)) +2e + (dnz) —4e +
nd)n dzn3

—~2r 2
—(~3r+ +r )/~2 2

—(~3r+ +r )/~2

(~3r+ —r )/V 2 —
2

—(&3r+ +r )I~z+2(e + +n(ze + )(dn3)

The variables r+ and r correspond to an orthonormal basis in the Lie algebra of A.
The Laplace-Beltrami operator is given by

(87)

a, =G-'" G'"G„,
~yA ~3 B

„, a az „, a ~2. a'

(~3r++r )/v 2 2 (v 3r+ —r )/2 8+ —, e + +n)e +
)

Bnz

(V 3r+ r)/2 Q ( (V 3r+r )/2—"'aa +" 2n3 ()n3
(88)
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V—Z(V 3r++r )

where Gzz is determined by (87) and G=detGqz ——Se + . The Laplace-Beltrami operator is
SL(3,R) invariant.

In order to find a complete set of eigenfunctions to (BS) it is useful to begin with those that are independent
of n, , nz, and n3 .Finding eigenfunctions of (BS) that depend only on r+ and r is made easy by the fact that
derivatives with respect to r+ and r occur in (BS) with constant coefficients. These eigenfunctions are called
plane waves with "planes" (more correctly they are called horocycles) on which the functions are constant be-
ing the three-dimensional images of the action of N on diagonal matrices, i.e., the plane through the point a of
S is the set of points na n+ for all n EN. These plane waves are

i(k+r++k r )+v 3/8r++v 1/8r
r+, r =e

which satisfy

(81Q)

where A, + and A, represent the wave number of the plane wave [it is a property of SL(3,R)/SO(3) that the
wave number is two dimensional rather than one dimensional as in R "]. The planes that we have introduced so
far are all parallel to each other, and the plane waves (89) propagate in a single direction (the measure of "dis-
tance" along a given direction is two dimensional, labeled by r+ and r ). To get a complete set of eigenfunc-
tions we must be able to generalize the definition of planes and plane waves to accommodate waves propaga-
ting in arbitrary directions.

To give a useful description of the directions in which plane waves propagate it is necessary to repeat a de-
finition given in Appendix A of I for the boundary of S [notice that for R the boundary SO(2) is the same as
the set of directions in which plane waves propagate]. The boundary B of S is by definition SO(3)/M, where

M= Ik ESO(3)
i
Ad(k)H =H for all HUM, the Lie algebra of A I

1 0 0
0 —1 0
0 o

—1 0 Q

0 1 0
0 0 —1

—1 0 0 1QQ
O —10, 01O
Q 0 0 001

(811)

If one accepts that a Weyl chamber (see I or Ref. 30)
in A is a generalization of a measure of radius
[something that is made more plausible by the fact
that for SL(2,R) a Weyl chamber can be identified
with the positive numbers], then this definition can
be motivated by the theorem that S is essentially dif-
feomorphic to BX exp( W+ ) ( W+ is a Weyl
chamber). The diffeomorphism B&& e x(pW +) —+S
puts a polar coordinate system on S, and there are
subsets of S of lower dimension, analogs of the ori-
gin of polar coordinates on R, that are not in the
image of B && exp(M+).

A set of parallel horocycles was defined above by
the orbits of N on a point a.o (g o means g&g').
Note that by Eq. (81) any point s in S can be written
as na. o for some n and a; so the orbit of N acting on
s is the same as N acting on a.o. The orbits of N
acting on points of S are the same as the set of
planes defined above. Generally a set of parallel
horocycles is given by the orbits of gNg

' for
g&SL(3,R). Any element g can be written as
g =kan, k H SQ(3); so gNg ' =kNk ' since
aNa =N (see the definition of N given in I or Ref.
30). For m EM we have mNm '=N, as can be QK3 OK i QK3R=e e e (812)

seen directly from the form (811) of the four ele-
ments of M, but a more general proof is also
straightforward. As a result the set of groups
kNk ' whose orbits provide the horocycles is in
fact the same as the set of bNb ', b CB=SO(3)/M.
In fact, one can show that any horocycle gNa 'h. o
can be written uniquely as bNa. o; b is called the
direction of the horocycle and a is called the com-
plex distance of the horocycle from the origin (com-
plex because a is determined by two quantities). For
fixed b HB, all horocycles bNa. o are parallel to each
other. A similar formula can be applied to the x-y
plane, where the analog of N is the group of transla-
tions parallel to the y axis, a is an x coordinate, and
b is an element of SQ(2), the boundary of R . Given
a line (horocycle) in R, b is determined by the angle
required to rotate the line about the origin until it is
orthogonal to the x axis and a is the x coordinate of
this rotated line (i.e., the orthogonal distance from
the origin to the line).

SO(3) is parametrized by the Euler angles, with an
arbitrary group element being given by
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with

0 Q 0 0 1

eg, b(y)=eg, I(b (y))=eg, I(b yb)

where y P S and

(813)

0 0 1, 1(. 3
—— —1 00

0 —10 Q 00
The Euler angles have the ranges 0((t),g &2m and
0(8 (m. It is easy to check that the effect of tak-
ing the quotient by M is to restrict the ranges of the
Euler angles to 0&/, g &~ and 0&8 &m.. The
space of directions in which plane waves on
SL(3,R)/SO(3) travel, i.e., SO(3)/M, is parametrized
by the Euler angles restricted to these ranges.

The plane wave (89) is a wave propagating in the
8=/=/=0 direction (we will call this direction I
and b will be an arbitrary point of B). To obtain
plane waves propagating in directions other than
b =I, we act on the plane waves (89) with an arbi-
trary element of B. The SL(3,R) invariance of the
Laplacian will guarantee that the functions so ob-
tained are eigenfunctions with the same eigenvalue
(810). The plane wave propagating in the direction
b is given by

(814)

with (tJ'f being given by (89) and r+, r being deter-
mined by the element a of A in the Iwasawa decom-
position

b'yb =naa'n . (815)

e~ b(bnb 'ybn'b ')=e~ i(nb 'ybn')

=eg, l(b 'yb)=eg, b(y)] .

The plane waves (813) forin a complete set of
functions on S. Any function f(y), yES can be ex-
panded as a Fourier series, i.e.,

Just as functions (89) are constant on the horocycles
generated by N (i.e., they are independent of
n~, nz, n3) the functions (813) are constant on the
horocycles generated by the group bNb ' [proof:

f(y) f =f f(),b)ee e(y)(e '(b. )db. db,

where dl, =dA, +dA, , db =(2~ ) 'sin8 dp d8 dg [from the Haar measure on SO(3)],
r e

[g (3A, +2—g 2)] 'coth(mv 2A, )coth (V3A++A, ) coth
1

2

(816)

(818)

and the Fourier components f(A, , b) are given by

f().,b)= f f(y)ef e(y)dy .

The measure dy in (818) is the one induced on S by the Haar measure on SL(3,R), e.g., in the r+,r,n ~, n2, n3
coordinate system

—(v 3r+ ~r )IW2
dy=W8e + dr+dr dn&dn2dn3 (819)

The expansion (816) in terms of plane waves forms the basis of our further discussion of the wave equation.
The restriction of the range of A, in (816) to A.+ & V 3A, &0 requires further discussion. In spite of the fact

that it has two components, A, is the analog of the wave number of plane waves on Euclidean space. The re-
striction on A, adopted here is the generalization of the restriction that the Euclidean wave number be positive.
This restriction on the Euclidean wave number results from the invariance of plane-wave solutions under re-
flections. Including plane waves with all angles of propagation and both positive and negative wave numbers
results in a double counting of the plane waves. For SL(3,R)/SO(3) the role of the reflections is played by the
Weyl group, a six-element group given by

1 0 0 Q 1 0 Q —1 —1 Q

8 = w& —— 0 1 0, w2 —— 1 0 Q, w3= 0 —1 0, w4 —— 0 0 1

0 0 1 0 0 —1 —1 0 0 0 1 Q

0 —1 0 0 1

0
ws = 0 0 —1, w6= —1 0 0

1 0 0 —1 0
(820)
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The plane waves (813) are invariant under the action of W; its action on A, is given by

wlA +=A, +, w&A, =A,

w2A, + =A, +, L02A=, —A,

w3A, + = —
~ (A, ++~3k, ),

w4A, + = ——,(A, + —W3A, ),

wgA, + = ——,(A, + —V 3A, ),

LU6A+=, —
2 (A, + +~3k ),

w3A, = ——,(~3k, + —k ),
w4, A, = —,(~3k.++A, ),
w, A, = ——,(~3k,~+A, ),
w6A, =

2
(~3k,+ —A )

(821)

e~,g, $
=—

~

co,~,b) =(2~)—
and using

T

i
co, k, ,b)

(822)

=[co —(A, + +A, + —, )]
/

cU, A, ,b), (823)

the propagator in momentum space is easily found
to be

The action of W on r+, r is similar. To eliminate
the six-fold overcounting of the plane waves the re-
striction A, + ~ v 3A, ~0 is imposed. This restric-
tion defines a region in the (I,+,A, ) plane. No two
points of this region are connected by a transforma-
tion (821), and the image of this region under these
transformations is the whole plane.

Now that we have a complete set of eigenstates of
b,q, computing the propagator in momentum space
is straightforward. Writing

One can easily do everything in the above discus-
sion with no restriction on the range of A, . In that
case expressions such as (816) must be divided by a
factor of 6 because of the six-fold over-counting and
the 5 function 5(A,2, b2, A, l, bl) is not only concentrat-
ed on points where A,2 ——A, &, but also points where
A, 2

——wA, l for any w E W.
For completeness we now discuss the coordinate-

space form of the propagator on RXSL(3,R)/SO(3).
We will not be able to get far in this discussion since
an explicit form of the coordinate-space Green's
function is unknown. The extent of what we can do
will depend, as above, on exploiting the fact that
c)/c)r+ and c)/Br occur in 5& with constant coeffi-
cients.

The discussion will follow that given in Ref. 29.
The method used there is to exploit the heat equa-
tion to find the heat kernel, i.e., the distribution F
satisfies the heat equation

F(8;Q,y;Q', y') =CIF(0;Q, y;Q', ')

Cop, l.2, b2 CO l, A, &,b l

with boundary conditions

(826)

= 5(c0,;col )5(A2, b2, A, l, bl )

)& [C02—(A, + +A, + —,)] ', (82dI)

where the use of Feynman boundary conditions is
understood. The 5 function

b()'2bz, A, b, ) fd, )'el e (1 )e=z b () )

lim F(8; Q, y; Q', y')=5(Q, Q')5(y, y') .
8~0 (827)

The symbol H in (826) stands for hz+c) /c)Q (a
Wick rotation on Q has been made). The AL+(3, R)
invariance of CJ and the fact that it is a symmetric
operator in the measure dQ dy lead to the properties

satisfies

f ~ f d).db)e '(A, )

x 5(A, ', b';A, ,b)f(A, ,b)

(825)

F(~;Q y Q' y')=F(~;Q', y', Q y»

F(8;Q+k,gyg'; Q'+ k,gy'g')

=F(0;Q,y;Q', y'),

(828)

(829)

The use of Feynman boundary conditions guarantees
that positive-frequency states propagate forward in
Q and negative-frequency states backward.

where k E R and g ESL(3,R).
As mentioned above, we will exploit the parts of

b,z with constant coefficients. To do this define
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Fb=I(8» r Q' r') =Fb =I(8 Q p+ p —Q p+ p=brae

' '++' ' fF(8;fl, Z;O', 33&.'33')d 333d333d333 (830)

where n~, n2, n3 are as in (83) (dn&dn 2dn 3 is the Haar measure on N). From (829) it follows that Fb I de-
pends only on r+, r and not all of r; i.e., Fb I is constant on the horocycles generated by N. For general b
define

Fb(8;Q, r;Q', r'):Fb—I(8,Q, b'rb;Q', b'r'b), (831)

which is constant on horocycles generated by bNb as in the discussion of planes waves. If r+ and r are de-
fined by the a in

b'rb =naa'n,

then Fb is a function of r through r+ and r only (similarly for r ). If f(Q, r) is a function constant on the
horocycles generated by bNb', then [from (819) and (830)]

fF~~;&r;& , r '3f'~&'r '3d'&, 'dr 'f'r=e~e;&r, & r, '3f~&', 'r '3« +',«'' (832)

B2

dr+

1 a
W2 Br

with the boundary condition

lim F(8;Q,r+,r;Q', r'+, r' )=5(Q Q')5(r+ r'+—)5(r —r' ) . —
8~0

As is well known, the solution to (833) satisfying (834) is

So the Green's function derived from F will propagate functions constant on horocycles.
The heat kernel F satisfies the equation

a' -- a—
2 Br+ BQ2

(833)

(834)

(4~8)'" exp —
I [r+ r'+ —( —)'—f~8] +[r r' —( —)'I 8]—+(Q —Q')2I (835)

1

v2a

The existence and functional form of F may be used to prove that the full Green's function G (Q, r;Q', r') ex-
ists, but no explicit functional forrii is known. It might be possible to use the momentum-space forin of the
Green s function in a direct derivation of the coordinate-space form, but so far the complicated expression
p '(A. )dA, (817) has prevented this.

For functions f constant on parallel horocycles the explicit form of the Green's function can be found. It is

Gb(Q, r+,r;Q', r'+, r' ) = d8 Fb(8', Q, r+, r;Q', r'+, r' )
0

' 3/2 "1/2

2m
K)f2 exp[ —,[(—,)' (r+ r'+ )+(—,)' (r r—' )]I—

2

expI —,[(—, )'I (r+ r'+ )+( 2
)'f (r r—' )] j —e— (836)

where

o =[(r+ r'+ ) +(r r' ) +—(Q —Q'—) j'f

Knowing this is not particularly helpful since all one can do for general functions f(r) is apply (836) to each
of the plane waves in the plane-wave decomposition of f. This just results in the momentum-space propagator
derived previously, since

b
' e,gb = —

&
e,gb

co +(A, + +A, + —, )
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