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Spin fluid in Einstein-Cartan theory: A variational principle and an extension
of the velocity potential representation
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We propose a variational principle describing a spin fluid in Einstein-Cartan theory. We also give
a potential representation of the Taub current vector. We show that the dynamical description of
the spin fluid obtained via this representation is equivalent to the standard equations, and that the
material Lagrangian is the pressure.

I. INTRODUCTION

The problem of spin fluids in relativistic theories has
long been of interest to physicists (see Refs. 1 and 2 and
references therein ).

In special relativity spin fluids were exhaustively dealt
with by Halbwachs. ' He described a Weyssenhoff fluid
starting with a variational principle, and proved that the
Lagrangian, if the fluid is governed by a state equation, is
just the pressure. In 1968 Seliger and Whitham intro-
duced a velocity potential representation (already
discovered by Khalatnikov in 1949) allowing them to
describe the velocity field by means of potentials, each of
which has an evolution equation. They derived their equa-
tions from a variational principle whose Lagrangian is still
the pressure. A few years later Schutz' generalized their
principle to include the effects of a general-relativistic
gravitational field, and in 1978 Francaviglia and Khalatni-
kov" gave a Hamiltonian formulation of the problem. On
the other hand, since the early 1960's, it has been shown
(see Ref. 2 and references therein) that spin may have a
dynamical role if we use, as the gravitational theory, the
Einstein-Cartan (EC) theory instead of general relativity;
in fact in the EC theory spin is coupled with the torsion of
space-time. Our aim is to go further along this line be-
cause we think it is the most natural for a complete
description of spin fluids. In this work we propose a vari-
ational principle for the description of the spin perfect
fluid in the Einstein-Cartan theory.

Our Lagrangian becomes the Lagrangian used by
Halbwachs in the special relativistic limit. In so doing, we
also deal with the potential representation of the velocity
field of the spin fluid in the Einstein-Cartan theory. Al-
though it is not possible to give an easily manageable po-
tential representation of the four-velocity Uk, we have
found the potential representation of the vector:

II. THE EINSTEIN-CARTAN THEORY

The EC theory [also called the Einstein-Cartan-
Sciama-Kibble (ECSK) theory; for details see Hehl ] is a
generalization of general relativity (GR) since it introduces
the asymmetric connection I;J- whose antisymmetrical
part

k & k k k
ij = Y( ij ji )= [&j] (2.1)

is called the torsion tensor or, simply, torsion.
We will see that in this theory torsion is connected to

the presence of the spin. Introducing a metric tensor g;z of
signature ( —,+, +, +) and assuming the metricity hy-
pothesis (V'kg;j =0) we can show that the connection has
the form

k Ik) It k (2.2)

Vk =(egkj+S,k )U,
which is an extension of the current vector Vk ——@Uk de-
fined by Taub.

Ray and Smalley have given a Lagrangian similar to
the one we propose; the differences between the Ray-
Smalley approach and our approach will be discussed in
Sec. IV.

In our approach we show that the dynamical descrip-
tion of the spin fluid obtained via this representation is
equivalent to the standard one (see, also, the discussion in
Schutz' ) and that, in this case, too, the Lagrangian is the
pressure. In Sec. III we give the Lagrangian for spin
fluids, and in Sec. IV we compute the equations of
motion.

In Secs. V and VI we give the potential representation
for the current vector and demonstrate the equivalence be-
tween the two descriptions.
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where I,j J are the Christoffel symbols, i.e., the symmetric
connection of GR,

km
Iij I 2 g (gimj +gmj, i gij, m }

the conservation laws are

q+y j jR lmj i = lm ij

k
Vk&ij =~[ijl ~

(2.5)

(2.6)
and

E"=—S" +S - —S .k k k k
ij iJ J i iJ

We can use Eqs. (2.5) and (2.6} to get the equations which
describe the motion of a spin fluid.

Gij k Xij
k k

Tij =k~ij-

where G,J is the Einstein tensor defined by
1

Gij ——Rij ——,gij R,

(2.3)

(2.4)

TJ is the modified torsion tensor,

k k k lTJ =Sij +25[iSJ)l

and X,J and r,j are the dynamical asymmetric energy-
momentum tensor and spin tensor, respectively, which are
equivalent to the canonical tensors (see Hehl'3):

v' —gX,.j= . V,.% —6,JL,
~ BL

J

where qi are the material fields and fj are the representa-
tion matrices of the infinitesimal coordinate transforma-
tions of %.

Since Gij and Tj satisfy the differential identities de-
rived from the Bianchi identities in U4, using Eqs. (2.3)
and (2.4), we get that the energy-momentum tensor and
the spin tensor must satisfy the same differential equa-
tions. These identities are considered the conservation
laws in a U4 space-time. This point of view is completely
justified because, according to Hehl, ' one can derive the
same laws by applying the Noether theorem.

Introducing the symbols

k k+ kj

Vj+0, =VJ*%, +2S,, '0 k,

is called the contortion tensor.
A space-time with such a connection I,J is called U4

space-time. As in GR we can introduce in U4 a Riemann
tensor:

R; I,
——28[;I -) +2I [; I I

J.)k
l l m

from which we get the Ricci tensor,

Rij =Rmij

while the scalar curvature is defined by

R =g'RiJ

The field equations are obtained by a variational principle
by considering the variations of the action integral

I= f (R+2kL)V —g d x,
where k is the relativistic gravitational constant
(k =Smgc =2)&10 dyn) and I. is the material La-
grangian.

Using the Palatini formalism we have

III. LAGRANGIAN FOR A PERFECT FLUID
WITH SPIN

+pAU'8;B+phpa UiV;bk+

+A,;j(a'a j+b'b j+& '& j—U'Uj g'j), — (3.1)

where p(p, S,ho) is the total energy density of the fluid, S
is the entropy, and 8 is one of the Lagrangian coordinates
(note that the term AU'8;B imposes the conservation of
the particle identity', ' the use of just one coordinate is
enough for this purpose, as discussed in Refs. g and 10).
Moreover, P, 0, and A are Lagrangian multipliers used to
impose, respectively, the conservation of the number of
the particles, of the entropy, and of the identity of the par-
ticles.

The next to last term is the kinetic spin energy K de-
fined by

where Q,J is the angular velocity associated with the spin
of the particle, and the last one constrains the fields a', b',
o', and U' to form a vierbein at each point of the space-
time (A, ,j is another Lagrangian multiplier). In fact, we
have considered the field of vierbeins chosen in this way:

(i) The four-velocity U' is the timelike vector
(U'U; = —1).

(ii} A vector &' proportional to cr' (spin-density vector)
such that

o. o; =o o;/(php},

where hp ls a standard spin module function {we assume
that cr'U; =0, so o' is a spacelike vector}.

(iii) a' and b' are two spacelike vectors orthonormal to
o'. Thus we are able to describe the spin tensor in two dif-
ferent ways:

Sij ——e,jkl U o. =php(a;bj —ajb; }

according to the properties of vierbein; in this way we get
the Weyssenhoff hypothesis S;J UJ=O, and also the form
of the kinetic spin-energy density %=whoa U'7;bk ~here
Qij is written in terms of the vectors ek

' of the vierbein:

We consider a fluid constituted by spin particles
described by Halbwachs' and which obey the Weyssenhoff
condition S,J U =0, where S,J ——E'j'kl U s, s being the spin
vector associated to the particle and Uk the four-velocity.
All the physical properties of the fluid are obtained by a
volume average process, as in Halbwachs; so we can define
the densities F=pf where p is the material density, i.e.,
the number of particles for the unit volume, and f is the
average value for each quantity f (we always use the sym-
bol F for the quantity F/p= f ). The Lagrangian we use is

L =p(p, s, ho)+ pU'i3;iti+poU'i);S
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(m) (m) (m) (m))
&J 2~ & J & J

5U: p((3 it)+g(3 S+Ar} B+h a'V b ).
—2kkJU =0. (4.12)

d e'= T dS+p 'dp+ A dh p, (3.2)

where e=()M+p)/po is the enthalpy, @=me, po
——pm, m is

the rest mass of each particle of the fluid, p is the pres-

sure, and A=a bk.
The expression (3.2) of the first principle is a little dif-

ferent from the one given by Ray and Smalley, but it is
easy to show that using the motion equations (4.9) and
(4.10) both the above quoted formulations are the same.

IV. EULER-LAGRANCrE EQUATIONS
AND MOTION EQUATIONS

Varying the independent fields of our Lagrangian, we
get

It is important to note that the general-relativistic limit of
our Lagrangian is the one used by Schutz' and that the
special-relativistic one is the Lagrangian proposed by
Halbwachs. ' Here we stress that in the Lagrangian (3.1)
there is coupling between spin and torsion.

Before deriving the motion equations, we consider how
the spin energy influences the thermodynamic behavior of
the fluid described by the state equation p, (P,S,ho). Fol-
lowing Landau and Lifshitz' and taking into account the
contribution of the spin kinetic energy, in our case the
first thermodynamical principle is written as

From Eqs. (4.9) to (4.12) we obtain

U (peg„;+Sk; )=p(B;P+8r}S+A (3 B

+hpa "V;bk) (4.13)

and o.
p

——0 with o.
p

——o'o.;, which implies

hp ——0, (4.14)

~ij 2 (PEijij +Sji }+Hij

where H;J. U =0. For simplicity we set H,J ——0; so we get

I
~lj —

2 (Peglj ~jl' } (4.15}

The energy-momentum and spin canonical tensors can be
obtained by Eqs. (4.9) to (4.12):

X; =PUj(B;(t(+8();S+A();B+h aV;b )k+g,"p .
By (4.13) we can write it as

X;j=(pegk +Sk )U Uj+pg;j (4.16)

i.e., the module of the spin is constant along the flow lines.
From (4.12) we can calculate the Lagrange multiplier

A,;J; we have

2&;jU'=p(d;P+BB;S+A d, B+h, a. 'V, b„) . .

By (4.13) we can also write

5P: p=O,

50: S=0,
(4.1)

while the spin tensor is

(4.2) (4.17)

5A B=0 (4.3)

5A, ,J. a'aJ+b'bJ+& '& J—U'UJ=g'J,

5S 0=T
(4.4)

Equation (4.5) is obtained from the first thermodynamic
principle:

The tensor XIJ obtained here is different from that ob-
tained by Ray and Smalley; this happens because the La-
grangian (3.1) we have used differs from the Lagrangian
used by Ray and Smalley with respect to the way the con-
straints are expressed.

By the conservation laws and expressions (4.16) and
(4.17), the motion equations follow:

5B: A=O, (4.6) Vj(peU; U +S;k U "U +p5;i) =—S R; i" (4.18)

5p: 0=—~P —hpa bk,
Bp

Bhp
(4.8)

where we have used (2.4), (2.5), and the Weyssenhoff con-
dition (S;jUj=O}. Contracting (4.18) with the projector

p j=(5 j+ U Uj)

The dot means, for a density, F=V;(FU'}, and for a vec-

tor, f=U'Vif. Substituting Eqs. (4.1) to (4.7) in the La-
grangian, we obtain

BpL =ji,(P,S,ho) —p
Bp

From (3.2) we get I. = —p which shows that in the U4
space-time, also, the fluid Lagrangian is the pressure, as in
SR (Ref. 1) and GR (Ref. 10). The other variations give

we obtain the Euler-generalized equation for spin fluids in
a U4 space-time:

Pk'5 P =f prUk Sk U j, — — (4.19)

where fk=v;j'Rki'j is the Mathisson force density. Con-
tracting (4.18) with U' and remembering (3.2) and (4.14)
we obtain the entropy conservation law

dS
d~

5ak. ph p O'V; bk +2A,kJ a J=0,
5bk:

5&k-.

—pho&k —pho Qa+2~kjb'=O,

2A, I,J.&J=o,

(4.9)

(4.10)

(4.11)

where ~ is the proper time.
Equation (2.6) implies the spin-conservation law

S,j ———U (Sk; Ui —Ski Ui) . (4.20)
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Equation (4.19) differs from the generalized Euler equa-
tion in GR by the presence of two terms connected with
the spin distribution. The first is S;J U, that is, a third-
order term with respect to the coordinates and is present
also in the theory of spin fluids in SR (Ref. 1); the second
is the Mathisson force density that describes the coupling
between spin tensor and Riemann tensor, which is peculiar
to the ECSK theory.

1.e.,

but

V .(p V; Uj)+8;p =f;,

pV, +a,p=f, ,

V; = UjVj(d;/+ed;S +A 8;B+boa V;bk)

(5.4)

V. POTENTIAL REPRESENTATION

The Clebsch representation for the velocity field of a
fluid

U, =(~)-'(a, y+ ea, s+Aa, B) (5.1)

U, =a, ++Pa, ),
in which the "velocity potentials" a, P, and y are used to
simplify the dynamics of the fluid, have been generalized
by many authors in order to be more manageable both in
Newtoman fluid dynamics ' and in relativistic fluid
dynamics. " In particular, Schutz has shown that the
generalized Euler equation for a perfect fluid without spin
in GR may be obtained also by the following potential
representation of four-velocity:

=8;p+ Td;S+V;(boa "bk)+a "bkV;ho+ f; .

From the first principle and (4.7) we have

p V~ f; —8;p——,
that is,

pV;+Op= f; .

Q.E.D.

VI. ACTION FUNCTIONAL IN A U4 SPACE-TIME

Since the Lagrangian we have introduced is the pres-
sure, the integral action in a U~ space-time reads

in which the symbols are the same of those defined in Sec.
III. In fact, making the Lie derivative with respect to the
four-velocity of (5.1), we obtain

p 'V T;j=L (eU; —8;P —eB;S)

because LU(Ad;B) =0; here T~j is the energy-momentum
tensor for a perfect fluid without spin in GR:

TfJ pE Uf UJ +pgg J ~

Schutz has proved that VJ. T;J=O and

I=f (R —2kp)v' —gd x .

Our hypotheses are

U'Ug ———1,
V; =(PFg j +Sj, ) Uj

=p(a, y+ea, S+Aa, B+h a "V;.bk),

S~ =pho(a;bj ajb; ), —

dp= —pTdS+pde —pa bkdho .

(6.1)

(6.2)

(6.3)

(6.4)

(6.5)

=(pea, +Sj(}U'., (5.2)

we see from (4.13) that it has a potential decomposition:

V; =p(B;/+ed;S+A8;B+hoa "V;bk) . (5.3)

Note that V, is the vector (1.1}which we have indicated as
a generalization of Taub's current vector. Besides we have
to note that we could also have a potential decomposition
for U;, but that would be much too involved and definitely
useless because we can achieve our aim through V;.

Comparing (5.1) and (5.3) we see that spin density intro-
duces two potentials more than the GR case, i.e., a" and
b" Let us prove th. at the decomposition (5.3) leads to Eq.
(4.18): From (4.16) and (5.2) we can write

~v =pV UJ+g JJ'

which gives from (2.4) and (2.5) and the Weyssenhoff con-
dition

L,(~U, —a, y —ea, s)=o
are equivalent equations, in the sense that both give the
Euler equation in GR. This means that there are two dif-
ferent approaches to obtain the same equations. We
demonstrate that the same is also true in our theory.

If we define the ~ector

Equations (6.3) and (6.5) give the relations between the
physical and the geometrical variables:

g'J V; V = —p e +g'JSk; SI U U . (6.6)

Varying (6.1) with respect to g j we have

G~j—V~(T~j"+ T&j~+ T«j) =k(V'~Uj +gj~p } (6.7)

where we have used the representation for the pressure

—P =P+g'J V; UJ. (6.8)

obtained from (3.1).
From (6.8) we are able to have also the variations of

(6.1) with respect to E;j":

{6.9)

Combining (6.7) and (6.9) and using Eqs. (6.2) and (6.3) we
have

G' =k[ —,Vk(S' U")+pe U'Uj+S" 'Uj'Uk+pg j]

+—vk{S'UJ+SkJU'i .k
2

From the equivalence between the dynamical and canoni-
cal tensors' and from (2.6) we have
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G'J =k(AU'UJ+s k'U~ Uk+kg'J)

P» (Ski(P+SkjUi)k
2

Now, using the Weyssenhoff condition, the last term of
the above expression can be eliminated by adding in (6.1}
the null term

f—&—gglV'(S 'UJ+S 'U')d x .

Equations (6.9)—(6.18) are the complete set of the equa-
tions of motion that we can get by the action integral (6.1).
Equations (6.9) and (6.10) are the Einstein equations in
U4', (6.11), (6.12), and (6.13) are the conservation of ener-
gy, entropy, and identity of the particles; (6.14) is the evo-
lution equation for what von Danzig' defined as ther-
masy; (6.15) is the evolution equations of the Lagrange
multipliers A. Equations (6.16), (6.17), and (6.18) express
how the spin influences the pressure.

This term does not affect any variations, so we have

G'J =kX'J

The other variations give the equations:

5$: p=0,
6t9: S=0,
6A: 8=0,
6S: I9= T,
68: 3 =0,
5ai'. pllobi+(pegik +Ski)a =0,
5bi. ph pa—+i(peg i+kS k)bi=0,
6ho: Bp = —A.

Bho

(6.10}

(6.11)

(6.12)

(6.13)

(6.14)

(6.15)

(6.16)

(6.17)

(6.18)

VII. CONCLUSIONS

We have shown a full theory of spin fluids in a U4
space-time by means of a variational principle, and the
Eulerian description of the fluid. The variational princi-
ple shows that it is not possible to get a straightforward
potential decomposition of the four-velocity, but we have
proved that the potential decomposition of the vector V;
in (1.1) gives the same results. This fact suggests that it is
the current vector that in general must be decomposed in
potentials, as may be seen also by Eq. (2.24) in Ref. 10.
We have noted that in a spin fluid the vectors, V; and U;
are not parallel because of the presence of the spin density;
this circumstance prevents us from obtaining a direct po-
tential decomposition of four-velocity by the decomposi-
tion of the current vector.

At last we want to stress that all our equations give the
usual equations in the GR and in the SR limit.
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