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The creation and evolution of energy-density perturbations are analyzed for the “new inflationary
universe” scenario proposed by Linde, and Albrecht and Steinhardt. According to the scenario, the
Universe underwent a strongly first-order phase transition and entered a “de Sitter phase” of ex-
ponential expansion during which all previously existing energy-density perturbations expanded to
distance scales very large compared to the size of our observable Universe. The existence of an event
horizon during the de Sitter phase gives rise to zero-point fluctuations in the scalar field ¢, whose
slowly growing expectation value signals the transition to the spontaneous-symmetry-breaking (SSB)
phase of a grand unified theory (GUT). The fluctuations in ¢ are created on small distance scales
and expanded to large scales, eventually giving rise to an almost scale-free spectrum of adiabatic
density perturbations (the so-called Zel’dovich spectrum). When a fluctuation reenters the horizon
(radius~H ~') during the Friedmann-Robertson-Walker (FRW) phase that follows the exponential
expansion, it has a perturbation amplitude 8p/p |y =(4 or %)H A¢/¢(t,), where H is the Hubble
constant during the de Sitter phase (H —1is the radius of the event horizon), é&(t,) is the mean value
of ¢ at the time (¢,) that the wavelength of the perturbation expanded beyond the Hubble radius dur-
ing the de Sitter epoch, A¢ is the fluctuation in ¢ at time ¢, on the same scale, and 4 (-ﬁ—) applies if
the Universe is radiation (matter) dominated when the scale in question reenters the horizon. Scales
larger than about 10'°>—10'°M reenter the horizon when the Universe is matter dominated. Owing
to the Sachs-Wolfe effect, these density perturbations give rise to temperature fluctuations in the mi-
crowave background which, on all angular scales >>1°, are ST/T:(%-)H Ad/¢(t)). The value of
Ad expected from de Sitter fluctuations is O (H /2m). For the simplest model of “new inflation,”
that based on an SU(5) GUT with Coleman-Weinberg SSB, ¢(t;) << H? so that 8T /T >> 1—in obvi-
ous conflict with the large-scale isotropy of the microwave background. One remedy for this is a
model in which the inflation occurs when $(t;) >>H?. We analyze a supersymmetric model which
has this feature, and show that a value of 8p/p |y ~10~*—1072 on all observable scales is not im-
plausible.

I. INTRODUCTION

Guth proposed the original inflationary-universe
scenario! in an attempt to resolve certain puzzles concern-
ing the conditions of the very early Universe that arise in
the standard hot big-bang model. Guth showed that the
phase transition associated with the spontaneous symme-
try breaking (SSB) of the grand unified theory (GUT) can
have a profound influence on the evolution of the
Universe. If the transition is strongly first order, the
Universe can become trapped in the metastable, symmetric
GUT phase which has a vacuum energy density O (Mg?),
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where M; is the mass scale associated with the SSB of the
GUT. As the Universe cools in the metastable phase to a
temperature T less than Mg, the vacuum energy dom-
inates the energy density of the Universe and the scale fac-
tor S grows exponentially; S «<exp(¢/t;) where
tg~H ~'~Mp /Mg? is the expansion time scale,

G ~12=Mp =1.2X 10" GeV =the Planck mass ,
and ﬁ=c=k3=1. Guth argued that if the Universe
remains trapped in the symmetric phase for a time

O(65tg) or greater, sufficient inflation (exponential
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growth) occurs to resolve the isotropy, homogeneity, and
flatness/oldness puzzles. However, as Guth himself real-
ized,}? the original scenario has a fatal flaw: there is no
“graceful exit” from the inflationary phase to the usual
radiation-dominated Friedmann-Robertson-Walker (FRW)
universe. For models in which there is sufficient expan-
sion during the metastable phase to resolve the cosmologi-
cal puzzles, the nucleation of bubbles of symmetric phase
is not rapid enough for the bubbles to coalesce and com-
plete the transition to the SSB phase.> The end result is a
universe comprised of isolated empty bubbles of SSB vac-
uum separated by exponentially expanding regions of sym-

metric metastable vacuum. |
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Here ¢ is the vacuum expectation value of the adjoint (24)
Higgs field which breaks SU(5) to SU(3)xXSU(2)xU(1),
0=4.5x10" GeV is the value of ¢ at the SU(3)xSU(2)
X U(1) minimum, B =5625 g*/102472, and g is the gauge
coupling constant. [In Eq. (1.1) the parameters in the po-
tential have been fine tuned so that, after curvature and
fluctuation effects are incorporated,” the barrier disap-
pears just as T—0.] Albrecht and Steinhardt* argued that
as the physical temperature decreases below ~10° GeV,
the barrier becomes negligibly small and the symmetric
phase becomes unstable rather than metastable. Fluctua-
tions cause the unstable universe to spinodally decompose’
into different “fluctuation regions” inside of which ¢ has
a nonzero expectation value; there are many SSB minima
[due to the breaking of SU(5) to SU(3)xSU(2)xU(1)]
and in different fluctuation regions ¢ evolves toward dif-
ferent SSB minima. Near ¢ =0 the Coleman-Weinberg
potential is very flat, V'(¢)=4B¢’In(¢*/0?), and so ¢
evolves slowly, but inevitably, towards an SSB minimum.
Within a fluctuation region, the time required for ¢ to
evolve from its initial value to ¢~o is much longer than
t;. During most of this time ¢ << o, and the energy densi-
ty inside the fluctuation region is dominated by the nearly
constant potential energy, V(¢)z%BU“:MG“. Therefore,
the scale factor S grows exponentially during the time that
¢ is slowly growing. Because inflation occurs as ¢ is
evolving towards the stable SSB phase rather than when
the Universe is in the metastable symmetric phase, the
problem of completing the phase transition to the SSB
state is automatically avoided. Sufficient inflation (ex-
ponential growth) occurs so that a single fluctuation re-
gion grows to a size much larger than the size of our ob-
servable Universe.

If the Universe underwent such an expansion, the iso-
tropy, homogeneity, and flatness/oldness puzzles are
resolved for the same reasons as in Guth’s original
scenario. In addition, the problems associated with the
production of various massive topological defects (mono-
poles and domain walls) are solved, because our observable
Universe lies within one domain, within which the Higgs
field ¢ is aligned in one SSB minimum.® Once ¢ evolves
to a value O (o), the Coleman-Weinberg potential becomes
very steep, V'(¢)=8Bo*($—o0), and ¢ evolves quickly (on
a time scale <<tg). The rapid variation of ¢ causes the
vacuum energy to be efficiently converted to radiation

2In{1—exp[ —(x2425g%¢2/8T%)'?]} .

Recently, Linde® and Albrecht and Steinhardt* indepen-
dently proposed a new inflationary scenario which retains
the beneficial features of Guth’s original scenario while
overcoming the graceful exit problem.” They considered
GUT’s in which the spontaneous symmetry breaking is of
the type discussed by Coleman and Weinberg.® The so-
called “Coleman-Weinberg” potential is scale invariant (up
to logarithmic terms) and at a value of ¢~O(T) has a
small temperature-dependent barrier between the sym-
metric minimum (¢=0) and the true minimum (¢=0)
whose height is O (T?). The simplest Coleman-Weinberg
model is the SU(5) GUT with one-loop effective scalar po-
tential given by

(1.1)

T

through the creation of particles. All quantum fields
which couple to ¢ should be radiated directly and their
subsequent decays and interactions should rapidly repopu-
late the Universe with a thermal distribution of particles
and radiation.’ Particle creation due to the time variation
of ¢ smoothly reheats the fluctuation region to a tempera-
ture of ~ 10 GeV, providing a graceful end to inflation
and very likely ensuring that baryogenesis proceeds in the
usual way.’

In spite of the tremendous successes of the
inflationary-universe picture, the inflation appears upon
closer examination to be too effective. After a long infla-
tionary epoch, the comoving scales of all inhomogeneities
existing before the phase transition become exponentially
larger than the comoving scale of the presently observable
portion of the Universe. In view of this, whence came all
the substructures and inhomogeneities that are so con-
spicuous in the Universe today—stars, galaxies, clusters of
galaxies, etc? The answer to this question lies in a closer
examination of the state into which a fluctuation region in
the Universe evolves during the long inflationary epoch—
a nearly de Sitter vacuum.

The important parameter that characterizes a fluctua-
tion region during the inflationary epoch is the expecta-
tion value of the scalar field ¢ which is evolving towards a
SSB minimum. Linde,® and Albrecht and Steinhardt* as-
sumed that ¢ was nearly spatially uniform within a fluc-
tuation region from the beginning of the inflationary
epoch, and thus was uniform over the much smaller re-
gion that was to develop into our observable Universe
(which lies deep inside one fluctuation region). Since the
local expectation value of ¢ determines the subsequent lo-
cal evolution, a spatially uniform value of the expectation
value leads to a model in which, after the phase transition,
our observable Universe is, to a first approximation, per-
fectly isotropic and homogeneous. On closer examination,
it is actually a smooth background model in which the
evolution of small density inhomogeneities that are created
during the inflationary epoch can be analyzed without any
influence of preexisting inhomogeneities. In fact, it is well
known that ¢ is not spatially uniform in a de Sitter vacu-
um. The presence of an event horizon in de Sitter space
leads to a spectrum of zero-point fluctuations in the scalar
field with wavelengths O (H ~!), which can be attributed
to the Hawking temperature (=H /2m) associated with
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the event horizon.

In this paper we will show that the de Sitter zero-point
(quantum) fluctuations of the scalar field within the fluc-
tuation region evolve into a “scale-free” spectrum (up to
logarithmic factors)!® of density perturbations—the so-
called Zel’dovich spectrum.!! Fluctuations are produced
during the de Sitter phase (exponential expansion) when
their proper length scale is comparable to the Hubble ra-
dius (H~!). By the end of the inflation phase the proper
length scale of fluctuations is expanded to a length much
larger than the Hubble radius (which remains roughly
constant during the de Sitter epoch). After the Universe
reheats and FRW behavior resumes, the Hubble radius
grows until it equals the expanded fluctuation scale and
the perturbation then “reenters the horizon” as an acoustic
wave or a growing density perturbation, depending upon
whether the Universe is radiation dominated or matter
dominated by this time. The fractional perturbation am-
plitude on a given scale after reentering the horizon for
the acoustic wave in the former case is found to be

8p/p | p=4HAY/d .

This is a result relevant to questions of galaxy formation
(masses <10°—10'M). For the latter case the ampli-
tude when the scale reenters the horizon is

Sp/p|lu=+HAS/$ .

This is the result relevant to the large-scale isotropy of the
microwave background (masses > 10'°—10'*Mg). Aé and
¢ are evaluated at the time when the scale expands beyond
the Hubble radius during the de Sitter phase. The quanti-
ty A¢ is the fluctuation in ¢ when the scale is of the order
of the de Sitter Hubble radius (H ~'~Mp /M;>~10"°
GeV~!); we find that Aé is of the order of H /2.

Observations of the cosmic microwave background
severely constrain the amplitude of the Zel’dovich spec-
trum. On large angular scales ( >>1°) the observed tem-
perature anisotropy is <107*% As was shown by Sachs
and Wolfe,'? the predominant anisotropy on these scales is
due to perturbations in the ‘“gravitational potential.”
Their analysis for a matter-dominated background and the
Zel’dovich spectrum give

8T /T~+5(8p/p) | n=+HA$ /(1)

(1.2a)

(1.2b)

for angular scales >>1°. Therefore, the microwave back-

ground constrains HA¢/$(t;) to be less than about 1073,
or equivalently 8p/p <2 10~* on the scale of the present
horizon.~

The type (adiabatic or isothermal) and size of the inho-
mogeneities required for galaxy formation is a matter of
some debate.!> The nature of the “dark matter,” which
apparently dominates the mass density of the Universe,
whether it is massive neutrinos, gravitinos, or baryons, is
certainly an important consideration. If, as the inflation-
ary scenario predicts, () is very nearly one, a massive neu-
trino species (or another relic species) which dominates the
mass density is necessary since D is unproduced and “He is
overproduced (relative to their observed abundances) dur-
ing primordial nucleosynthesis unless Qb,,won<0.2.14 In
fact, only in a Universe dominated by a light relic species
can adiabatic perturbations, whose size is consistent with
the isotropy of the microwave background, grow suffi-

ciently to produce galaxies, etc., by the present epoch.!®
Roughly speaking, adiabatic perturbations of size
8p/p~10"**! when the relevant scales (> galactic scale)
enter the horizon can account for the present structure.
Perturbations on mass scales >10'" g (mass of a black
hole which would be evaporating in the present epoch)
should have amplitudes less than O (1) when they enter
the horizon, or else too many black holes would be pro-
duced and still be present today. Thus, the Zel’dovich
spectrum predicted in inflationary models is viable if the
amplitude of the perturbations is ~10~4—1073.

In the simplest model for “new inflation,” an SU(5)
model with Coleman-Weinberg SSB, ¢ and ¢? are less
than O (H?) during the de Sitter phase and 8p/p~10 on
the scale of the present horizon. Such a large value is
clearly inconsistent with the present state of the Universe
and is a devastating blow to the new inflationary scenario.
(As Vilenkin and Ford'® and Linde'” have recently dis-
cussed, these same scalar field fluctuations also lead to an
effective negative-mass-squared term in the scalar poten-
tial for small values of ¢, which quickens the evolution of
¢ towards the SSB vacuum and can prevent sufficient ex-
ponential expansion. The latter effect might be compen-
sated for by slightly altering the bare mass term in the La-
grangian, but this does not alter the conclusion that the
amplitude of the density perturbation is too big.)

These defects can be remedied if the period of slow evo-
lution of the scalar field (during which the Universe grows
exponentially in size) takes place when ¢>>H (and
J)>>H 2). Thus, the necessary features of a scalar poten-
tial suitable for new inflation seem to be (1) flatness for
¢ >>H, to ensure the slow growth of ¢ (and, hence, infla-
tion) and the creation of density perturbations of the
desired magnitude, 8p/p | g ~10~*—1073; (2) strong cur-
vature near the true minimum so that ¢ varies rapidly
(compared to H) and sufficient coupling of ¢ to other par-
ticles to ensure an efficient conversion of vacuum energy
to radiation. Recently it has been proposed that “reverse
hierarchy” supersymmetric models lead to inflation
without any of the undesirable fine tuning of parameters
required in the SU(5) GUT model with Coleman-
Weinberg SSB.!® We will analyze this kind of model, and
show that it is easily possible to satisfy the first criterion;
the large amplitude of the perturbations found for the
SU(S5) Coleman-Weinberg model therefore may only be a
minor setback for new inflation.

In Sec. II of this paper we will set up the formalism for
discussing the evolution of scalar field perturbations in the
inflationary phase and their conversion to radiation-
density perturbations during reheating. Our starting point
will be the general gauge-invariant formalism of Bar-
deen,'® adapted to deal with a scalar field rather than a
matter- and/or radiation-dominated fluid. There are
several alternative formulations of the perturbation equa-
tions, based on different ways of slicing the spacetime.
The dynamics of the scalar field during the inflationary
epoch are particularly simple when viewed from comoving
hypersurfaces (on which the energy flux vanishes), but
uniform Hubble constant hypersurfaces are best for fol-
lowing the perturbations through reheating. Both in-
dependent approaches will be followed. Much of the dis-
cussion in this section is highly technical, but in Sec. I A
we have provided a qualitative discussion of the evolution
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of the perturbations to explain why the spectrum of per-
turbations in the new inflationary scenario is nearly scale
invariant. In Sec. III we apply the results of Sec. II to the
simple SU(5) model with Coleman-Weinberg SSB, a model
for which the effective mass must be fine tuned in order to
achieve sufficient inflation; only by artificially adjusting
the coupling constant can we obtain a scale-free spectrum
of density fluctuations of an acceptable magnitude. Final-
ly, we turn to a semirealistic supersymmetric potential
which can be adjusted (rather than fine tuned) to yield the
desired results. We briefly discuss and summarize our re-
sults in Sec. IV.

II. EVOLUTION OF DENSITY PERTURBATIONS
IN AN INFLATIONARY UNIVERSE

A. Heuristic derivation of the scale-invariant spectrum

Although the quantitative analysis of the evolution of
the energy-density perturbations is highly technical and
gauge dependent, the most important qualitative feature,
the scale invariance of the spectrum of perturbations, can
be explained intuitively. We believe the following heuris-
tic discussion will serve as a useful guide to the detailed
computations that follow.

The Hubble radius (=H ~!) represents an important
scale in the analysis of the creation and evolution of
energy-density perturbations. During the de Sitter or in-
flationary phase, H is roughly constant,

H2~87V(0)/3Mp2~=Mg*/Mp? .

During the subsequent FRW phase H <t ~! (t=age of the
Universe). In either case, the scale factor S undergoes one
e-folding in a time interval O (H ~'). For this reason, mi-
crophysics can only operate coherently on proper length
scales less than O (H ~!).

The perturbation spectrum can be characterized by the
amplitude of the Fourier components of the density per-
turbation as a function of their wave number: Determin-
ing the perturbation on a given scale signifies computing
the amplitude of the Fourier component with an inverse
wave number equal to that scale. To each scale can be as-
sociated a proper (or physical) wave number k /S which
decreases as the Universe expands and a comoving wave
number k which remains constant as the Universe expands
because the effect of the growing scale factor has been di-
vided out. The evolution of a perturbation is best
described as a function of the ratio of the physical wave
number to the Hubble constant k /SH.

All scales we observe in our Universe have a value of
k /SH that is much greater than unity when the inflation-
ary epoch begins; the horizon problem, for example, is
solved in the inflationary scenario because our observable
Universe lies within a causal horizon volume [with radius
O (H ~1)] before the inflationary phase begins. Microphy-
sics (quantum fluctuations, etc.) can only affect perturba-
tions on scales for which k/SH >1. As inflation
proceeds, the physical scale of a perturbation grows
(k /SH decreases) until k/SH~1, and then onward until
k/SH <<1. Once the physical scale of the perturbation
grows such that k/SH <1, microphysics cannot act
coherently on that scale and alter the amplitude of the
physical perturbation. When the Universe reheats and
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FRW behavior resumes, the Hubble radius (H ') in-
creases ( «ct); k/SH begins to grow until kK /SH~1 once
again (now in the FRW phase) and the scale of the pertur-
bation is said to reenter the horizon. The evolution during
the period when k/SH <<1 is essentially kinematic in
character, given by the classical evolution equations for
energy-density perturbations in an expanding universe.

Clearly, the calculation of the perturbation spectrum is
divided into two parts: First, the effects of microphysics
must be estimated to determine the amplitude of the per-
turbations (characterized by comoving wave number k)
generated while k/SH > 1 up to the time when dynamics
“freezes out” (k/SH~1) during the inflationary phase.
The amplitude of the perturbation when the dynamics
freezes out depends upon the details of the particle-physics
model; we will consider two different models in Sec. III.
Second, we must trace the evolution of the perturbation in
the kinematic regime from the time when k /SH ~1 in the
inflationary epoch through the time when the perturbation
reenters the horizon (k/SH~1) in the FRW phase. Al-
though the final physical results do not differ from one
gauge to another, the identification of the relevant pertur-
bation amplitude and the description of the evolution of
the perturbation is gauge dependent when k /SH << 1.

The amplitude of perturbations at the time when the
dynamics freezes out in the de Sitter phase is expected to
be only weakly dependent on k. The microphysics that
acts when the physical wave number (k /S) is greater than
H is essentially independent of k since during the exponen-
tial expansion ¢, é&, and H are nearly constant.” The only
property that distinguishes the history of one scale
(characterized by comoving wave number k) from another
is the time at which k/SH~1 in the inflationary phase
and dynamics freezes out. Different scales reach
k /SH ~1 at different times but with essentially the same
perturbation amplitude. As the Universe expands these
scales grow; at reheating the physical sizes of these scales
range from that of the entire fluctuation region down to
the Hubble radius (~H~!), depending upon when
k/SH~1. A comoving scale corresponding to the present
observable universe had k /SH~1 about 57 e-foldings be-
fore reheating and the scale corresponding to the size of a
galaxy had k /SH~1 about 48 e-foldings before reheating
(assuming reheating to a typical GUT scale ~ 10'* GeV).
Although the freeze-out time does differ from scale to
scale, the time depends only logarithmically on scale since
S ~exp(H?t).

Given the amplitude of the perturbation when
k /SH ~1 in the inflationary epoch (which we have argued
is nearly independent of k), the evolution of the perturba-
tion can be traced through the period when k /SH << 1 (in
the late inflationary epoch and early FRW epoch) via the
classical evolution equations. Independent of gauge, the
evolution of the perturbation when k/SH <<1 can be
shown to be roughly scale independent; the basic reason is
that nothing can alter the amplitude of the real physical
perturbation when its scale is large compared to the Hub-
ble radius O (H ~!) (assuming microphysics is due to local
causal effects and there are no nonadiabatic stresses on
scales much larger than H ~!). For some choices of gauge,
e.g., the comoving gauge, it may appear as if the perturba-
tion (whose definition differs from gauge to gauge) grows
significantly during reheating when k /SH <<1; this is a
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gauge artifact stemming from a choice of hypersurfaces of
constant time which undergo great distortions during
reheating. The final result of the analysis of the comoving
gauge agrees identically with the result found for the uni-
form Hubble constant gauge in which the perturbation
remains constant during reheating, but is produced initial-
ly with a larger amplitude.

The nearly scale-independent amplitude of a perturba-
tion when it leaves the horizon (k /SH~1) during the de
Sitter phase and the scale-independent evolution while
k/SH <1, result in a spectrum of perturbations which
reenter the horizon with a nearly k-independent ampli-
tude. The quantitative determination of the amplitude
must be derived directly from the conditions which exist
at the time when, in the inflationary epoch, k /SH~1 for
a given scale.

Although the quantitative details which will follow are
important, albeit rather involved, we believe that the qual-
itative explanation just presented is the underlying reason
why each scale enters the horizon in the FRW phase with
nearly the sample amplitude, 8p/p | . This spectrum was
first considered (in a different context) by Zel’dovich and
Harrison.!!

To summarize, the de Sitter phase plays a crucial role in
this result in three ways: (1) it produces a “clean slate” in
which any previously existing inhomogeneities disappear
on all observable scales; (2) it provides a source—the event
horizon—of new perturbations on small scales O(H ')
which are then inflated to produce a spectrum of fluctua-
tions on large scales; and (3) it is approximately time-
translation invariant so that perturbations for any comov-
ing scale are produced under approximately identical con-
ditions and, as we have argued, evolve in an identical way
into the FRW phase. Because of the special properties of
the de Sitter phase it is possible to compute the spectrum
of fluctuations for a cosmological model from first princi-
ples, with essentially no assumptions being made about the
initial state of the Universe.

B. Notation and conventions

Although there is an extensive literature on the evolu-
tion of density perturbations, we have found it most con-
venient to employ the approach developed by Bardeen.!”
Some changes in notation and emphasis will be made to
adapt Bardeen’s approach to our problem, in which the
absolute value of the sum of the energy density p, and the
pressure pg is much less than p,.

The results will be derived using the comoving gauge in
Sec. III C and the uniform Hubble constant frame in Sec.
IIID; the latter gauge is particularly useful for demon-
strating that the results are insensitive to the details of
reheating in the inflationary-universe scenario (which is
not obvious in other treatments of the problem!®). In this
subsection we will introduce the notation and conventions
that will be used throughout.

All perturbations are measured with respect to an iso-
tropic and homogeneous background, with the line ele-

ment
ds?= —dt>+SX1)8,,dx%dx" . 2.1)

It would not be difficult to take into account any devia-
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tions from spatial flatness in the background, but in the
inflationary scenarios we are exploring, this is negligible
over the scale of our observable Universe. The proper ex-
pansion rate (Hubble constant) H is

172

H=S"'dS/dt=S/S = (2.2)

8
_:;Epo/ Mp?

We shall use units where fi=c=kpz=1, so that
G '"2=Mp =1.2Xx10" GeV. The relationship between
the background pressure p, and energy density po is
described by the parameters

(2.3a)
(2.3b)

WEPO/PO I’
¢;>=dpo/dpy -

Note that ¢, is a purely formal “speed of sound”; no as-
sumption is made about physics of energy-momentum ten-
sor beyond what is enforced by the symmetry.

During the inflationary phase we can decompose p, into
a contribution from the Higgs scalar field ¢ and a thermal
radiation contribution p,,

a -2
Po= V(¢)+E¢ +p, . (2.4)

(Note the absence of spatial gradient terms due to the
homogeneity of the background in the inflationary
scenario.) Contributions to p, from zero-point fluctua-
tions in other fields can be included in V(¢), so V(¢) be-
comes something like a finite temperature effective poten-
tial with a constant temperature the order of the Hawking
temperature. Any primordial thermal radiation present at
the beginning of inflation is rather quickly red-shifted
away and will be ignored in discussing the perturbations.
However, dissipation of dynamical oscillations in the
Higgs field through quantum particle creation, etc.,” will
produce eventually a new thermal component and it is this
which is being described by p,. The background pressure
is

a -2
poz—V(¢)+3¢ +pr . (2.5)
Eventually we expect that p, = %p,, but during the reheat-
ing process we need not assume any particular equation of
state.

Through the inflationary epoch the dominant contribu-
tion to pg is

py=V(0)=constant , (2.6)
so H ~constant, and

S =S,exp(Ht) . 2.7)
Note that

po+po=ad’+p,+p, , (2.8)

and not zero as it would be in a spacetime which is exactly
de Sitter.

The classical field ¢ is really the vacuum expectation
value of the quantum scalar field responsible for SSB
breaking, and a is a group-theoretic factor [e.g., for a
model in which an adjoint 24 of Higgs breaks SU(5) to
SU@B3) X SU(2) X U(1), @ =]. The evolution of ¢ and p,
is given by
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ap+3aH+V'()+8/$=0, (2.9)
where V'(¢)=0V /9¢, and
pr+3H(p, +p,)—8=0. (2.10)

The 8 terms in Egs. (2.9) and (2.10) account for the
creation of particles due to the time variation of ¢. Dur-
ing the inflationary epoch, the ¢ and 8/¢ terms in the evo-
lution equations for ¢ are negligible and to a good approx-
imation

3aH=—V'(¢); (2.11)

p- is negligible, as noted above
Once reheating is completed the Universe enters a
standard radiation-dominated FRW phase, with

Po=3Po=%p;» po~S~H H~S?~17'. (212

A perturbation is characterized by its comoving (coordi-
nate) wave number k or its corresponding comoving wave-
length A=2mk ~!, which remain constant as the Universe
expands. The physical wave number is k/S and does
change as the Universe expands. The spatial dependence
of a given k component of the density perturbation is
given by a solution of the scalar Helmholtz equation.

While the variables describing the perturbation can be
made mathematically gauge invariant, there is a funda-
mental physical ambiguity in the interpretation of pertur-
bations whose physical wave number k /S is smaller than
the expansion rate H (wavelength larger than the Hubble
radius). Perturbations in physical quantities such as the
energy density which are nonzero and time dependent in
the background are hypersurface dependent even though
the physical quantity may be a frame-independent scalar
in the physical spacetime. The question is which
constant-time hypersurface in the physical spacetime is to
be identified with the constant-time hypersurface in the
background spacetime.

Two choices of hypersurface are particularly convenient
for different aspects of the problem at hand. Before there
is significant reheating only the scalar field terms contri-
bute to the energy-momentum tensor. The dynamics of
the perturbations are greatly simplified by taking comov-
ing hypersurfaces on which, by definition, the energy flux
(momentum density) T? vanishes. Since the energy flux of
the scalar field is proportional to ¢¢,;, in the absence of
any other significant contribution to the energy-
momentum tensor, the scalar field is homogeneous on
comoving hypersurfaces, i.e., the perturbation in the scalar
field vanishes. These hypersurfaces must be distorted
geometrically, since the geometry of the hypersurfaces is
what carries information about the dynamics of the scalar
field perturbations.

The natural geometric choice of hypersurfaces is to re-
quire that the extrinsic curvature scalar K, the rate of con-
vergence of the hypersurface normals, be the same every-
where on a given constant-t hypersurface. Since the aver-
age rate of expansion (Hubble constant) is just H = — 1K,
we call these hypersurfaces uniform Hubble constant or
uniform expansion hypersurfaces. In a pure de Sitter
space there is no unique foliation in these hypersurfaces;
there are an infinite number of uniform expansion hyper-
surfaces through every point corresponding to all possible

directions of a unit timelike vector. However, the back-
ground is not exactly de Sitter and in the real background
the unique uniform expansion hypersurfaces coincide with
the comoving hypersurfaces. In the presence of perturba-
tions the uniform expansion and comoving hypersurfaces
differ, so, e.g., the amplitude of the fractional energy-
density perturbation on uniform expansion hypersurfaces
is not the same as in the comoving gauge.

C. The view from the comoving gauge

We will denote the perturbation amplitudes on comov-
ing hypersurfaces by a subscript ¢ (instead of the m used
in Ref. 19). The perturbed metric tensor can be read off
of

ds?= —(1+2a,Q)dt?
+S2[(14+2h, Q)8 +2f.Q,;1dx'dx ',

where Q(x;) is a spatial harmonic with coordinate wave
number k, and where we choose to propagate the spatial
coordinates normal to the hypersurface. The amplitudes
ac, h., and

(2.13)

o.=f, (2.14)

measure properties of the hypersurface independent of the

choice of spatial coordinates. The perturbation in the in-

trinsic curvature scalar for the hypersurface is
2

k .

= | h()Q(x")

SR=4
S

(2.15)

and o, is the amplitude of the shear of the world lines
normal to the comoving hypersurface. The coefficient a,
measures the perturbation in the ratio of proper time to
coordinate time intervals along normals to the comoving
hypersurface.

The fractional energy-density perturbation is described
by €., where (8p/pg)=Qe€.. As long as the scalar field is
the only significant contribution to the energy-momentum
tensor, the vanishing of A¢ on comoving hypersurfaces
means that the only contribution to 8p comes from the ki-
netic term, due to the difference between proper time and
coordinate time, and

Q€. =8p/po=8(a’/2)/po=—(ad’ /po)Qa, .

The only perturbation in the stress tensor is a similar con-
tribution to the isotropic pressure perturbation,

(2.16)

8p /po=m.Q=—(ad*/po)a.Q . (2.17)
The “nonadiabatic” pressure perturbation
8p /po—(8p/polldpo /dpo) =1Q (2.18)

plays an important role in the perturbation equations since
to first order it is independent of the hypersurface condi-
tion and plays the formal role of a source term in the
equation for the evolution of €.. Physically, 7 measures
the difference between the actual pressure perturbation
and that expected from the energy-density perturbation
and the background equation of state. [Note that the 7
defined by Eq. (2.18) is w =py/po times the 7 defined in
Ref. 19.] Equations (2.16)—(2.18) can be combined to give
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n=(1—¢2e, . (2.19)

The equation for the dynamic evolution of the density
perturbations can be derived straightforwardly from
Einstein’s equations and for the case of comoving hyper-
surfaces can be written as [See Eq. (4.9) of Ref. 19]

Z—(y—1VHZ —[y+3(1+w)]H?*Z

+(k%2/SHZ=—H™ ), (2.20)
where
2
Z= % € , (2.21)
y=—3(14¢,2)=H " 'd[In(py+py)]/dt . (2.22)

We have assumed the anisotropic stress (shear stress) van-
ishes. To first order in the perturbations this follows if
the energy-momentum tensor is the Higgs-field energy-
momentum tensor plus a perfect-fluid energy-momentum
tensor, as in the reheating scenario of Albrecht et al.® As
was argued in Sec. Il A microphysics (quantum fluctua-
tions, etc.) can affect perturbations on a comoving scale
only when k/SH > 1. This is formally realized in Eq.
(2.20) through contributions to the nonadiabatic stress (7)
or anisotropic stress (7r) amplitudes, the source terms
which are formally O(k%/S*H?) and O(k%./S’H?)
smaller than the terms on the left-hand side of Eq. (2.20),
respectively. When Eq. (2.19) is used to determine 7, the
evolution equations are purely classical and only describe
the evolution of quantum fluctuations after they are gen-
erated.

In the comoving gauge the relevant perturbation ampli-
tude is Z, and its evolution is given by Eq. (2.20). The
main advantage of Eq. (2.20) is that it is a single differen-
tial equation which describes the complete evolution of the
perturbation. Assuming efficient reheating, Eq. (2.20) can
be integrated from the time the perturbation leaves the
horizon (k /SH ~1) in the de Sitter epoch, through reheat-
ing, until the perturbation reenters the horizon in the sub-
sequent FRW phase. (In Sec. IID we will switch to uni-
form Hubble expansion hypersurfaces which allow us to
also consider the case of inefficient reheating.)

From Eq. (2.20) it follows that, with the exception of
the few Hubble times before and after reheating, Z
remains roughly constant from the time k/SH~1 in the
de Sitter phase until the perturbation reenters the horizon
during the FRW phase which follows. During reheating
Z grows by a factor of O(MG4/¢ ). This occurs because
as ¢ speeds up and begins to rapidly approach o,

2= —1—(3)H~'d In(po+po)/dt

~—1—2¢4/(3H¢)

becomes less than — 1 and y= —3(1+4¢,2) becomes greater
than zero. For y >0 the “growing mode” solution for Z
increases with time. Near ¢=o, cszz-—Za/ 3H, and
v~20/H >>1. As ¢ oscillates around ¢ =0, c,? oscillates
between +O(o/H), settling down to 5 as the vacuum en-
ergy is converted to radiation. In exact de Sitter space
¢?’=—1, y=0, and Z=constant is the growing mode
solution to Eq. (2.20). The fact that the inflationary phase
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is not exactly de Sitter (¢,2< —1, ¥>0), is why Z grows
during the inflationary phase—de Sitter space is marginal-
ly stable with respect to the growth of perturbations.
Geometrically, the growth of Z during reheating can be
understood because complex distortions of the comoving
hypersurfaces are necessary to keep the energy flux zero as
the coherent energy of the ¢ field is converted to radia-
tion. A detailed discussion of the solution of Eq. (2.20)
now follows.

When k/SH ~1 in the de Sitter phase for a given per-
turbation, the only significant contribution to the energy-
momentum tensor is that of the Higgs scalar field ¢; Eqgs.
(2.19) and (2.20) may be combined to give

2/8%Z=0.
(2.23)

Z—(y—1VHZ —[y+3(1+w)H*Z +(k

Because the potential energy density V' (¢) dominates the
kinetic energy density a¢?/2,

w =po/po=—1+(ad’ +pr+p.)/po=~—1. (2.24)

Also, the coefficient y as defined by Eq. (2.22) will be
rather small and vary slowly relative to the background
expansion rate, since during most of the long inflation
epoch the evolution of the Higgs field ¢ is very slow. For
a few Hubble times when k /SH ~1 in the de Sitter phase
we can approximate (2.23) by

Z+HZ +(k?/S*Z =0, (2.25)

with H approximately constant and S~exp(Ht). A
WKBIJ solution of Eq. (2.25) when kK /SH > 1is

Z~Zo[1—+(HS /k)?}]~ 174

xcos | ['dr'(k /11— +HS /K2 L. (2.26)

The quantity Z oscillates with nearly constant amplitude
and an effective propagatlon speed equal to the speed of
light, even though ¢;?’=—1. As k/SH becomes less than
one the (k?/S%)Z term in Eq. (2.25) quickly becomes
negligible; depending on the phase of the wave at freeze-
out, Z will approach a roughly constant value Z; some-
where between —Z, and +Z,, where |Z,|~Z;~€,
when k /SH ~1.

Since 7 is not exactly zero and becomes large and posi-
tive during the last few Hubble times before reheating, one
cannot neglect ¥ in Eq. (2.23). However, by the time the
effects of a nonzero y become appreciable, k /SH << 1, and
to a good approximation the (k2/S?)Z term can be
neglected;

Z—(y—1)HZ —yH*Z~0 . .27
With E (t)=py+po, an exact solution of Eq. (2.27), which
has Z~Z ~c¢€, at t =t (the time k /SH ~ 1), is

Z()=2, fthexp[H(t’—t)]E(t’)/E(t1)dt'

+Z exp[—H(t—t;)] . (2.28)

Note that
Z=Z\HE(t)/E(t,)—

HZ (2.29)
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vanishes at ¢t =t¢, and as long as E(¢) varies slowly on a
Hubble time scale,

Z(t)~Z {E(t))/E(t,),

where (E(t)) is an average of E(z) over the last Hubble
time or so.

The solution given by Egs. (2.28) and (2.29) remains
valid until reheating, ¢=t,, when ¢ increases to
¢ ~a~Mg. The characteristic dynamical time scale for
the Higgs field ¢ is then o '~Mg~'<<H(t,)"!
~Mp/Mg?. The conversion of the coherent energy of the
Higgs field to radiation by decay of the Higgs-field oscil-
lations and thermalization of the decay products is expect-
ed to take place on this dynamical time scale (see Albrecht
etal® In a time (Af)gy<<H(t,)~! the energy-
momentum tensor transforms from being dominated by
the old vacuum energy density p, =¥ (0), to being dom-
inated by incoherent radiation with p,=%p,. During
(At)ry the total energy density does not change appreci-
ably, so at the beginning of the radiation dominated era
Pr=py.

With (At)gy <<H(t,)~! the comoving gauge solution
for Z can easily be continued right through reheating.
Once the radiation becomes appreciable the nonadiabatic
stress amplitude 7 is no longer given by Eq. (2.19), but it
should never be substantially larger. Because
k/SH |,_,, <<1 the 7 term in Eq. (2.20) can still be

neglected. The other assumption made in approximating
Eq. (2.20) by Eq. (2.27), that w~—1, is not valid during
(At)py, but it is clear from Eq. (2.23) that a change in w
of order unity can have an effect on Z only after a time
the order of H(t,)~!. With (At)ggy <<H(t,)~! our ap-
proximate solution embodied in Eqgs. (2.28)—(2.30)
remains valid through reheating. This gives at the begin-
ning of the radiation era

(2.30

Z(t,)=[%Z,p,/E(t)]O(H /M) , (2.31a)
after averaging over the previous Hubble time and
Z(t,)=%Z H,p,/E(t))[1-O(H/M3)],  (2.31b)

where H, =H (t, ).

If the background remains radiation dominated, p = —;-p,
there is a well-known analytic solution of Eq. (2.20) valid
for ¢t >t,. This is

Z()=a,(x ~3sinx —x "2 cosx)

+ay(x3cosx +x ~2ginx) , (2.32)
where
x=["ckS~1dr'=k /(V3SH)
=[142H,(t —1,)]"*k /(V3S,H,) . (2.33)

The coefficients a; and a, in Eq. (2.32) are determined by

matching to the above initial data at ¢r=t,. With
k/SeH, <<1,x, =x(t,) << 1, and
Z(t,)=+a;+x, " %a,, (2.34a)
Z(ty)=—+x,*H,a,—3x, Hya, . (2.34b)

Since | Z(t,)| >> |HZ(t,) ],
ay=—+5x:Zp,/E(t}), (2.352)

a=—3x, %a,=%Z,p,/E(1,) . (2.35b)

By the time S/S(t,)>>1, the contribution of the ‘“decay-
ing mode” to Z is negligible, and using Eq. (2.33),

(2.36)

If the background is still radiation dominated when
k/SH ~1, then the amplitude of the sound wave which
the perturbation becomes once it is well within the Hubble
radius (reenters the horizon) is (x >>1)

8p/po| n=4Z,p,/E 1)
=4Ad /(1)) .

Expression (2.37b) follows since in the comoving gauge
¢ =constant, and

Z 1 =€(1))=Aa$’/2) |1, /po=(adB) |, /po .

€.=4Z[p,/E(1))](x 'sinx —cosx) .

(2.37a)
(2.37b)

We would like to relate AéS to A¢, the fluctuation in ¢
measured in the uniform Hubble expansion gauge (a frame
in which the geometry is “smooth,” since the t =constant
hypersurfaces have not been distorted to conform to
¢ =constant). This is straightforward to do because when
k/SH <1, €,~¢€,/3. [€, is the fractional energy-density
perturbation measured in the uniform Hubble constant
gauge; €.~¢, /3 follows from Egs. (2.38) and (2.43) in Sec.
IID.] Since e,~V'A¢/po~—3aHpAd/p, (recall during
inflation V'~—3aH¢), it follows that Ap~HA¢. Thus,
Eq. (2.37b) can be written in terms of A¢ as

8p/po | r=4HAP/d(t,) .

How these waves eventually evolve into condensations on
various scales from galaxies to clusters of galaxies, and
produce anisotropy in the microwave background, has
been treated extensively elsewhere and will not be reiterat-
ed in this paper.

On large enough scales (M >10""—10'Mg) the
Universe will change to being matter dominated before
k/SH ~1. This modifies the behavior of Z, but in a
well-understood way. The fractional-density perturbation
is of the order given by Eq. (2.37) when k/SH ~1 (the
factor of 4 is replaced by <), and thereafter grows linearly
in S.

It may appear puzzling, in light of the discussion in Sec.
IIA, that Z grows significantly during reheating even
through k/SH <<1. This is an example of how the
description of the evolution of the perturbation up to the
point where k /SH~1 in the FRW regime can be gauge
dependent. In the comoving gauge, we trace the evolution
of the quantity Z whose value when k/SH~1 in the de
Sitter phase is given by the fractional perturbation in the
total energy density. The formal quantity Z grows
dramatically during reheating so that by the time
k/SH~1 during the FRW phase, it is a factor of
O(Mg*/$?) larger than when k/SH =1 in the de Sitter
phase. By contrast in the uniform Hubble constant gauge,
as we shall see, we trace a formal quantity whose value
when k /SH ~1 in the de Sitter phase is given by the frac-
tional perturbation in the nonvacuum part of the energy

(2.37¢)
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density only. This quantity does not change during
reheating and remains more or less constant up to the time
when k/SH~1 in the FRW regime. At that time, it is
meaningful to compare the formal quantities in the two
gauges and identify them as the physical perturbation am-
plitude. At this point the amplitudes found in the two
gauges must and do agree.

D. The view from the uniform Hubble constant gauge

We will denote the perturbation amplitudes on uniform
Hubble constant hypersurfaces by the subscript u. For ex-
ample, the amplitude of the fractional-energy-density per-
turbation is denoted by €,. The metric-perturbation am-
plitudes relative to uniform expansion hypersurfaces are
denoted by a,, h,, and f,, and are defined by the corre-
sponding version of Eq. (2.13). Also, let o, =f, measure
the shear of the uniform-expansion hypersurface normals.
Note that 4, is a measure of the distortion of the intrinsic
geometry of the uniform-expansion hypersurfaces, just as
h, is for the comoving hypersurfaces via Eq. (2.15).

The perturbation equations written in terms of these
new variables are Eqgs. (6.24)—(6.26) of Ref. 19. With ap-
propriate changes of notation these are

2
2 | k
6“ =—3— E}—I- hu > (2.38)
[k2+ 127G (po+Ppo)S?]a,
=—kX1+43¢,Hh, —2H>S™y, (2.39)
(h,—Ha,)+3H(h,—Ha,)
2
-+ % (hy+a,)=H?mr . (2.40)
Here 7 is a measure of the anisotropic stress,
STy — 38, T =porr(k Q.5+ +8;Q) ,  (2.41)
which vanishes except possibly during reheating.

Remember the amplitude 1 of the nonadiabatic pressure
perturbation is to first-order hypersurface independent, so
7 in Eq. (2.39) is the same as in Eq. (2.20). We could sub-
stitute Eq. (2.39) into Eq. (2.40) to get a single second-
order equation for A, given that 7 is a known function of
time. Actually, 77 is not a known function of time, but at
least before reheating is related to €, by Eq. (2.19). Still,
we will see that in the limit kK /SH << 1, Eq. (2.40) has a
very simple approximate solution which holds all the way
through reheating.

Equations (2.39)—(2.40) and (2.20) are mathematically
equivalent. The exact transformation between the vari-
ables is generated by a displacement of the comoving hy-
persurfaces relative to the uniform-expansion hypersur-
faces by an amount At, with

Po Z+H™'Z
HAr Po+Po 14 127G (pg+po)S2/k? 242)
This gives
hy=h,—HAt
g 0B zem-12
2| k | 14120G(pg+po)S2/k?
(2.43)
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An exact solution of Eq. (2.40) before reheating is ob-
tained by substituting

H2S Y =k*(1—¢,2)Z (2.44)

in Eq. (2.39), and by solving Eq. (2.43) simultaneously
with Eq. (2.40). This is obviously more complicated than
solving Eq. (2.20) with the same substitution for n and
represents an important advantage for the comoving-
gauge approach.

The difficulty with the comoving-gauge derivation
comes when the scalar field ¢ begins to oscillate about the
true vacuum minimum at ¢ =0 and reheating takes place.
Once there is an appreciable thermal contribution to the
energy-momentum tensor, the perturbation in ¢ no longer
vanishes on comoving hypersurfaces and to find % one
must solve the perturbed evolution equation for ¢. Also,
¢;2 becomes very large and negative, and may fluctuate
wildly during the reheating process. We will see that one
can argue the 7 term is unimportant in either Egs. (2.20)
or (2.39), but the uniform expansion hypersurface ap-
proach isolates the growing mode of density perturbation
more cleanly and allows a more straightforward handling
of the variations in c,2.

In the uniform Hubble constant gauge the evolution
during the period when k /SH << 1 is quite simple because
the amplitude

E=h, {14+k%/[120G (po+po)S?]}

is nearly time independent throughout the period when
k/SH << 1, as can be seen from Egs. (2.39)—(2.40). From
Egs. (2.38) and (2.2) it follows that

(2.45)

2_Po

3 2
=5e€, [(HS/k)" +
=76 9 po+po

(2.46)

when k/SH <<1. During inflation py/(py+po)>>1 so
that {~(8p),/(po+po) when k/SH~1. Thus, § is a
measure of the fractional perturbation in the nonvacuum
part of the energy density. The vacuum stress tensor has
Py = —py=constant and contributes to neither (§p), nor
pPo+Po. When the perturbation reenters the horizon
(k/SH ~1) in the FRW era, py/(pp+po)~1 and Eq.
(2.46) implies { ~€,. In a sense, there is no change in am-
plitude of the perturbation while k /SH << 1.

Recall, in the comoving gauge the amplitude Z is given
by Z =(HS/k)®¢,. When HS/k~1, Z represents the
fractional perturbation in the fotal energy density. In con-
trast to §, Z does not remain constant while the scale in
question is outside the horizon.

The argument for § being constant is as follows. The
last term on the left-hand side of Eq. (2.40) is too small to
have any appreciable effect on the solution of Egs. (2.39)
and (2.40) while k /SH << 1, since it is intrinsically of or-
der (k /SH)? times the first two terms. Assuming the an-
isotropic stress () is negligible, Eq. (2.40) says that there
are two independent modes, a decaying mode
Ii,, —Ha, ~exp(—3Ht) which rapidly becomes negligible
and a “constant mode” with

(S/8)[(143¢,)h, + 5 (HS /k)*n]
1+ 127G (py+po)S? /k?

k};quauz_

(2.47)
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The nonadiabatic stress amplitude 7% has a negligible effect
in Eq. (2.47) if

1 <<(k/SH)?*h, ~¢€, .
From Egq. (2.43),
(k/SH)?*h,~Z /[ 1+ >(HS /k)po+Po)/po] »

while at least before reheating 1 ~e¢, ~(k/SH)*Z. As
long as (py+po)/po<<1, the inequality (2.48) is satisfied.
Once a substantial amount of vacuum energy is converted
into radiation during reheating, Eq. (2.48) breaks down,
but by then

[14127G(po+p)S?/k*] ~(HS /k)* >> 1

(2.48)

and the whole right-hand side of Eq. (2.47) i}negligib]y
small.

A heuristic physical argument for the neglect of 7 and
77 is based on the fact that on the scales we are interested
in, the decay of the false vacuum occurs while the pertur-
bation wavelength is large compared to the Hubble radius.
The initial fluctuations in ¢ imply fluctuations in the
roll-down time for ¢ to reach ¢ ~0, just because ¢ starts
out further down the barrier in some regions than others.
Spatial gradient terms are negligible and the vacuum de-
cay process should proceed as the same function of local
proper time in different regions. This means the energy
density p and pressure p should be the same functions of
proper time as in the background spacetime, except for an
offset 8¢ due to different starting conditions. Then

d d
8p=%5t, 5 —7’;"—& ,

and by Eq. (2.18), 7~0, 8p/8p=c,%. This argument ap-
plies all the way through reheating, whether or not it is ef-
ficient.

The anisotropic stress amplitude 71 is zero at all times
in the simple reheating model of Albrecht er al.,’ since
$,i9,; is second order in the perturbation amplitude and
the thermal stress tensor is assumed to be isotropic. The
largest 7, could reasonably be is the ratio of some effec-
tive particle mean-free path to the perturbation wave-
length times €,, but the effective particle mean-free path
cannot be greater than a few times H —1, Thus, we expect
Tr <<€, <<h,, while 7r~h, is necessary to invalidate
Eq. (2.47).

The exact solution of Eq. (2.47) once =0 is

E=h, {1+k?/[127G(po+po)S*]} =& =constant ,
(2.49)
since
143¢,>=—d In[(po+po)S*]/d InS .

To find {; we match to our approximate solution for Z
[Eq. (2.28)] when both it and Eq. (2.49) are valid, i.e.,
when k/SH << 1 and (pg+po)/po<<1. In this regime Eq.
(2.43) gives

hy=5(HS /KX Z +H~'Z)[14 120G (pg+po)S/k?] !
(2.50a)
or by Eq. (2.29),

E=Cr=[po/(po+po)IlZ,E()/E(;)] . (2.50b)
Since until reheating po=p, =constant,

&§=Z,[po/(po+po)li=, - 2.51)
After reheating and as long as k/SH «<1, k2%/
(127G (po+Ppo)S?) << 1 and Eq. (2.51) becomes

hy=Z[po/(po+P0)]t =, - (2.52)

No assumption about the background equation of state
during or after reheating was involved in deriving Egs.
(2.50) or (2.51). Reheating may be very inefficient and
take many expansion times. In order not to affect nu-
cleosynthesis calculations, reheating and rethermalization
should be complete at a temperature of at least 10 MeV or
so. Of course, baryogenesis must work out properly, but
this may not require rethermalization to a high tempera-
ture. In any case, one should be back to a conventional
radiation-dominated FRW model well before k/SH in-
creases to O (1) on any scale relevant to galaxy formation
or anisotropy of the microwave background.

The transition through k /SH ~1 is most easily handled
by going back to Z (or €,) as a variable. With pozépo
and k/SH << 1, Eq. (2.43) gives

E=hy,=[3 +po/(po+po)1Z=5Z . (2.53)

Following through the matching of solutions as before, we
find with greater generality that the amplitude of the
sound wave at k /SH >>1 is given by Eq. (2.37).

If the Universe is matter dominated by the time
k /SH ~ 1, the value of Z at k/SH << 1 from Egs. (2.43)
and (2.36) is

Z=2Z,=%L,=%Z\[po/(po+P0)]i s, - (2.54)

The relevant solution of Eq. (2.20) with p,=0 is just Z
remaining constant even after k/SH > 1, and if S, is the
scale factor when k /SH =1,

€.=36,(S/S,). (2.55)

The amplitude of the perturbations as they reenter the
horizon (Hubble radius) in the FRW epoch is governed by
the parameter £, as defined by Eq. (2.50), either through
Egs. (2.37a) or (2.55). What are plausible values for {
based on the microphysics of the Higgs field? From Egs.
(2.16) and (2.8),

Sr=—0cli=t,» (2.56)
but a physically more natural and intuitive way of looking
at the microphysics of the perturbations is from a frame
of reference in which the geometrical perturbations are
small when k /SH ~1. The uniform-expansion hypersur-
faces provide such a frame of reference, since at t =¢; and
with (po+po)/po<<1 Egs. (2.39)—(2.43) imply A, ~a,

On uniform-expansion hypersurfaces the perturbation
in the scalar-field expectation value (8¢), is found from

0=(8¢), =(84), +pAt , (2.57)

where the displacement Az of comoving relative to
uniform-expansion hypersurfaces is given by Eq. (2.42).
Since Z is slowly varying at ¢ ~¢,,
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At/Q=H '[po/(po+po)1Z=H "¢, . (2.58a)
The amplitude corresponding to (8¢), is

(A$), =(8¢),/Q=—H "¢, (2.58b)
SO

Gr=—H(AD) /|y, » (2.58¢)

which confirms Eq. (2.37b). Any gauge in which the
metric perturbation amplitudes are small compared with
&y at t =t will see the initial perturbation as a scalar-field
fluctuation, with A¢=(A¢),, in an appropriate de Sitter
background. How rapidly the metric perturbations grow
and whether they become comparable with £, before or
during reheating depends on the gauge. In the uniform-
expansion gauge the spatial metric perturbations grow as
S? once k/SH <1, while in a synchronous gauge'® the
metric perturbations stay small until reheating, when they
suddenly increase to order {y. All the usual gauges
describe the perturbation as being predominantly a “cur-
vature perturbation” with roughly constant amplitude
after reheating up until the time k /SH ~ 1 again.

III. RESULTS IN TWO SPECIFIC MODELS
OF NEW INFLATION

In the previous section we determined the spectrum of
the density perturbations which result from quantum fluc-
tuations in the scalar field responsible for SSB in the gen-
eric model of new inflation. The basic result is that when
the physical length scale of a density perturbation equals
the Hubble radius during the FRW epoch that follows in-
flation 8p/p | y=(4 or 2)HA$/$(t,), where ¢, is the time
when that scale expanded beyond the Hubble radius dur-
ing the de Sitter epoch and 4 () applies if the Universe is
radiation (matter) dominated when the scale reenters the
horizon. As we discussed in Sec. IIB, the spectrum
should be nearly scale independent in all models of new in-
flation; however, the amplitude depends upon A¢ and
&(tl) which, of course, depend upon the shape of the sca-
lar potential. In this section we will consider two very dif-
ferent models: (1) an SU(S) GUT with Coleman-Weinberg
SSB; (2) a supersymmetric GUT with a potential of the
O’Raifeartaigh-Witten type.

A. Coleman-Weinberg SU(5) GUT

We will first evaluate the amplitude of the density per-
turbation spectrum for the simplest model of new infla-
tion, the SU(5) model with Coleman-Weinberg SSB. The
behavior of the fluctuations of ¢ in an inflationary
universe based on Coleman-Weinberg SSB has been con-
sidered by several authors but probably the most complete
analysis has been provided in a recent paper by Linde.!
For Coleman-Weinberg SSB with the effective mass of the
scalar field (including the effects of the coupling of the
scalar field to the curvature) set to zero, Linde finds that
the quantum zero-point fluctuations at a time At after the
beginning of the de Sitter phase are given by

3
<a¢2>=fr—2At , (3.1)

where At is the “clock” time elapsed since the spinodal
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domains appeared, at a physical temperature T <H. The
original thermal contribution to (a¢?) can be .ignored
compared with the zero-point fluctuations after several
Hubble times. The physics of Eq. (3.1) is that fluctuations
in ¢ are generated on each comoving scale, represented by
the comoving wave number k, when k/SH ~1 in the de
Sitter phase, starting when the temperature falls below the
Hawking temperature say, at t~t%,. This is when the con-
formal noninvariance of the minimally coupled Higgs-
field equation first makes itself felt. Once generated, and
expanded so that k/SH <1, the fluctuations on a given
scale are frozen in place. As smaller and smaller scales
(larger and larger k) pass through k /SH ~ 1, the total con-
tribution to {(a¢?) steadily increases. The contribution to
{a¢?) from one e-folding of k is produced in one Hubble
time H~!. The amplitude of the fluctuation A¢ associat-
ed with a given scale k is naturally taken from Eq. (3.1) to
be

Ap=(H?*/4am) 2 =a~V2H /27) ; (3.2)

note that H /21 is the Hawking temperature.

The cumulative effect of fluctuations on scales larger
than the scale in which one is interested contributes to the
background value of ¢. In this context, the evolution of
the background is not just the evolution of the uniform
classical field governed by

14
9¢
but should contain a source term corresponding to the
growth of ¢ due to quantum fluctuations. During the de
Sitter phase after t ~¢y the a¢ term in Eq. (3.3) is small
compared with the other two terms, and the classical evo-
lution of ¢ is

a$p+3aHé+-——=0, (3.3)

1 av
3aH 3¢
On the other hand, evolution by quantum fluctuations ac-

cording to Eq. (3.1), whose derivation assumes 9V /3¢ ~0,
gives

p~ (3.4)

. H3 4
¢ P (ad)™" . (3.5
As ¢ increases, the solution including fluctuations should
go from Egs. (3.5) to (3.4). A modification to Eq. (3.3)
whose solution has this property is
9 BV 3 44 —1
3aH$+ 36 8772H o .

This makes sense as a background equation for ¢ only as
long as ¢ <<H@$. Within about one Hubble time of the
end of the de Sitter phase the ¢ term is important, but by
this time the de Sitter fluctuation term is no longer signifi-
cant. At this point one can go back to Eq. (3.3) with the
appropriate terms added to model the reheating process
[see Eq. (2.9) and Albrecht et al.’].

In the conventional SU(5) GUT model one can choose
the parameters of the Higgs field so that in the de Sitter
background the zero-temperature effective potential has
the Coleman-Weinberg form

V(g)=Vo—+MP)g*,

(3.6)

(3.7
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where
— 4 g— 89 1
M¢)=8Bg" |In max(H,g |$]) +7 1, (3.8)
Vo=+B(go)*. (3.9)

Here g is the gauge coupling constant. The true vacuum is
at ¢=0, where V(¢)=0, 0V /3¢=0. The coefficient
B =5625/(10247%) in a SU(5) model, which we will use
for our calculations. We have ignored in Egs. (3.8) and
(3.9) the fact that the relevant true vacuum should be in a
flat-spacetime background rather than a de Sitter back-
ground. The corresponding corrections to ¥, are negligi-
ble. Whether the choice of parameters which gives Eq.
(3.7) is in any sense “natural” will not be argued here.'® A
mass term in Eq. (3.7) small enough to leave the inflation-
ary scenario intact would not modify any of our subse-
quent results in a qualitatively important way. As long as
|¢| <<o and H <<go, A is nearly constant, and

vV 3

36 ~—Ad> .
During the de Sitter phase both of these conditions are
easily satisfied.

A classical treatment of the evolution of perturbations
makes sense only when the evolution of the background is
classical, i.e., when [see Eq. (3.6)]

3
?77_2_ H4¢ 1 < }\’¢3 .
The solution of Eq. (3.6) when the classical evolution is
dominant is
(¢/H*=Ba 2 )[H(t, -], (3.12)

where as usual ¢t~t, corresponds to the time of reheating.
Thus, inequality (3.11) is satisfied as long as

(3.10)

(3.11)

f’pﬂ ~(4 or L)@~ 2H?/2m) /[H*(3a /80)/A(AB)~ 2]

H

~(4 or $)110(A"2/a)[1+1In(ky /k)/5T+1In(go /10" GeV) /57172 .

As advertised, the predicted amplitude of the curvature
perturbations depends on the scale only logarithmically.

To get 8p/p~3%x10% say, on a current Hubble
volume scale, we must have from Eq. (3.16),

A~5%10""g2~3% 1077, (3.18)

assuming that go~2.5X10'* GeV, a=--. The only way
to get A this small is to reduce the coupling g by a factor
of ~3x1073. (The coupling constant g depends only log-
arithmically on the unification scale.) In other words, tak-
ing A=~4, the value obtained from agyr=g(0)*/4r~5
through the renormalization-group equations (see Ref. 4),
we find that 8p/p | y~10 on the current Hubble scale.
One might object that our linear perturbation analysis
should not be trusted if the result is 8p/p | y=~10>>1 for
the appropriate GUT value of A. Quantitatively, this ob-
jection is valid; complicated nonlinear effects may alter
the actual amplitude. However, to obtain the desired re-

H(t, —t)<a(6mi/A)?. (3.13)

Assuming efficient reheating [to a temperature
~O0(go)], the time t; at which the scale corresponding to
the present Hubble radius (~10?® cm) leaves the horizon
during the de Sitter phase [ky /S (¢;)H ~1] satisfies

AB=H(t, —t;)=57+In(go /10" GeV) . (3.14)
In general, for the comoving scale k,
AB=H (t, —t,)
=57+In(ky /k)+1n(go /10 GeV) . (3.15)

For the scale corresponding to a large galaxy (A~1
Mpc~3x10* cm)

AB~48+In(go /10" GeV) .

The exponential dependence of S on ¢ during the de Sitter
phase means that at ¢ =t,, k /SH is exp(—AfB). From Eq.
(3.13) we see that for A <1 and a =<, the classical evolu-
tion equation, Eq. (3.12), is appropriate for all observable
scales. In the standard SU(5) GUT model A=4. With
this value of A, the amount of inflation is not sufficient to
make a current Hubble volume scale satisfy k /SH >>1 at
the time of freeze-out of thermal fluctuations, which is a
fundamental requirement for the new inflation to work.
This is the conclusion drawn in Ref. 16.

As we shall soon see, the requirement that the density
perturbations produced from the quantum fluctuations in
¢ be consistent with the isotropy of the microwave back-
ground constrains A to be << 1. So, for the sake of argu-
ment, let us assume A is small and that ¢ evolves classi-
cally during the whole time that perturbations on observ-
able scales are generated. From Egs. (2.37), (3.2), (3.12),
(3.14), and (3.15) we find that

(3.16)

(3.17)

r
sult 8p/p | g ~10~*, beginning from a value of the pertur-
bation greater than unity, the nonlinear effects would have
to cause the amplitude of the perturbation to decrease
through a regime where its magnitude is of order 10! or
102, At this point, a linear perturbation analysis should
be valid and then, we conclude, no further decrease is pos-
sible. In other words, it is difficult to imagine that the
nonlinear effects can reduce 8p/p | y below 10~! or 1072,
and it is probably overly optimistic to expect even this de-
crease. While our patching together of the quantum re-
gime and the classical regime in analyzing the evolution of
the background value of ¢ is also very naive, any model
which undergoes slightly more inflation than is necessary
to explain the large-scale homogeneity of the Universe
should be in the classical regime [cf. Eq. (3.11)], by the
time that fluctuations are being created on observationally
relevant scales. Both these points deserve further investi-
gation, but we are reasonably confident that our qualita-
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tive conclusions will stand.

The root of the large fluctuations in the conventional
Coleman-Weinberg GUT is the fact that 8p/p|y
~H?/$(t;) and ¢ <H? during the slow roll-down period.
This itself stems from a very basic difficulty with this
model: The inflationary epoch occurs when the classical
value of the slowly evolving Higgs field is small compared
to the de Sitter zero-point fluctuations in ¢. One obvious
solution is to have inflation occur when ¢>>H and
& >>H? (this requires a potential which is flat for ¢ >>H).
Arbitrarily setting A to be very small has this effect, be-
cause it flattens the potential [cf. Eq. (3.10)] and makes
the inflation epoch very long, so that by the time presently
observable scales have k/SH ~1 the Higgs field has
grown, by a combination of quantum fluctuations and
classical roll down, to a value large compared with H and
fb to a value large compared with H2 [For consistency,
setting A according to Eq. (3.18) also requires resetting o
to a value ~10'° GeV.] We will next consider a potential
which is only flat for ¢ >>H and thus quite naturally
avoids the pitfall of ¢(¢,) <H? and 8p/p | g >>1.

B. Reverse hierarchy supersymmetric models—
newer inflation

The disappointing result of Sec. III A makes it rather
interesting to consider a class of supersymmetric models
which have been recently shown to lead to inflation
without any of the fine tuning of the mass parameter re-
quired in the SU(5) model with Coleman-Weinberg SSB.!®
The class of models employs the Witten reverse hierarchy
scheme®® based on models with O’Raifeartaigh-type sym-
metry breaking.?! For concreteness, we shall consider the
three-scale supersymmetric GUT model of Dimopoulos
and Raby.?? In this model there is one fundamental scale
M; ~10'2 GeV which sets the scale of supersymmetry
breaking; then, there are two other scales which are gen-
erated radiatively: Mg ~Mp, the grand-unification scale,
and My ~M;?/Mg, equal to the weak scale. The scale
which determines the properties of the phase transition
which leads to inflation is the intermediate scale M;. Let
the field whose vacuum expectation value leads to the SSB
of the GUT be ¢. For values of ¢ much greater than M,,
but much less than Mg, the scalar potential is given by

V(¢)2C1M14—C2M141n( |¢ | /Mpl) . (3.19)

This peculiar logarithmic dependence on ¢ occurs without
any fine tuning of parameters. The behavior of V(¢) for
small ¢( <<M;) does depend upon the choice of parame-
ters, but has no effect on the inflation which depends on
only the logarithmic region of the potential.!® The shape
of the potential for ¢ near c~O (Mp,) (the SSB minimum)
has not yet been completely determined. It is not clear
whether the potential has the necessary curvature near
¢=o0, and whether ¢ couples with sufficient strength to
the other fundamental fields to ensure good reheating.!'®
If this particular model fails to reheat, there may exist
similar models in which the reheating is not a problem.
We shall not discuss this issue further here.

The salient feature of this potential is that it becomes
very flat for large values of ¢, V'(¢)=—c,M;*/$. In
fact, for ¢ /c, > 10* (in Ref. 18 it is argued that this is a

natural choice of parameters), the potential is sufficiently
flat so that when ¢2(3c2/817c1a)1/2Mp1 the growth of ¢
is very slow and inflation takes place. During this epoch
the ¢ term in the classical evolution equation for ¢ is
negligible compared with the “friction term” and once
again, to a good approximation 3aH &:—V’=c2M14/¢
[in analogy to Eq. (3.10)]. This equation is easily integrat-
ed and we find that

&(t)~(3c,/8mc1a) (1 + 2 Ht)'’My, , (3.20a)

d(t)~(cy/24mc1a) 21+ 2 Ht)" > HMyp, ,  (3.20b)
where

H*~8mwc M;*/3Mp?, (3.20c)

and t=0 marks the beginning of the ‘‘slow-growth
epoch”. When

Ht, =pB,=4wncia/cy, ¢=~O0O(Mp)~0

and presumably the potential steepens, ending the infla-
tionary phase and it is hoped, beginning reheating. In
terms of AB=H (t, —t) which for this model is given by

AB=51+In(ky /k)+1In(M; /102 GeV) , (3.21)
B(t)=(cy/16mc1a) /(3 +B.—AB) V2 HMp, .
(3.22)

As long as B, is much greater than AR, i.e., the physical
size of the fluctuation region is much larger than the mass
scale of interest, ¢(t;)~¢(t,)=(c,/8mcia)HMp;. Thus,
from Egs. (2.37) and (3.2) it follows that

172
c13/2a1/2

M; |}

Mp,

2m
3

8p/p|y=(4or £)8

c2
(3.23)

with ac;!/2~10, M; ~10'2 GeV one needs (c; /c,)~10° to
achieve 8p/p | y=~10"%. In these models ¢, and c, are not
precisely determined; however, c,/c, is naturally > 10*
(Ref. 18). Because ¢ >>H and ¢ >>H? throughout the in-
flationary epoch, the quickening of the evolution of the
scalar field due to scalar-field zero-point fluctuations is
also avoided.

IV. DISCUSSION AND SUMMARY

The hot big-bang model provides a reliable framework
for describing the evolution of the Universe from about
0.01 sec after the big bang until the present. It quite
naturally accounts for the large abundance of “He and the
relatively large abundance of D, the cosmic microwave
background, and the expansion of the Universe. However,
there are a handful of puzzles which the model sheds no
light upon. They include the large-scale homogeneity, the
small-scale inhomogeneity, the isotropy, the near-critical
expansion rate (1~1), and the baryon number of the
Universe. The wedding of cosmology with particle phys-
ics has resulted in a rather attractive scenario for under-
standing the origin of the baryon asymmetry;>> however,
at the same time it has introduced additional problems:
superheavy magnetic monopoles?* (and other topological
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structures), and the puzzie of why the vacuum energy
(which acts like a cosmological constant) is so small today.

The fundamental assumption underlying all inflationary
scenarios is that the energy density associated with our
asymmetric vacuum is very nearly zero and that earlier on
when the Universe was in a more symmetric state the vac-
uum energy density was much larger, large enough so that
it had significant effect on the dynamics of the expansion.
When the fluctuations in the scalar field are ignored (i.e.,
¢ is assumed to be uniform within a given fluctuation re-
gion), the simplest model of new inflation, the Coleman-
Weinberg SU(5) model, resolves all of the puzzles with the
exception of the origin of the small-density inhomo-
geneities necessary to produce the small-scale structures in
the Universe. However, when the scalar-field fluctuations
are taken into account in the simplest model, the conse-
quences are disastrous. Firstly, it appears that the fluctua-
tions prevent the evolution of ¢ from proceeding slowly
enough for inflation to occur.!®!” Secondly, although the
scalar-field fluctuations lead to a scale-free spectrum of
density inhomogeneities in the subsequent FRW phase,
their magnitude is ~ 10, resulting in a highly irregular
universe.

The basic idea of new inflation still seems very promis-
ing since it solves the difficulty of remaining trapped in
the metastable symmetric vacuum forever by having the
exponential growth occur during a period of slow
(At >>H™"), but inevitable, progress toward the asym-
metric vacuum. The problem with the simplest model is
that the period of slow growth occurs when ¢ <H and
6<H 2, (In addition, the quantum fluctuations in ¢,
A¢~H are comparable to the classical value of ¢.) Since
the amplitude of the resulting density perturbation is
(8p/p)=(4 or £)HA$/$(¢,), the outcome is a very inho-

mogeneous Universe. One prescription for an “ultimate”
model of particle physics that will yield the right kind of
inflation is manifest: When the relevant (galactic to
current comoving Hubble volume) scales cross the horizon
during the de Sitter phase, ¢(¢z;) must be ~10*xXH?2
That is, the scalar potential should be flat for ¢ >>H, so
that inflation occurs for large values of ¢ rather than for
small values.

As we have mentioned, the O’Raifeartaigh-Witten-type
supersymmetric potentials have this feature. The
geometric hierarchy model of Dimopoulos and Raby?? is a
potentially viable candidate for an ultimate model, al-
though the question of adequate reheating remains to be
answered.!® Clearly, the constraint on the density pertur-
bations that we have derived serves as a useful guide for
the building of future particle-physics theories.
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