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We explore alternative formulations of bag models preserving chiral symmetry, in which
the pion is treated as a separate local field that is allowed to penetrate into the bag interior.
Particular emphasis is placed on the cubic terms in the pion field. These are essential for a
description of the process mN — 7w N. We find that the phenomenology of that reaction in-
dicates a clear preference amongst various possible formulations of chiral bag models with

pion penetration of the bag.

I. INTRODUCTION

The MIT bag model? has achieved reasonable
success in accounting for the properties of hadrons
as built up from quarks and gluons by providing a
phenomenological framework that embodies con-
finement and asymptotic freedom. More recently,
the model has been extended®~’ in order to include
chiral symmetry or the principle of partially con-
served axial-vector currents (PCAC). These treat-
ments have dealt with the pion as a separate, local
field, rather than trying to develop it as a quark-
antiquark system with its own bag. Although this
may represent a failing at the ideological level, it has
allowed for rather detailed theoretical treatments®~’
of various phenomena pertinent to nuclear physics
at intermediate energies where the reasonableness of
descriptions involving pion exchange has been fairly
well established.

In particular, the so-called cloudy bag model
(CBM),>® in which the pion is permitted to
penetrate into the bag interior, has proved successful
in describing (3,3)-resonance phenomena through the
linear coupling of the pion field to the quarks in the
bag which represent the nucleon or A states. Failure
to exclude the pion from the bag interior may
violate intuitive pictures of asymptotic freedom, and
efforts have been made’ to construct chiral bag
models that do not permit pion penetration;
nonetheless, the cloudy-bag approach possesses an
apparent simplicity which has allowed for its
straightforward application at least to effects of
lowest order in the pion field.

The chiral bag models also contain terms of
higher order in the pion field, and only relatively re-
cently has detailed attention been given to the possi-
ble role that these terms may play in processes in-
volving several physical pions. In particular, the
quadratic pion term has been examined® in the CBM
in order to determine that it fulfills the appropriate
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soft-pion conditions’ and yields the well-established
result for the wN s-wave scattering amplitude. The
verification that higher-order pion terms in chiral
bag models yield correct phenomenology seems to us
to be an important test of the overall validity of
these models. We shall here provide a related exam-
ination of the third-order terms in the pion field
which govern the process wN —mmwN. This is very
likely the highest-order pionic effect for which
direct comparison with phenomenology is possible.
It is distinctly nontrivial since it is able to establish
that, of the many possible forms that may be
reached from the nonlinear Lagrangian of the CBM,
certain selections may yield consistency with pion-
production experiments in a particularly straightfor-
ward manner. Naturally, the various transforma-
tions of the original nonlinear chiral bag model are
all equivalent representations of the same basic
theory. However, given the need to truncate the
nonlinear fields at some order and to identify the ap-
propriately transformed field with the physical par-
ticle in question, particular versions of effective La-
grangians may allow for relatively direct application
to phenomenology. Such indeed was the purpose of
effective Lagrangians constructed in the context of
soft-pion theories®™!! even before the advent of
quark models of hadron structure.

II. GENERAL FORMALISM

We start by developing a chiral bag model which
is deliberately constructed in order to correctly in-
corporate the phenomenology of soft pions.>~!! The

chiral-invariant Lagrangian with which we deal
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where g, is the quark field in the baryon bag carry-
ing flavor and color a, 6y is a step function for the
bag volume, Ay is the surface & function, 7 is the
pionic field, and m is the pion mass; the pion mass
term is, of course, to be ignored in considerations re-
lating to strict chiral symmetry. The o field is here
restricted such that!©

f‘2 ]/2 (2)

The chiral transformations that leave the Lagrang-
ian of Eq. (1) invariant are

4a—T(z)q,=(1+iT€ys)q, , (3a)

77— U(m)=m—2€0 , (3b)

and the corresponding axial-vector current is

4,=5 Eqaﬂ/s?’pqaev 73,0+09,1 , 4)

which is fully conserved in the soft-pion limit and
otherwise fulfills PCAC. To zero order in the sur-
face interaction, . of Eq. (1) leads, of course, to the
MIT bag sclution!? for the baryon, together with a
free pion.

In order to link .# conveniently with soft-pion
properties, we apply a transformation motivated by
Weinberg’s work!!
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where n,, is the normal to the bag surface, and for
the pion
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(11)

The above equations ascribe different dynamics to
the quarks in which the coupling to the pion field
persists inside the bag volume. This coupling within
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For the quark terms in Eq. (1) this yields
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and the pionic part of the Lagrangian becomes
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while the second term in the large parentheses in Eq.
(6a) is exactly canceled. By this procedure we have
transformed the interaction from a surface & cou-
pling to a volume interaction. We obtain finally the
simple form
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2 (14g2 2)2a T e ®)

The equations of motion and boundary conditions for this Lagrangian are then, for the

9)

forxev, (10)
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the bag was already encountered in Ref. 8; it has
been suggested® that the existence of a pionic field
for x €V is to be interpreted as pertaining to quark-
antiquark excitations in the bag interior.

The chiral invariance of the new Lagrangian in
Eq. (8) is ensured by the fact that it was obtained
from the old one of Eq. (1) by the chiral transforma-
tions, Egs. (5a) and (5b). In order to obtain the new
infinitesimal chiral transformation we proceed by
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calling T' the new quark chiral transformation,
T'=STS". Analogously, the new pion chiral
transformatlon is V'(z)=V(UWV~Yx))), where
V~1 is the inverse transformation of Eq. (5b),
V- Nz)=(1+x2/4f*"'r. The new transforma-

tions are then
]

1
A,= he’n? an[2gTX7T1/s+2g rr+r(l—
L er@umr+ (1 —g2rYa,r
(1+g°z*? g o

For our subsequent purposes we shall wish to con-
sider terms linear, quadratic, and cubic in pion-
baryon interactions, and quartic in the pion field
alone,

f‘rrqq =& 2 q—a'yﬂ'}/SIQa'(aﬂ‘lT )6y , (14)
a
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In order to compare these terms with the develop-
ment of the Weinberg pion-nucleon Lagrangian,'!
one must solve the coupled equations (9)—(11) and
obtain a modified quark wave function to be used in
Eqgs. (14)—(16). These higher-order corrections have
thus far generally been ignored,® as we do here at
this stage (see the Appendix, where we briefly exam-
ine the validity of this approximation). Then the
MIT bag solution?® applies,

Jo(&2r)
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where a static bag surface and recoilless baryon have
been used; v is the spin-isospin function. With these
restrictions, the use of Eq. (18) then leads to>?
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where the Lagrangian .¢ vy refers to the bag repre-
sentation of the nucleon and is thus to be identified
with the Lagrangian of Weinberg which deals, of
course, with nucleon fields. An identical result,
with the same factor as in Eq. (19), obtains for the
relationship between % .., of Eq. (16) and the

q.,—T'(q,)=(1—igr-w Xe€)q, , (12a)
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with conserved axial-vector current
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corresponding .% ..y~ Of Weinberg since the struc-
ture of the terms linear and cubic in 7 is identical in
the quark space.

Now the result of Eq. (19) for the pion-baryon in-
teraction linear in the pion field is the same as that
of the cloud-bag model® except for a small change®
in the relevant vertex form factor arising from a ten-
sor contribution. This tensor part is negligible at
small momenta, as here, but does represent a specif-
ic feature of the model in that it allows the coupling
of the quarks to non-spherically-symmetric states
which may be admixed in the baryons. As pointed
out by Vento et al.,'? such states may contribute
significantly to static properties of the baryon such
as the axial-vector coupling constant ¢, or to
dynamic features, for instance, in the pion photopro-
duction process.

Ignoring this tensor term, all the results of the
CBM that are based on the p-wave wNN vertex,
such as the description of the 3,3 resonance, will go
through essentially unchanged. For quadratic terms
in the pion field, which will be required in order to
treat s-wave 7N scattering near threshold, the result
of Eq. (15) is the same as that found by Thomas® to
second order by transforming the quark field in the
CBM. As Thomas has shown, this interaction im-
mediately yields the Weinberg amplitudes for
threshold 7N scattering. In fact, his result may be
obtained from Eq. (8) if the plon field there is taken
as 7 =2f¢ tan(¢ /2f) =¢+0(¢?), where ¢ = b is
the pion field of Ref. 8, and so his linear and qua-
dratic terms are identical to our Egs. (14) and (15),
differences first being encountered at the next order
and higher.

III. RESULTS FOR THE 7wN — 77N PROCESS

We focus now on the #N —mwN process in order
to study explicitly the consequences of third-order
pionic terms. For terms cubic or quartic in the pion
field, the CBM with Thomas’s transformation
yields, in place of Egs. (16) and (17),
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These are precisely the terms that enter into the cal-
culation of the pion-production process mN —m7N
at threshold, which is known to be well described by
the diagrams in Fig. 1 as they are calculated with
Weinberg’s Lagrangian.!3>~!> Thus, the Lagrangian
|
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FIG. 1. Diagrams that enter in the calculation of
7N —mmwN. (a) The contact term involving .Z ;. .xn- (b)
The 7 scattering term containing .% ., and .£ ,nn-

of Eq. (8) will directly yield this phenomenology by
construction, that is, it takes go=1/2f and
ho=—1/4f% or £=2f(go+2hof)=0 in the conven-
tional parametrization,!3~

gﬂﬂﬂ’NN= —8 ?(N—WYSIN)'[ZgOf(ayE)EZ'F2(2g0f —1 )E_Tr..'altE] (22)
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while the conventional CBM requires go=1/3f and
ho=0or &= %

Since Weinberg’s Lagrangian refers only to nu-
cleons, and not to A-isobar contributions, it is clear
that if we wish to reproduce the same phenomenolo-
gy in the context of the CBM we must also restrict
ourselves to nucleon states. In practice, the compar-
ison of the theoretical approach based on nucleons
only with experimental results, which contain A
contributions as well, has been made'*~!°> by means
of careful partial-wave treatment and extrapolation
to threshold; nonetheless the A contributions are re-
flected in the rather large error with which § is
determined. The experimental result is'*
£=0.05+0.26, or after more detailed analysis,'
&= —0.2+0.3; within quantum chromodynamics, §
is expected'® to be zero. Note that for £=1 the
7N —mmN cross section is known!® to be underes-
timated by a factor of three near threshold for
go=1/2f. For the conventional CBM we obtain a
cross section for the (7,27) process at threshold
which is less by a factor of 0.44 than that obtained
in the present approach.

In summary, we see that the correct phenomeno-
logical treatment of the pion-production process
7N — 7N strongly motivates the use of a particular
effective Lagrangian within the context of chiral bag
models. Identifying the physically pertinent fields
for the quarks and the pions as those which arise in
this effective Lagrangian, we find that a specific and
unconventional form for the dynamics has been dic-
tated, namely, one in which the pion field interacts
with the quarks within the bag. Since such pionic

I

effects are small for bag radii > 0.7 fm, the effective
CBM Lagrangian proposed here does not appreci-
ably alter previous results. It does, however, allow
for a uniform treatment of pion-baryon interactions
including third-order terms in the pion field. Such a
treatment may be particularly useful for the han-
dling of pion-nucleus interactions in the medium-
energy domain.
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APPENDIX

We here study the modifications of the bag
eigenenergies in the framework of the present model
and static-cavity solutions.’? We display an ap-
proximate, lowest-order procedure for renormalizing
the single-quark eigenenergies. We do not present a
more complete*® !¢ renormalization of the hadron
mass, which would include two-quark interaction
terms, since our main purpose here is to establish
that the dynamics represented by Eqgs. (8)—(10) do
not significantly alter the size of the pion correction
as compared with previous approaches.®!® By a
procedure analogous to that of Jaffe, we obtain
from Eq. (11) a pion field in the form
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where af3,y8 are spin-isospin indices, a t.a are quark
creation and annihilation operators, and wy=2.04 is
the lowest eigenmode of the MIT bag model.!~* In-
serting Eq. (A1) in Eq. (10), retaining the lowest or-
der in the interaction, and assuming g, to have the
functional dependence

F(r+iG(r)o-7F

—iwt
H(n+iK(na+#)° 7 (A2

q(r,t)=

we obtain (restricting to the one-quark space)

—3F(r)+iG(r)o7F

N — V.5d.5€ R
’aq“b% H+iKPas | 7
(A3)
where
2
g 20 (A4)
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In order that the solution obey the boundary condi-
tion of Eq. (9), we have

G(r)=H(r)=0 (A5)

and

TABLE 1. Bag ecigenenergies including first-order
pionic effects; Eq. (A8) (wo=2.04).

Bag radius (fm) 1)
1.2 1.97
1.1 1.96
1.0 1.94
0.9 1.92
0.8 1.88
0.7 1.84
0.6 1.76
0.5 1.65

F(r)y=Ajylcr),

(A6)
K(r)=Anj(cr),
where
_ _p)1i2
¢ =[(w+3b)(@—b)]""?, (A7)

n=[(w+3b)/(w—b)]""?,

and 4 has the same form as in the MIT-bag solu-
tion."? The allowed frequencies » obey

Jo(cR)=mnj(cR) , (A8)

which reduces to the original MIT-bag condition'?
when b <<w®. Table I shows the allowed values for
o as a function of R. It is readily seen that for
values of R near 1 fm the modification of the MIT
eigenmodes is negligible. This result agrees with the
previous calculations of the CBM.*>16
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