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Improved high-energy bound on the logarithmic derivative of scattering amplitudes
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It is proved that the logarithmic derivative of the absorptive part of the scattering amplitude with

respect to momentum transfer t has an improved rigorous upper bound (7lns)/[2V t(2 —V t)] for a

sequence of s ~ 00. It is also observed that the slope of the Regge trajectory is not only rigorously
bounded from above by 7/[2V t (2 V—t)], but also by 1/[2V t (2 —V t)], if the total cross section in-

creases in any fashion as s ~~. Here s is energy squared and 0 & t & 4 (in units of pion mass).

I. INTRODUCTION

The logarithmic derivative of the absorptive part A (s, t)
of a scattering amplitude with respect to the momentum
transfer t, (d/dt)lnA(s, t), has been studied in order to
understand some features of high-energy scattering. ' For
example, in the forward direction, it describes the slope of
the diffraction peak, provided that the high-energy
scattering is dominated by the absorptive part. It is
known ' that this quantity for t=O is bounded from
above by ln s in the high-energy limit, which suggests that
the diffraction peak cannot grow faster than ln s. On the
other hand, a lower bound on this quantity for t=O has
been obtained from unitarity in terms of cross sections,
which turns out to provide an elegant proof that the
Regge trajectory is either a constant or has a positive slope
at t=O.

It is shown by one of the present authors' that upper
and lower bounds on this quantity in the unphysical re-
gion of t can also be set in the framework of axiomatic
field theory. In particular, it is demonstrated that one can
find such an upper bound as

N(tp)+M(t)+ —,—lnA(s, t) & lns .
2 t( t, t)—

the upper bound (1.4) is obtained, and in Sec. III, an im-
proved coefficient of the upper bound (1.1) is derived.
Section IV carries some comments on the results.

OO 2t
A (s, t) = g (21 +1)at(s)Pt 1+

I =0 s —4
(2.1)

where s and t are the energy squared and momentum
transfer, respectively, and ai(s) is the absorptive part of
the partial waves, and Pi(x) is the Legendre polynomials
of the first kind. We use units where the (pion) mass is set
equal to unity. Then, unitarity implies

' 1/2

0&at(s) &
s —4

for s)4. (2.2)

First, we divide A (s, t) into two parts:

A (s, t) =A, (s, t)+A, (s,t), (2.3)

where

II. A RIGOROUS UPPER BOUND ON A (s, t)

The absorptive part A (s, t) of the spinless, equal-mass
elastic-scattering amplitude for A +8~A +8 is, in the s
channel, defined by

Here lV(tp) and M(t) are given by the upper and lower
bounds of the scattering amplitudes, namely,

A (s, t) (const)&s (1.2)

L 2t
A t(s, t) = g (21 +1)ai(s)Pi 1+

I =0 s —4
(2.4)

A (s, t) &constXs (1.3)
for 0 & t & tp & 4 (in units of pion mass), as s~ oo.

The upper bound (1.1) implies an upper bound on the
slope of the Regge trajectory in high-energy scattering. In
this sense it has already been observed that the scattering
amplitude must have a Regge behavior in the unphysical
region. %'e will show in this paper that the coefficient of
the upper bound (1.1) can be improved. Furthermore, it
will also be shown that

CO 2t
A2(s, t) = g (21 +1)ai(s)Pi 1+

I=L+1 s —4
(2.5)

Here I.=cv s lns and c is a positive integer which will be
determined later.

It follows from unitarity (2.2) as well as the formula
L

g (21+1)Pi(x)=Pt +)(x)+Pt (x) (2.6)
1=0

iV'(tp) &1++to/4 (1 4) that, as s —+ oo,

for 0& tp &4 {in units of pion mass). Accordingly, their
significance in the Regge behavior of the scattering ampli-
tude will be examined once more.

For simplicity we deal with elastic scattering of spin-
zero particles of equal mass. We restrict ourselves to the
unphysical region of the momentum transfer. In Sec. II,

A, (s, t)& g (21+1)P, 1+ 2t

I =0 s —4

2t , 2t=PL+ I 1+ +PL 1+
s —4 s —4
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Here the prime implies that the function is differentiated
with respect to its argument. On the other hand, we have
the inequality'

for t&0, s »1, l/v s »1. Using (2.7) and (2.8), it is not
difficult to obtain that

l tanh(l + —,
' )a

Pt (cosha) & — . —Pt(cosha),
sin hA'

and the asymptotic form
1/4

2t s exp(21Pt/s ) v s
I +

s —4 t 2v ~Wi
1+0

(2.7)

(2.8)

1/2

A (s t)&—1 c 1
s 1+2c~tln1/2

7T'
(2.9)

Next we turn to A2(s, t}. Squaring both sides of (2.5)
and using the Schwartz inequality, we have

[A2(s, t)] & g (2l + 1)at(s)
1=L+1

PI 1+2 2t
s —4

2t1
P( 1+

s —4

QO 2t1
(2l + 1 }at(s)Pt 1+

I =L+1 s —4

If we square both sides of the above inequality and use the Schwartz inequality once more, we find that

[A2(s, t)] & g (2l+1)at(s)
I=L+1

P 22
1

2t
s —4

2t1
P( 1+

s —4

(X) 2t1
(2l + 1)a,(s)P,

. I=L+1

Repeating it n times in this manner, we obtain the following:

[A, (s, t)]' & (2l +1)at(s)
I =L+1

2t
s —4

p 2"—1
2t1

s —4

I=L+1
(2l + 1)at(s)P( 1+

2t1

s —4

2tl

(2l + 1)at(s) & const (2.10)

At this stage we make use of (1.2) as well as the fact that

X(t[)

as n~oo.
Comparing (2.12) with (2.9), we can determine c such

that
2t1

P( 1+ c = X(t1)—1

2~),
(2.13)

2t
PI 1+

s —4
1V(t& ) pn

& [const s ' ]
I =L+1 2t1

P) 1+—
s —4

(2.11)

Substituting (2.8) into (2.11), we finally end up with the in-
equality

N(t, )+1/2" 2c(~t, —V t )—
s

A2(s, t) & const
(

n21 )2/[ n(2~t ~t }]1/2"

which can also be derived from (1.2). We are then led to
the inequality

[A 2(s, t)]
2)i

which makes A2(s, t) much smaller than A l(s, t), as s ~ 0() .
We now substitute (2.13) into (2.9) and neglect A2(s, t) to
find such an upper bound as

. 1/2
1 l( (t) }—1 1 +)[ ( N) t—l](t/t, )'/'

2n.

N(4) &2, M(t) & 5 (2.15)

for a sequence of s ~ oo. Therefore, we obtain from (2.14)
an upper bound on N(tp) itself:

(2.14)

fOr 0 & t & t1, aS S~ ao.
Now, from rigorous results alone we already know '

the fact that

which reduces to
N (t, )-2c( t, ~i )

A2(s, t) & const s (2.12)

1/2
to

N(tp) & 1+ (2.16)
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for 0&to &4. The bound (2.16) corresponds to Theorem
2(B) of Ref. 3, but enlarges the validity domain of the
same result given in Ref. 9.

6—A )(s, t) & (lns)A ((s,t),C

dt
(3.1)

for 0&t&4, as shoo.
The improvement over (1.1) mentioned in Sec. I does

not come from (3.1), but from A2(s, t). Using (2.7) again
we have an inequality,

III. A RIGOROUS UPPER BOUND ON {d/dt)lnA {s,t)

In order to derive an upper bound on (dldt)lnA(s, t), we
again divide A (s, t) into two parts, namely, A ) (s, t) and
A2(s, t) as given in the previous section by (2.4) and (2.5),
respectively. However, the positive constant e in
L =cps Ins must be newly determined so that it gives the
most desirable upper bound for our purpose.

From unitarity (2.2) and the inequality (2.7), we have an
upper bound, as shown in Ref. 1:

12+~tp—lnA (s, t) & lns
4 t( t, — t)

for 0&t&tp&4 and for a sequence of s —+00. This is an
improvement over the upper bound derived in Ref. 1.

IV. REMARKS

%'e would like to make a few comments on the results
derivable from our upper bounds (3.6) and (3.7). First of
all, the upper bound (3.6) is an improvement over the
bound given in Ref. 1.

If we assume that the total cross section o„,(s} increases
in any fashion as s —+ co, then we can take M(t) = —1 and
we have an upper bound like

d ~to—lnA (s, t) & lns .
4 t( t, t )—

This in turn gives us the bound

dA2(s, t) 2t~st & g l (2l +1)at(s)P) 1+
dt I =I + s —4

(3.2)

G—lnA (s, t) & lns
1

dt 2 t(2 — t) (4.1)

as shoo. As we had done in the previous section, we
square both sides of (3.2) n times and make use of the
Schwartz inequality at each stage. We then find, from
(3.2) and (2.10), such an inequality as

r

dA2
st-

dt

for 0&t&4, as s~00.
If we assume on the other hand the Regge-pole behavior

of the high-energy scattering amplitude, namely,
A (s, t) =P(t)s '", then we see that this amplitude gives the
same energy dependence for (d/dt)l An(s, t) as the upper
bound (3.6) in the unphysical region. This can be taken as
another way of confirming the Regge behavior. We find
from (2.16), as shown in Ref. 3, such an upper bound as

1/2
2t

PI 1+
s —4

a(t) & 1+ {4.2)

&[const s "] g l
1=1.+1 2tp

I'I 1+
s —4

(3.3)
From the upper bound (4.1) we can now set an upper

bound to the slope of the Regge trajectory, namely,

It follows from (3.3) and (2.8), if we take n large enough,
that

da(t) 1

dt 2v t(2 vt) '— (4.3)

6 1 to
A2(s, t}—& const

X((z) 2c(~tz v( )— —
s ' ' lns .

do;(t) 7
dt 2v t(2 ~t)(3.4)

whereas the rigorous bound from (3.7) is

(4.4)

We therefore have, from (3.1) and (3.4), an upper bound
such as

W ((o) 2c(~i~ v( )— —
C s ' ' lns

lns +const
A dt t

(3.5)
A (s, t)

N(tp)+M(t)—InA {s,t}& lns .
2 t( t, t)—(3.6)

Therefore, the best upper bound from the rigorous results
(2.15) and (2.16) is

Substituting (1.3) into (3.5} and taking c such that the
second term becomes smaller than the first in (3.5), we fi-
nally end up with such an upper bound as

a& 4-13 GeV (4.S)

Although (4.5) is far larger than the phenomenological
value of a = 1 GeV for Regge amplitudes, it is an im-
pressive improvement over previous results. ' (X course,
we can derive the same result as our (4.5) also from both
(4.2) and the assumption that the trajectory is linear. Our
(4.3) holds without the linearity assumption, though.

If we further assume that the Regge trajectory is
linear, ' as it is usually taken for granted, then we can put
o'.(t)=at+&, a and b being constants. If we set, for in-
stance, b= 1 for Pomeron, and M (t) = at b= at ———1, —
then, from (3.6), we obtain
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