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The electromagnetic radiation from classical convection currents in relativistic n-particle collisions
is shown to vanish in certain kinematical zones, due to complete destructive interference of the clas-
sical radiation patterns of the incoming and outgoing charged lines. We prove that quantum tree
photon amplitudes vanish in the same zones, at arbitrary photon momenta including spin, seagull,
and internal-line currents, provided only that the electromagnetic couplings and any other derivative
couplings are as prescribed by renormalizable local gauge theory (spins <1). In particular, the ex-
istence of this new class of amplitude zeros requires the familiar gyromagnetic-ratio value g =2 for
all particles. The location of the zeros is spin independent, depending only on the charges and mo-
menta of the external particles. Such null zones are the relativistic generalization of the well-known
absence of electric and magnetic dipole radiation for nonrelativistic collisions involving particles
with the same charge-to-mass ratio and g factor. The origin of zeros in reactions such as ud — W *y
is thus explained and examples with more particles are discussed. Conditions for the null zones to
lie in physical regions are established. A new radiation representation, with the zeros manifest and
of practical utility independently of whether the null zones are in physical regions is derived for the
complete single-photon amplitude in tree approximation, using a gauge-invariant vertex expansion
stemming from new internal-radiation decomposition identities. The question of whether ampli-
tudes with closed loops can vanish in null zones is addressed. A low-energy theorem for general
quantum amplitudes (including closed loops) is found. Important relations between the photon cou-
plings and Poincaré transformations are discovered. The null zone and these relations are discussed
in terms of the Bargmann-Michel-Telegdi equation. The extension from photons to general massless
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gauge bosons is carried out.

I. INTRODUCTION

In this paper we describe a new general feature of
theories that incorporate massless gauge fields: The ex-
istence of zones of null radiation independent of spin.!
We present the details behind a theorem! for a new type of
zero in tree-graph amplitudes for gauge-boson
radiation/absorption involving any number of particles
(spins < 1) in collision. It is sufficient that any derivative
couplings be of gauge-theory form.

The kinematic condition for the electromagnetic null
radiation zones is simply that all external particles
(charges Q; and momenta p;) have the same Q; /p; ‘q ratio,
where ¢ is the photon momentum. For definiteness, we
refer to photons; the condition in non-Abelian gauge
theories involves a generalized charge Q.

As a corollary to the theorem, each helicity amplitude
can be written with the zeros displayed explicitly. This re-
sult is important since it defines a new canonical form
(Sec. VI) for radiation amplitudes independent of whether
the null zone lies in the physical region.

The physical basis of the theorem lies in a correspond-
ing result for classical radiation patterns. For the same
kinematic condition, we find that there is a complete de-
structive interference of the radiation from classical con-
vection currents in relativistic n-particle collisions. In the
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nonrelativistic limit the null-zone condition reduces to the
requirement that the charge/mass ratio Q; /m; is the same
for all particles. Thus, the zeros are the relativistic ver-
sion of the well-known absence of electric dipole radiation
for nonrelativistic collisions involving particles with the
same charge-to-mass ratio. The classical underpinnings
are given in detail in Sec. III.

The null-zone condition directly applies to the simple
quantum tree (single-photon) amplitude where all the oth-
er particles are spinless and scatter at a point,> and
without restriction to low-energy photons. What is
surprising about the theorem is that it continues to hold in
more realistic amplitudes when we add contributions from
spin currents, gauge-theoretic derivative couplings, and
internal-line emission in tree approximation.

The restrictions on the derivatives specifically require
that all photon couplings to the particles correspond to the
same gyromagnetic ratio, g =2. In that case we find all
spin currents can be described by the same first-order
Lorentz transformation, a fact that is crucial to the
theorem. This description and the null zones are de-
stroyed by anomalous moments. The equivalence of spin-
and Larmor-precession frequencies is thus intimately re-
lated to the null-zone phenomena.

Under such gauge-theoretic conditions only closed-loop
graphs can undo the result. Quantum fluctuations in the
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sources of radiation, required by the uncertainty principle,
spoil the exact cancellation; we need the long-range classi-
cal currents and perfect plane-wave states, such that the
particle positions are completely unspecified, for null
zones.

The reactions in which a weak boson and a photon are
produced by the annihilation of quarks,> such as
u +d— W+ 4y, which may be measurable in high-energy
pp collisions and which may be important in the verifica-
tion of the gauge properties of the W, offer striking exam-
ples of null-radiation-zone phenomena. Mikaelian, Samu-
el, and Sahdev (MSS) first pointed out that the lowest-
order unpolarized cross sections vanish at an angle unre-
lated to any specific helicity state,* and only if g, =2.
Another example* is the reaction® v, +e ~—> W~ + 7.

The zeros in the W-production cross sections necessarily
imply that each helicity amplitude calculated from the set
of four-body tree graphs must have an overall factor
z =cosf—cosfy. The interesting algebra which shows this
factorization has been developed by Goebel, Halzen, and
Leveille (GHL).> Zeros and factorization in other four-
body tree amplitudes have also been discussed in Ref. 5
and by Zhu.® Related work by Grose and Mikaelian con-
cerns radiative W-decay channels.” These examples are re-
stricted to the cases where no internal-line photon cou-
pling occurs.

The motivation for our study stems from the fact that
no explanation was known for such zeros. We can now
recognize Mikaelian factorization, the MSS zero, and the
GHL algebra as three-vertex examples of the general class
of gauge-theoretic single-photon tree-amplitude zeros
which are the relativistic generalization of the absence of
electric and magnetic dipole radiation for nonrelativistic
collisions of particles with the same charge-to-mass ratio
and g factor.!

The plan of this paper is as follows: The theorem and
its corollaries are presented in Sec. II, and the classical
basis is developed in Sec. III. The conditions for physical
null zones and examples are discussed in Sec. IV. The de-
tailed proof of the theorem comprises Sec. V. The canoni-
cal representation is derived in Sec. VI. The special case
where some of the particles are neutral is analyzed in Sec.
VII. The union of the theorem and the standard low-
energy theorem for general amplitudes including closed
loops is considered in Sec. VIII. The fundamental role of
Lorentz invariance (in the proof of the theorem) and the
classical Bargmann-Michel-Telegdi (BMT) equations are
investigated in Sec. IX. In Sec. X, our analysis is applied
to other gauge groups. The last section is devoted to a
summary and further remarks. There are two appendices
where the details of physical null zones and a summary of
rules for constructing radiation amplitudes are given.

II. THEOREM AND REPRESENTATION
FOR RADIATION IN GAUGE THEORIES

This section contains the precise statement of the
theorem, a brief outline of its proof, and corollaries. We
need the following definitions:

(1) Gauge-theoretic vertices. These are interactions in-
volving any number of fields with spin <1 but with no
derivatives of Dirac fields and at most single derivatives
of scalar and vector fields—all of which are aspects of lo-

cal gauge theories. All vector derivative couplings must
be of the Yang-Mills type. Products of single derivatives
of distinct scalar fields as well as of the trilinear couplings
are allowed. (The photon couplings must correspond to
g =2.) This encompasses all renormalizable theories of
current interest and an infinite class of nonrenormalizable
theories. (See note added in Sec. XI.)

(2) Source graph. This is any Feynman diagram that
serves as a source for photons.

(3) Radiation graph. This is a graph generated by the
attachment of a single photon onto a specific line or, in
the case of derivative couplings, onto a vertex (seagulls) of
a source graph.

(4) Radiation amplitude. This is the sum of all the radi-
ation graphs generated from a given source graph(s).

We next state the main result:

Theorem. If M, (Tg) is the radiation amplitude gen-
erated by the free source graph T with gauge-theoretic
vertices, then

M(T5)=0 @.1)

provided all ratios Q; /p; ‘q are equal.
Proof outline. In the special case where T is a single
vertex Vi the corresponding radiation amplitude is
QiJ;

MY(V(;)=2 pi'q )

where J; is the product of the current for photon emission

(2.2)

by the ith leg and the remaining vertex factors. The
theorem follows for (2.2) if

The proof for tree graphs with internal lines follows
from a novel decomposition of the radiation amplitude
into a sum over the source vertices of gauge-invariant
terms,

M,(Ts)=3MV6)R(V) , (2.4)

where M, (V) now includes internal legs [with (2.2) and
(2.3) still valid] and R (V) denotes the propagators and
the other vertices of the source graph.

There are several results ancillary to the theorem:

(1) Complementary theorem: Equation (2.1) also holds if
the ratios 8;J; /p;*q are all equal.

This follows from (2.2) and charge conservation,?

>6:0,=0, (2.5)
where
+1 outgoing,
§;=
! [——1 incoming. (2.6)

(2) Radiation representation. For a vertex source graph
the zeros of the theorem and its complement imply

O; o

pi'a  Pi'd

Ji 5 Jn

piq

M, (V)= 8:pi"q " on-q

2.7

The off-shell M, (V) in (2.4) can be expressed in a similar
manner.
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(3) Low-energy theorem. If .#,Sg) is the radiation
amplitude corresponding to a general source graph Sg,
which includes closed loops and arbitrary interactions, and
if spinning external particles have g =2, then

M [S6)=M,(Ss)+0(q) , (2.8)

where M, (S¢) satisfies the interference theorem.

III. CLASSICAL PRELUDE

In this section we look for completely destructive in-
terference in classical radiation amplitudes. This provides
the relativistic generalization of the well-known result®
that classical electric dipole radiation vanishes for nonrela-
tivistic collisions of particles with the same charge-to-
mass ratio.

To review this result, the electric dipole moment is

a=2Qi?i

for particle positions t;(z). If the charge-to-mass ratios
have the same value for all n particles,
o &

—=— alli,
m; m,

(3.1)

(3.2)

and if there are no external forces, we find d=0. Thereis
completely destructive interference at all angles, a com-
bined result of translational invariance and the constraint
(3.2) on the constituent particles.

The inclusion of spin currents has a counterpart: Mag-
netic dipole radiation vanishes for nonrelativistic collisions
at a point, when the particles have the same charge/mass
ratio and the same gyromagnetic factor.!! The magnetic
dipole moment is

.‘7=2.‘7i ’
° (3.3
Ki =gi’2_":—isi )

with spin §,~ for each particle. If all g factors are the same
and if there are no external torques, then (3.2) implies that
Z=0. Thus the magnetic dipole radiation field vanishes
identically with rotational symmetry as a key ingredient.
The relativistic amplitude for radiation during collisions
is found using a classical current!'? corresponding to k ini-
tial particles scattering into n —k final particles with uni-
form velocities V;=T; before or after the localized col-
lision. (Spin currents are ignored for the time being.) The

classical infrared amplitude (frequency @ —>0) is'%1%13
" O N
A]R(k,n)z—zsimvi'f (3.4)
1T o(l—7AV;)

which reduces to the nonrelativistic electric dipole ampli-
tude 4 {}ﬁR. For (3.2), we see that

0

wm

n
AR (kyn)=— €38;m;v;=0, (3.5)
1
verifying the conclusion reached earlier.
Let us rewrite (3.4) in terms of the particle (four-) mo-
menta, the photon (four-) polarization, and the photon
(four-) momentum q =w(1,7):

A[R(k,n)=2—Q{;8,~p,~'e . (3.6)

1 Pi

For common Q/p-q ratios we find Ag(k,n)=0 by
momentum conservation and transversality g-e=0. This
is the relativistic generalization for arbitrary photon mo-
menta of the cancellation of electric dipole radiation. Be-
cause the fields get folded forward, the general cancella-
tion occurs only for the set of charges and momenta that
give the same Q/p-q, ranges for which are discussed in
Sec. IV.

The classical treatment of the radiation generated by a
system of moving intrinsic magnetic moments is relatively
complicated except in the low-frequency, nonrelativistic
limit, where the individual magnetic moments can be
represented by their intrinsic (rest frame) values (3.3) and
the radiation amplitude is'®

n
Ay =i38,([L; XA)E, (3.7)
1
noting the absence of ! in comparison with (3.4). The
expression (3.7) does indeed vanish under (3.2), if the g
factors are all the same and if the total intrinsic spin is
conserved. Note that orbital angular momentum, through
its associated magnetic moment, contributes terms at the
o level as well.

Rather than proceeding further in a semiclassical
manner, we turn to quantum amplitudes, for which we
have already found the infrared factors exactly. The in-
frared term of the full radiation amplitude .#, shown in
Fig. 1(a), is derived from the graphs of Fig. 1(b). If the
scattering amplitude for k particles —n —k particles is
denoted by T(py, . . ., p,), then the w™! term is given by!?

./”IR=AIR(k,n)T(P1, “ o ,p,,) . (3.8)

Clearly, the radiation theorem always holds for the in-
frared part of any amplitude. The zeros in the infrared
factor have apparently gone unnoticed until now.! (See
Sec. VIIL.)

k+1

(b)
FIG. 1. (a) The general amplitude for photon emission in the
interactions of n particles, k—n —k +7. (b) A contribution
with an infrared divergence.
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IV. Q/p-q FACTORS AND PHYSICAL NULL ZONES

In this section, we investigate the kinematics corre-
sponding to equal Q/p-q ratios and the possible overlap
with physical phase space.

A. Preliminaries

Definition: The null radiation zone is the momentum-
space region where all the Q /p-q factors'* are equal, cor-
responding to the n —2 equations,

—QL=—Q—’;, all i£j,1,
pi'9 Ppj'q

for fixed distinct pairs j,I. Charge and momentum conser-
vation are assumed,

E_SiQi=0 ,

Zsipi =—q,

4.1

(4.2a)
(4.2b)

as are the mass-shell conditions.

The n —1 possible equations reduce to n —2 because of
(4.2), 2—=0, and the simple fact that, if
a/A=b/B=c/C=..., then composite ratios such as
(@+b+c+--)/(A+B+C+ ---) are also the same.
In general, one Q/p-q is determined by the rest through
the identity

A+B+C+--- A
b a
=5 a4 ®
sl 2oy |—— L
Cc 4 A+B+C+ -

(4.3)

Care must be exercised in the use of an arbitrary set of
n —2 equalities in place of (4.1), since they may not al-
ways be independent. For example, in the electron-
electron reaction,

e (p)+e (py)—e (p3)+e (py)+7v(q), (4.4)

P1°9=p3-q is equivalent to p,'q =p,'q by momentum con-
servation, and therefore, they are not independent equa-
tions. This problem does not arise if the prescription in
(4.1) is followed.

In the nonrelativistic limit for all n particles, (4.1)
reduces to (3.2). Mass conservation replaces (4.2b) in go-
ing from n —1 to n —2 equations.

Since p;°q >0, (4.1) implies that all nonzero charges in
both the initial and final states must have the same sign,

Qi

— >0, all i,j . .

o, 2 J (4.5)
Neutral particles are required by the null-zone condition
to have zero mass and to travel in the same direction as
the photon. (Neutral particles are addressed in more detail
in Sec. VIL.) For a given total charge, the more particles
there are, the smaller their charges, and consequently frac-
tional charges can play a special role. '’
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B. Null zone: n <3

Given (4.5) the next step is to find the constraints on the
energies and angles due to (4.1).

(1) n =1. For completeness, we include this “mixing”
transition which is realized only off-shell for well-defined
particle states and has a tadpole source graph. The radia-
tion representation is trivial since Q; =0.

(2) n=2. An example is u—ey lepton-number-
violating radiative decays. The momentum and charge
conservation equations automatically satisfy
Q1/p1'9q=Q,/p,"q, in accord with the fact that there is
no independent equation. The radiation representation is
identically zero and, indeed, the most general y—ey am-
plitude!® W(a +bysloupgte” is O(q), with contributions
from derivative couplings or closed loops. (See Sec. VIIL.)

(3) n=3 decay. Equations (4.2) read p,=p,+p3+g¢g
and Q;=0,+0Q;. In terms of the energies in the rest
frame of the parent, we take the two decay variables to be

2p3-q 2E,

xX=—7p =1———+p —ps?,
" i 4.6)
2p2'g 2E; '

= =1—-— 2_,,.2 ,
y mlz my M3 K2
where
ni=m;/m, , 4.7)

which coincide with those of Ref. 7 in the limit
m,=m;=0. The single null-zone equation may be writ-
ten

y=—"x, (4.8)

s
and the question is whether this straight line intersects the
physical domain in x-y space.
In Appendix A, we find the physical x range,

0<x <(1—pup)—ps?, (4.9)
and, for a given x, the y range,
Y_<y<y+,»
(4.10)
yiE%[Bi(B2_4ﬂ22A)l/2] R

with A =x +p5% and B=1—p,?—pus*—x. The roles of x
and p can be reversed by relabeling 2«3.

The intersection of (4.8) with (4.9) and (4.10) depends on
the masses m, and mj, and is analyzed in Appendix A.
One particularly interesting result is that there is a physi-
cal null zone for all masses and charges such that
Q,/m,=Q3/my,m,+msz<m,;. This is consistent with
the soft-photon, nonrelativistic limit, where m,+m;=m,
and all Q; /m; are equal.

In the massless limit m,=m;=0, the inequalities
reduce to the case already discussed in Ref. 7: 0<x <1,
0 <y <1—x. Thus, there is always a line of intersection in
x —y space as long as the three charges have the same
sign.

(4) n=3 scattering. With p,+p,=p3+gq
0, +Q, =03, the single null-zone equation yields

and
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E,—QE
Pooso— 22E1—QiE2 (4.11)
0,+@)
in terms of the c.m. energies E; and angle 6 (between P,
and q) with P=|P;| = |P,|. The physical null zone, 8

of (4.11) for which |cosf| <1, is discussed for general
masses and charges in Appendix A. In the ultrarelativistic
limit,

Q.- 0
0,+0;

so that all positive Q,/Q; values produce physical null
points. It is seen that (4.12) checks* with g’ — Wy. The
nonrelativistic limit is consistent with total interference at
all angles. Appendix A contains a demonstration that, if
Q,/m;=Q,/m,, a physical null zone exists whatever the
energies.

cosf= (4.12)

C. Null zone: n =4 example

The n >3 results can be built up from the preceding
analysis. For n =4, consider p,+p,=p3;+ps+q and
Q1+ Q=03+ Q4 as equivalent to a three-body decay of a
system with mass E =E | + E, (the total c.m. energy). The
photon angle is still given by (4.11). The second null-zone
equation is expressed in terms of variables analogous to
(4.6),

(°}}
y=—-"x, (4.13)
on
where
_ 2p4q 2E;  my’—m,’
X = E2 =]— E E2 >
4.14)
_2p3q { 2E,  myi—mj?
y= E? - E E2

The two null-zone equations do not follow the prescription
of (4.1) but still are independent.

We count the dimensions of the null zone by recalling
that the photon polar angle is fixed and noting that its az-
imuth can be arbitrarily chosen. The energy of particle 4
is determined by (4.13), and, after imposing momentum
conservation, the last two free dimensions may be taken to
be the energy x of particle 3 and the azimuth of the plane
of particles 3 and 4 (and y) relative to the photon axis.
These constitute a two-dimensional null zone.

We may use the decay equations (4.8)—(4.10) and in Ap-
pendix A, mutatis mutandis, to determine whether the null
zone is in the physical region. Again, if the ratios Q;/m;
are all identical, there is a physical null zone for any c.m.
energy. This suggests a striking example.

Bremsstrahlung in electron scattering, (4.4), satisfies the
radiation theorem in lowest order and, in addition, the
Q;/m; ratios are identical for all charges. Thus, we dis-
cover amplitude zeros in a textbook reaction that have
gone unnoticed up to now and that occur somewhere for
all energies (E >2m, m;=m). Having two (or more)
source graphs is immaterial. The physical null zone is the
two-dimensional region described above and in Appendix
A:

o D

X / 172 E
e‘\ /e

1/2 E

I
5 E-2E

Y
FIG. 2. The amplitude zero in e "e "—e ~e ~y occurs when
both the photon is at right angles to the c.m. beams and the final
electrons have equal energies. This is a two-dimensional null
zone: E',¢" or 6,4’ at fixed O6=m/2.

E'(1—v'cos®’)=E /2,

T/2<0' <7,

(4.15)
0<¢'<2m,

O=m/2,

in which E;=E,=E’, the final velocities v; =v4=v’, and
0;=0,=0'. The final-state plane of the two electrons and
the photon has an azimuthal angle ¢’ about the photon
axis, pictured in Fig. 2.

In contrast to identical scalar bosons, the null zone in
Fig. 2 is not forbidden by angular momentum conserva-
tion for identical spin-5 fermions. It is radiation interfer-
ence, and not the exclusion principle, that forces every tree
helicity amplitude for reaction (4.4) to vanish in (4.15).

D. Null zone: Theorem

It is possible to give a general criterion for the existence
of physical null zones:

Physical null-radiation-zone theorem. There is a null ra-
diation zone for any c.m. energy in the physical region of
the reaction, k particles —n —k particles + photon, if
the initial particles have an identical charge/mass ratio
and the final particles share another common charge/mass
ratio, not necessarily the same as the initial ratio.

Corollary. As a special limit of this theorem, one can
require instead that subsets of the initial and/or the final
particles be massless.

In short, we can always find physical regions where all
Q/p-q are equal, provided that the Q /m are equal or that
particles are massless, conditions which can be restricted
separately to the initial or final states. In decay processes,
obviously, the parent must not be massless, and in all cases
the nonzero charges must have the same sign. We note also
that, alternatively, the photon may be in the initial state.
The proof and further remarks are given in Appendix A.
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kt+2
k+1

(a) (b)

FIG. 3. (a) The n-vertex souce graph. (b) A photon attach-
ment to an external leg.

V. PROOF OF THE THEOREM

A. Spin-zero fields and constant couplings

We first examine scalar/pseudoscalar particles whose
couplings to each other may involve an arbitrary number
of fields but no derivatives other than the standard con-
vective photon coupling.

A vertex source graph Vg (n), is defined to have n exter-
nal lines coupled through a single vertex [Fig. 3(a)] and, in
the absence of derivative couplings, only external-line pho-
ton attachments [Fig. 3(b)] are present in the correspond-
ing radiation amplitude. For photon emission by an exter-
nal scalar leg with charge Q flowing along momentum p,
we have the following factors!3:

outgoing particle: —Q—p-e , (5.1a)
pq
<
pq
If A, denotes the constant vertex in Vg(n),
M'}’[ VG(n)]=K,,AIR(k,n) s

in terms of (3.7). The theorem is obvious in this case.

The n =3 vertex leads to the spinless version of
qg'— Wy which is already known® to have the same am-
plitude zero. The new aspects of the preceding results for
vertex source graphs are the demonstration that amplitude
zeros also exist for n >3 together with the identification
of the conditions (4.1) for their location, and the under-
standing of the physical basis for their occurrence.

Remarkably, the same zeros survive in arbitrary scalar

incoming particle: (—p-€ (5.1b)

(5.2)

(b)

FIG. 4. (a) A sample tree source graph and (b) its associated
radiation amplitude, as defined in Sec. II.

I L
- = ->- === + == -
[ P P p 2] P P P
FIG. 5. The radiation decomposition identity for the coupling
of an external photon to an internal particle line. A double line
represents a propagator. A dashed line is quasiexternal in that
the calculation of each current on the right-hand side is carried
out as if the dashed line were real. See Egs. (5.3), (5.18), and
(5.26). Additional contributions to the left-hand side due to
seagull graphs where the photon is attached to either end are
easily incorporated into the respective quasiexternal factor on
the right-hand side. See Appendix B.

tree graphs, where we encounter photon attachments to
internal lines. (See Fig. 4.) A crucial step in handling
such contributions involves the use of an identity for real
photon emission from a scalar internal line (p’'=p —q):

. 1 , 1
i p_lz‘jm—zQ(P +p)e m
- 9 e pea @
p,z_mz p:.qp €+(—p f)p.q p2—m2 » (5.3)
using g-e=¢2=0,

We refer to (5.3) and similar relations in the sequel as
radiation decomposition identities, representing a manifest-
ly gauge-invariant split of the internal vertex into two
terms (Fig. 5) each of which is a product of a propagator
and a quasiexternal-leg emission factor.

In the scalar case (5.3) holds to all orders. The
invariant-amplitude expansion for the scalar-photon-scalar
vertex function,

Te=(p'—p¥f(p'%p>)+(p'+pVg(p'%p?) ,

implies that
Ie=(p'+pleg.

Alternatively, the Ward-Takahashi identity can be used to
show that

AN )T AP =—2pq g,

where A’ is the full scalar propagator. Thus (5.3) is valid
with (p’+p)-€ replaced by I'-€ and the free propagators
replaced by A’}

Let us illustrate (5.3) with an n =4 example depicted in
Fig. 6. The radiation amplitude can be expressed in the
form

2 3
5 + ;E + ..
1 4

FIG. 6. The radiation amplitude for an n =4 tree source
graph.
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i)»32 (on (o3 01—0Q4
M (Fig.6)= D4 €— €+ (p1—p4)-€
v p3—p2P—ms? |paa’t S prat T (1—parg TP
iAs? Qs 0, 0,—Q3
P3€— Py €+ (pa—p3)e| . (5.4)
Pr—peP—ms |pral pratt T (pa—pyrg T2

The two square brackets in (5.4) are the separately gauge-
invariant classical 4z amplitudes (3.6), each associated
with one of the (n =3) source vertices. Both are multi-
plied by the original source graph amplitude, the momen-
tum assignment in each source amplitude determined by
momentum conservation at the other vertex. These
features are quite general.

From a general scalar tree graph 7 and (5.3), we ob-
tain a radiation vertex expansion [cf. (2.4)]:

M(Tg)=SAARr(WR (v) , (5.5)

summing over the vertices v of T;. Ar(v) is the gauge-
invariant off-shell version of the classical amplitude (3.6)
for radiation by the legs of vertex v where the sums are
over all external and internal lines into and out of the ver-
tex. R (v), comprised of the remaining factors in T in-
cluding all propagators, is simply T /A, in the scalar
case, but with momentum unconserved at the vertex v.

The validity of (5.5) follows from the fact that (5.3) par-
titions each internal-line photon attachment into two
quasiexternal-line attachments which are respectively and
unambiguously assigned to the two vertices joined by the
internal line. For every vertex v, we are left with a com-
plete set of photon emission factors, one factor for each
attached line and each factor with the same coefficient
R (v). The momentum of each propagator on the right-
hand side of (5.3) is consistent with g leaving the vertex to
which its quasiexternal factor is ultimately associated, giv-
ing the same R that the external-leg radiation does.

The proof is completed by noting that the internal
Q /p-q factors are determined through (4.3) by the external
ones. If (4.1) is satisfied, then

o o

= (5.6
prrqa  Ppjq

(null zone)

for all fixed internal I. Therefore, each 4x(v) (and conse-
quently M,) vanishes in the null zone.

Evidently, the null-zone cancellation depends only on
the external charges and momenta; all source graphs (with
the prescribed couplings) generate tree radiation ampli-
tudes that vanish at exactly the same places for a given set
of external particles. Notice how the proof breaks down
for closed-loop source graphs, since (5.6) does not follow
unless the internal line is fixed by the external charges and
momenta.

The theorem can be checked by the example in (5.4)
which in particular demonstrates the interesting case of
vanishing internal charges. If Q5=0,—~Q04,=03;—0,=0,
one null-zone condition is p;*q=p4-q (or p3:q=p,-q), the
cancellation still goes through in (5.4) but now between the
square brackets. This is not surprising since the original
demonstration did not depend on the magnitudes of Q;,
and the limit Qs—0 could be taken before or after
demanding (4.1). In general, we may regard any two ver-

I

tices connected by a neutral internal line as a single com-
pound vertex in expansions like (5.5). Neutral external
scalar lines conform to the theorem as well but in a more
subtle fashion. Their inclusion is analyzed in Sec. VII.

B. Including spin-half particles

Now each tree source graph may involve any even num-
ber 2D of Dirac particles along with an arbitrary number
n —2D of scalars (but no derivative couplings).

A vertex source graph may be written

D
Vg(n,D)= w;r‘w, ,

i=1

(5.7

where w,w’ are chosen as needed from the familiar u,v
spinors. The I'; are spin matrices, possibly contracted to-
gether, with the coupling constant and the presence of the
n —2D scalars understood.

The factors corresponding to (5.1) for photon emission
by an external Dirac leg are computed from minimal
(gauge-theoretic) coupling to be

Q

outgoing particle: ﬁﬂ(p)(pf%- +leq]) (5.8a)
incoming particle: (—p'e——f,-[f,q])u(p)pb?; , (5.8b)
outgoing antiparticle: (p-e—+[g,q] (p);%]— s (5.8¢)
incoming antiparticle: Q o(p)—p-e++le.q]) . (5.8d)

pPq
Each is a sum of convection and spin currents, replacing
the original spinor in the source graph.

The radiation amplitude for the vertex source graph
(5.7) can be obtained directly from (5.1) and (5.8). With k
initial particles,

MY[ Vs(n,D)]=Vgs(n,D)A g (k,n)

D D
+ 2 Si[lw;Tuw;
i=1 ji

(5.9)

where
5= 40(6}) | -2 (eI~ Tl e )

(5.10)

The convection currents combine to give (3.6), as before,
and clearly cancel in the null zone.

We can show that the Dirac spin currents also conspire
to cancel in the null zone but by Lorentz, rather than
translational, invariance. The spin currents in (5.8) are
proportional to first-order wave-function corrections all of
which can be associated with the same (called “universal”
hereafter) first-order Lorentz transformation,
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Apv=8puv+Awy, , (5.11)
where
Ouyv=qu€y—€uqy (5.12)

and A is an infinitesimal length. The spinor wave function
1 transforms as!®

P'(x")=S(A(x), (5.13)
where x'=Ax and
S(A)=1— %Aam,co”"zl—-%}»[e,q] . (5.14)

Comparison of (5.8) and (5.14) establishes the relationship.
When the Q /p-q factors are equal, (5.9) reduces to
]

0, 2 D
P19 i=1 j#i
(null zone) , (5.15)
with
AF:':%[f,Q']ri*ri%[f,Q’]
=£[Upvw”vvri] . (5.16)

We see that (5.16) is proportional to the complete first-
order change!® in (5.8). By the Lorentz invariance of Vg,
we conclude that M, [V;(n,D)]=0 in the null zone.

To extend the proof to internal lines, we need an identi-
ty analogous to (5.3). The alternative expressions

(p"+m)E(H+m)=2(11'+m)(p"6+j];[f,q])——(p'z—mz)t (5.17a)
=2p-e+1[e,q))p+m)—e(p>—m?), (5.17b)
lead to
1 1 i Q9 o, e L Q i
T —m Qtp—m = —m ' (p"e+7le.qD)+(—p-e 4[f,q])p.q P (5.18)

This also follows the schematic of Fig. 5, offering an im-
mediate demonstration of the associated Ward-Takahashi
identity.

Equation (5.18) provides the correct internal incoming
and outgoing convection and spin currents of a given ver-
tex in a source graph, for the null-zone cancellations. We
obtain the radiation vertex expansion (2.4),

M(Tg)=3M,[Ve)IR (), (5.19)

where M, [ V(v)] is the (separately gauge-invariant) radia-
tion vertex amplitude including internal legs. For internal
legs, we replace the corresponding spinors in (5.9) by spin
indices that are tied to the remaining factor R (v), which
contains all propagators. R (v) is T; less the vertex v,
with momentum assignments consistent with photon emis-
sion from v.

In the null zone, the conservation of momentum (modu-
lo @), the rank-zero nature'®? of the string of I';’s at each
vertex v, and (5.6) lead to M,[V]=0 for all v in (5.19).
The theorem is thus proven for scalar-spinor tree source
graphs with constant couplings.

Since any deviation from minimal coupling for Dirac
particles ruins the n =3 factorization,’ it is expected to

undermine the radiation interference theorem. An
anomalous-magnetic-moment coupling?! leads to the
modified vertex
e+ -leq] (5.20)
4m 777 ’

where the magnetic moment and gyromagnetic ratio are
p=e/2m, g =2(1+4a). The external current (5.8a), for
example, is then changed to

Q—E(p) p-e+—}[E,lI](l+a)+~a— . (5.21)

pq 2m CwrP Y

The argument for ¢ =0 depends on the relationship be-

f
tween the spin currents and a universal Lorentz transfor-

mation, but the p dependence w,,, p#y" destroys this.

Therefore, we require the minimal Dirac electromagnet-
ic coupling for the radiation theorem. This shows that
electromagnetic gauge invariance is not sufficient. The
Pauli terms, for example, are gauge invariant, but lead to
g5~2, nonrenormalizability, and a violation of the radia-
tion theorem, all of which appear to be intimately related
to one another.

C. Including spin-one particles

We now add an arbitrary number N of vectors to the 2D
Dirac particles and n —2D — N scalars in the tree source
graph, but still with no derivative couplings beyond the
scalar and vector electromagnetic currents. The photon-
vector-vector coupling has the form??> of the locally
gauge-invariant Yang-Mills trilinear (Fig. 7) and corre-
sponds to k=1 for the magnetic moment parameter of the
vector particle (g =2). The quadrilinear vector couplings
in which the photon participates are regarded as seagull
terms in Sec. VD. The incorporation of neutral vector

c y a
a
g = ;g[gaB(b-u)r+ gﬁy(c-b)aw‘ gya(u%:)B}
2 ig Y(a,b,c)
b g aéy
atb+tc =0

FIG. 7. The Feynman rule for a Yang-Mills locally gauge-
invariant three-vertex for vector fields, with four-momenta a,b,c
and polarization indices «,8,y. The coupling constant g would
be augmented by a matrix representation for the general
internal-symmetry gauge group. In the U(1) case where a vector
boson with charge Q emits a photon, we have g =Q. See Ref.
22.
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particles into the proof is considered in Sec. VII.
The vertex source graph is generalized from (5.7) to

D
Ilw:Tiw;

i=1

N "
VG(n,D,N)z H"]I
I=1

, (5.22)
BN

Byt

in terms of the vector polarization factors!® . We may
include possible g,,,€,.,, tensors along with the Dirac
matrices in the definition of the I';, making up the (con-
stant) rank-N Lorentz tensor into which the 7; are con-
tracted.

The photon-emission factors for vector legs with polari-
zation 7(p) (n'p =0) are calculated by contracting the
vector propagator, iP,,(p)/(p*—m?), where

Pyv(P)_ —g;w+

(5.23)
]

N
M,[V5(n,D,N)]=V5(n,D,N) A (k,n)+ [ [ni"
I=1

D
II@:Tiw;

i=1

i=1

+2_7wtl vI-I77

I_l rl
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with the photon vertex inferred from Fig. 7. We find
outgoing particle: ;%—(p'enﬂﬁ-wwn") , (5.24a)
incoming particle: (-p-en“+(o,w17")—% (5.24b)

These replace 7, in the original source graph.

We learn from (5.24) that the relationship between spin
currents and the universal Lorentz transformation is not
just an accidental aspect of Dirac particles, since the vec-
tor spin currents are also proportional (for g =2) to the
first-order change under (5.11) in their associated wave
functions. This relationship is again the key to the null-
zone cancellation.

From (5.1), (5.8), and (5.24) it follows that (5.9) general-
izes to

ITRRRNY:

, (5.25)
BN

with (3.6) as the familiar repository of the complete set of convection currents. In the null zone, the Dirac spin currents
in the second term of (5.25) are proportional to the first-order universal transformation of the rank-N spinor product ac-
cording to the remarks in Sec. VB and are therefore canceled by the third term which is similarly related to the first-
order transformation of the rank-N vector polarization product. The total first-order change of the rank-zero Vg van-
ishes under (4.1) by its Lorentz invariance. Hence (5.25) satisfies the theorem.

The radiation decomposition identity for a real photon attached to an internal vector line is (Fig. 5)

—iQl 5 iP,,g(p’) Q _Q iPgs(p) '
= (p"egf +wsP)+(—p-egy +w,*) = ———, (5.26)
P —mAp—md) pi-mipq’ g8 +od)+(—pregy+oy p'q p*—m?
where (Fig. 7)
I z—PyB(p’)YB"“(p’,q, —p)Ps(p)e, . (5.27)
Equation (5.26) is derived using both of the alternate expressions for (5.27)
1 ’
Is=—2Pg(p')p'€gf +ws?)+ — 2—m?)eyps+py€s) (5.28a)
=2(—p-egy+,” )Pas(p)—!— (eypa +pyes)pt—m?) . (5.28b)

I

(p,a)—(p",B)+(g,ut) is augmented by the term??

The decomposition (5.26) leads to a radiation vertex ex-
pansion as before but now including internal and external

vector particles. For every internal particle with spin at- 1Q(k—1)gpuga—988ua) - (5.29)
tached to a given vertex v of T, the factor V(v), defined  The currents are changed by the addition of

as in (5.22), has a free index in place of the spinor or po-

larization vector. The off-shell radiation amplitude Q k-1 P, (De*Pn, , (5.30)
M, [V;(v)] is likewise multi-spinor-indexed and a Lorentz pq 2

tensor. where I =p +q(p —q) for the first (second) factor in

We may regard Vi (and M) as Lorentz invariants in a
manner following the spinor description.?’ For each inter-
nal vector leg, index u, we rewrite (Vg), as (Vg )smd(w) for

(,u)—gw defining an internal vector wave functlon If
all wave functions, vector and spinor, external and inter-
nal, are universally Lorentz transformed, the (first-order)
terms cancel. Since (5.26) provides exactly these internal
first-order changes, M, derived from general source tree
graphs continues to satisfy the theorem.

A non-gauge-theoretic photon coupling to vector parti-
cles spoils the cancellation. For k=1, the vertex for

(5.24). The p dependence of P, in (5.30) ruins the univer-
sality of the spin currents. We need k=1, or g =2, in the
vector magnetic moment, u=ge/2m, g =1+« in order to
maintain the relationship between the spin currents and

the universal Lorentz transformation (5.11).

D. Including derivative couplings: seagulls

It remains to consider the possibility of derivative cou-
plings in the interactions among the source particles. We
show next that the current associated with the presence of
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p.Q

q

FIG. 8. An example of photon emission by an incoming or
outgoing particle, with momentum p and charge Q, that is cou-
pled through a derivative 95 of its own field to other particles.
The seagull factor is —Qg g, for photon polarization ¥,

a derivative coupling is described by the same Lorentz
transformation that characterizes spin currents and conse-
quently the radiation theorem holds for the general class
of gauge-theoretic interactions in the source graph.

We first examine single-derivative factors: Lagrangian
interactions of the form (3,%;)(W;¥; - -+ )}, or products
thereof, (3,¥;)(3,¥;) - -, where each field ¥, boson or
fermion, has at most one derivative. Obviously, these in-
clude interactions that can be brought into single-
derivative form through an integration by parts. Elec-
tromagnetic gauge invariance requires a direct photon at-
tachment, adding a seagull current to the convective and
spin currents, for the ensuing momentum-dependent
source vertex.

Consider a vertex in which there is a derivative cou-
pling, (3%W) - - - , and the external or internal leg (particle
of W) connected to this vertex, as an isolated part of a
source tree graph. In momentum space, the vertex may be
denoted by p"rﬂ, in terms of the momentum p of the leg
and the remaining vertex factors 7.

The contribution to the radiation vertex amplitude in
(5.19) due to the particle ¥ from this isolated vertex-leg
system (Fig. 8) is

My= iﬁlyaymw—gﬁ+wmmmam (5.31)
for an outgoing( + )/incoming(—) particle. In the
internal-leg case we include only the radiation-
decomposition term relevant to this vertex. Aside from a
possible external wave function, r resembles R in (5.19) in
that it can be expressed entirely in terms of momenta oth-
er than p and gq.

The seagull term in (5.31) comes from the vertex factor,
—Qg"B. We note that the spin currents are separately
gauge invariant and that the convective current in (5.31),
+Qp-ep-r/p-q, is conjointly gauge invariant with the oth-
er convection currents in the radiative vertex amplitude.

The seagull and momentum-shift contributions to (5.31)
can be rewritten in the suggestive form

Q9

pq
These terms go hand-in-hand for any single-derivative
coupling in the source graph. (They also appear together
in first-order g for higher derivatives.)

The significance of (5.32) is that it allows us to identify
a universal contact current,

Qa)uv

(p-eqP—p-qePirg . (5.32)

pq
for photon emission from a line coupled through a (linear)

, (5.33)

derivative coupling to a vertex, to be added to the convec-
tion and (any) spin currents. The rule® is that (5.33) re-
places g*¥ in the derivative coupling, p*=g**p,. A sum-
mary of all photon emission factors is given in Appendix
B.

The contact current is thus proportional to the first-
order Lorentz transformation (5.11) of the rank-one
derivative. Recalling that the spin currents transform the
wave functions, Lorentz invariance continues to guarantee
a cancellation of the terms that are first-order in gq.
[Inasmuch as o*" is linear in g, the order of g is equivalent
to the order of A in (5.11).] In the null zone, the radiation
vertices in (5.19) vanish up to O(g?), in the coefficient of
Q/pq.

The O(g?) terms arise when a spinning particle en-
counters its own derivative coupling,?* specifically from
the product of the spin current and the momentum shift:

spin term =spin current X (p =q)f (5.34)

from (5.31). Thus, second-order terms develop for interac-
tions in which there are derivatives of Dirac or vector
fields, as well as those in which higher derivatives of sca-
lar fields occur, and do not cancel in the null zone unless
an additional mechanism is operative.

In fact, there is an exceptional case in which such an
additional mechanism is present. The quadratic terms
cancel under (4.1) for the trilinear single-derivative
vector-boson vertex of Fig. 7, as a consequence of both the
cyclic symmetry of the vertex and of the specific form
(5.12) of the universal transformation, o**. (See note add-
ed in Sec. XI.) This cancellation is demonstrated explicitly
in the next subsection and appears to be intimately related
to the question of renormalizability. (The theorem is like-
wise true for a class of nonrenormalizable interactions.
Our arguments also go through for couplings involving
products of single derivatives of distinct scalar fields and
of the triplet Yang-Mills structure as well as of any num-

m
Cy.vo-p V8 V9

“(a7s 11afs
(o S5 n

FIG. 9. The source-graph example of Sec. VE. The vector,
Dirac, and scalar particles are denoted by V, D, and S, respec-
tively. The bottom vertex includes a scalar fermion current.
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ber of scalar, Dirac, or vector fields with constant cou- Dirac current, multifield vertices, a product of two scalar
plings.) This completes the proof of the radiation single-derivative couplings, their seagulls, a Levi-Civita
theorem. tensor €,,,, vertex, and vanishing charges (Sec. VII) for
internal vector and Dirac particles. In addition, the use of
the radiation-vertex expansion is to be demonstrated.
The example (Fig. 9) is designed to illustrate the cyclic The source-graph amplitude (cf. Fig. 7) is
trilinear Yang-Mills vertex and its seagull, a tensor oy,
J

E. Example with Yang-Mills vertex

T (Fig.9)=n5Yp,(p2.p3, — 1 MVP (p3 50 V1€uvopENP 0 P11 (5.35)

Pe—ms
where n; =7(p;),@s=i(ps),v;=v(p;), and the vector propagator is VP (p;)=(gf—pip*/m D/(p32—m3?. (Overall
constants are disregarded.) Before photon emission, the momenta are related by

P1—P2=p3=pP4+P5—P¢ > P6=Piro+P11—P7—Ps—P9 - (5.36)

Charge conservation leads to the same equations, but with p; —Q;.
The radiation amplitude corresponding to (5.35) has the radiation-vertex expansion

3
M(Fig.9)= > MR (v), (5.37)

v=1

where v =1,2,3 refers to the vertex at the top, middle, bottom, respectively, of Fig. 9. The vertex radiation amplitude
M (v) can be obtained using the appropriate current insertions. The theorem is verified if each M (v) vanishes in the null
zone.

The first vertex radiation amplitude is constructed using the external currents, (5.24), and the first (outgoing) internal
current in (5.26) with p’=p;, all augmented by contact currents, (5.33), for the momenta in the Yang-Mills vertex. (The

contact currents include the quadrilinear """ vertex.) The result is
Qi 1) s
Mg(1)=Yorp2.p3, —p1) | = 5(—pr-enl+0"sm)gs+ ——(pr-ens +osm3migs + ——n3nl(ps-egp+0p
piq pP2q P3q
0 0, . Q3
+050 | = (81a®pr — 88y Par )P T+~ (81a®pr—8ap®yr )P s + ——(80p®yr — 8 gy 0ar )P}
Pi°q P2q P3°q
(] 0 0;
+ N30 5138 py a0 —8radp) + MO N8 yalp—8apdy) + —— 150 B8 ardy —Eryda) (5.38)
pP1°q p2°q P3
with its common factor in (5.37) given by the remainder of (5.35),
RE)=VPpyms--- . (5.39)

Here p, —p, —q =p3 with the rest of (5.36) unchanged.

Mpg(1) is easily seen to be gauge invariant. In this regard, note that the decomposition (5.26) produces the same outside
factor (5.39) as do the external leg attachments.

In the null zone, we find

2

Mg(1)
P pig

{Yary(P2:03, —P OIS0 —p 1 +p2 +p3) €8+ 15075138 5+ 0%smitg 5 +n5niw )
+03M[8ap®yP3 —P2) +8y@arl —P1 —P3) +&ya®p P2 +p1)7]

+2055m371°q +20,515m1q5+ 20853127} (null zone) (5.40)

grouping the quantities inside the curly brackets according to powers of g.

The fact that Mg(1)=0 in the null zone can be described order by order in g. First, the zeroth-order convection
currents obviously cancel. The next six terms, linear in g, are the first-order universal Lorentz changes in the external
vector wave functions, in the internal vector wave function (w”g term) defined by Mg=M n"(B) with 1"(B)=gp, and in
the four-momenta of the vertex, respectively. Since these are all contracted together, sometimes through the numerically
invariant g,,, Lorentz invariance guarantees their cancellation, and an explicit calculation using the antisymmetry of Dpy
bears this out. Finally, we call special attention to the cancellation of the last three terms, quadratic in g, in (5.40). This
goes beyond Lorentz invariance, requiring the cyclic symmetry of the trilinear vertex and the specific structure of @y, in
(5.12). (See note added in Sec. XI.)

The second gauge-invariant vertex radiation amplitude is similarly constructed (see Appendix B), yielding
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Q4
Psaq

MA(Z)G=175 {

6

Qo
+ ;QS%](PS'&F %[f,q])"lsckg-i- —q"‘ﬂgaxg( —pse—5leq) |,

Ps¢®

with the contracted remainder

RM2)q= - VPp3)

- ,
Ps—ms L
and with (5.36) modified by p; =ps+ps—pe+q.

v Qs v
(pa-enf+wb m¥)ore+ ;3_11—( —D3 €8+ \INio
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4

(5.41)

a

(5.42)

It is easy to see that M (2) vanishes in the null zone. The Dirac spin currents produced the first-order Lorentz

transformation of o [cf. (5.16)],

Aore= 116,900 ]=T€lq,00 ]+ 5[€,00¢lq

=wxﬁaﬂ,;+wgﬂaw ’ (5.43)
which is cancelled by the (vector wave function) w terms in (5.41).
Finally, the third vertex radiation amplitude is
Y Qs ]
M (3)g=¢€ur0p {71‘57791"1’01”1’1 Ped (Pe-e+3le,qD+ ;;(Pfe— 7leqD
QO3 . Qo
+pTorh (ps-ens + ¥ Mg M5+ ——(po-ens+ a3k
psq DPo'q
J1 Qo On
Y | == (—pio-epfo+07apfo)pfi +———(—pi1-€pfi +@PapT P | | v7 (5.44)
Pio°q Puq B
r
with the factor n,
> 8pirg=0. (6.2¢)
R(3)= |-+ ——1 . (5.45) =t
Pe—ms |g

Now (5.36) is modified by pg=p10+p11 —P7—Ps—Po—9q-

M (3) is also seen to vanish under (4.1). The direct can-
cellation of the Dirac spin currents is expected for a scalar
fermion coupling. The cancellation of the remaining con-
tact and vector spin currents, expected by the Lorentz in-
variance of the remaining coupling, follows from the use
of the basic identity

guveaﬁra — gimEVBw + g#ﬁE‘!VYU + gweaﬂva + gnaeaﬁ"rv .

(5.46)

VI. RADIATION REPRESENTATION

The conclusions of Sec. V are summarized by the state-
ment that each gauge-theoretic vertex radiation amplitude
in (5.19) can be written as

n
o QiJ;
M (Vs)= -, 6.1)
roe i§1 bi'q
where
nl’
2 5;0,=0, (6.2a)
i=1
> J;=0, (6.2b)

i=1

The source vertex subgraph V; has n, internal and exter-
nal legs, whose propagator factors are not included in
(6.1). J; is the product of the photon-emission current j;
for the ith leg (the j; rules are summarized in Appendix B)
and the remaining factors of the original vertex amplitude.
Examples for J; appear in Sec. VE. The current sum rule
(6.2b), a consequence of translational, Lorentz, and Yang-
Mills symmetries, is independent of whether or not the
null-zone condition is realized.

The zeros for identical Q/p-q or identical J/p-q (the
latter condition satisfied only under very special cir-
cumstances) dictate restrictions on the radiation ampli-
tudes. We wish to use the algebra underlying the theorem
and its complement to find a form for the amplitudes that
displays explicitly the bilinear expansion in differences of
the Q /p-q and J /p-q factors.

The following trivial lemma will help to introduce the
algebra.?

Lemma 1. X s=2,.a;b;, where 3 b;=0, then
s =3 .(a;—a;)b;, for all j. (The sum may omit i =j.)

The (easily proven) lemma addressing the specific form
of (6.1) is the following.

Lemma 2. If?¢

(6.3)
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I A;B; 4, 4 B; B, terms can be apprec-iat‘ed when we realize that there are as

> < = > o Sl —¢e (6.4)  many as 2n — 3 radiation graphs arising from photon cou-

i=1 i i=1[ i Y i k plings to lines and as many as 3(n —2) more seagull terms.

for all j,k. (The sum may omit i =j,k.) Writing
A,-Bi /C, =C,(A, /C, )(B, /C,) >

we see that (6.4) now exhibits the invariance under
A;/C;—A; /C; +constant or B; /C;— B; /C; + constant.

We may reduce (6.4) to the expected / —2 terms by
choosing jk. In the simplest nontrivial case,

éﬁﬂi_:ﬁ_fi BBy (6.52)
Zc a6 e Te
Cc,C A A B B
=212 22 22 L (6.50)
Cs C ¢, C

for j =2, k =3. Any permutation of 123 is permitted in
(6.5); (6.3) has been used in passing from (6.5a) to (6.5b),
the factorization formula®’ of Ref. 5.

The application of (6.4) to (6.1) yields the radiation rep-
resentation of M, (V),

)= 8:pi*qhy(Q)Au(8]) ,

M, (Vg (6.6)
i=1
where we define the differences,
A =————. (6.7)
bi'q pjq

As noted, we may reduce (6.6) to the n,—2 independent
differences?® among the A;;(Q) and among the A;;(8J).

From (5.19) and (6.6) we have a radiation representation
for the general radiation amplitude. The bidifference
form embodies the consequences of the symmetry proper-
ties of the radiation amplitudes. From this perspective,
both versions of the radiation theorem are by-products of
the radiation representation.

A radiation representation in which only differences in
external Q /p-q factors appear can be written for the com-
plete radiation amplitude M ,(T;). Equation (4.3) and the
linearity in the Q /p-q factors imply that

n

E_I TG

(6.8)

where I; is independent of the charges. It follows from

the theorem that

n

S 1,=0. (6.9)
i
Hence Lemma 2 applies:
My(T(,'):E 5,p,'qA,J(Q)A,k(51) . (6.10)

i=1

The I; appear less convenient for calculation or for
physical interpretation, where, for example, there is no
gauge-invariant grouping of terms. The representation
(6.6), in combination with (5.19), involves the same num-
ber of terms, since each M, in (6.6) can be reduced to
n, —2 terms and, for any tree graph with V total vertices
and n external particles, Ev‘l(n,,—Z)—n —2. The or-
ganization of the radiation amplitude into only n —2

Let us illustrate the radiation representation using the
example in (5.4). We find

M(F1g6)—2M V)R (v), (6.11)
where, by choice,
‘€ (p1—py)e
M()=—p,q 0, -~ Q4 Pr’€  P1—P4
P1'q9  Psaq | |P1'9  (P1—Pa)q
(6.12a)
_Praped | Q1 Q4 || Pae pre
(p1—pa)q |P1"qa  Pa'q | |Ps'd P19
(6.12b)
irg?
RN)=———7F""75, (6.13)
(p3—py)° —ms
and M (2),R (2) are obtained by relabeling the charges and

momenta in (6.12) and (6.13) according to 1—2, 4—3.

VII. NEUTRAL PARTICLES

We now investigate the role of neutral®® external parti-
cles in the radiation theorem.

A. A view from the radiation representation

The representation of Sec. VI makes it clear that zeros
are present in gauge-theoretic radiation amplitudes in tree
approximation, even for opposite-sign charges. For exam-
ple, radiation zeros occur for the reaction e te ~—e te A
albeit in the unphysical region. Charge and momentum
conservation, the mass-shell constraints, and Lorentz in-
variance, which are ingredients of the radiation theorem,
can be maintained even for the unphysical energies that
the null-zone condition (4.1) may require.

A cursory conclusion, however, from the radiation rep-
resentation might be that there would be no radiation zero
in the presence of an external particle » with zero charge,
Q,=0. For a set {r} of zero external charges in a vertex
source graph, (6.6) reduces to

M?’( VG):Z 5,p,qA,J(Q)A,k(5J)
is£r

g
————23 8,p,"qA(8]),
Pj'q; rPr 4Bk

(7.1

for some j,k=r. The null-zone condition A,J(Q =0, for
the nonzero charges does not imply that M, (V5)=0, since
only the first term in (7.1) is eliminated. The dlscrepancy
ultimately derives from the fact that terms Q,J, /p,-q are
now missing from the amplitude in (6.1).
This conclusion is wrong. We see that (7.1) vanishes if,
in addition to A;(Q)=0 (for i,j54r), we have
> p,:g =0 (null zone) (7.2)
r

and
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J,=0 (null zone) . (7.3)
2

In fact, both requirements can be met if each neutral par-
ticle is massless and travels parallel to the photon, as ex-
pected from the zero-charge limit*° of the null-zone equa-
tions. This is discussed in more detail in Sec. VII B.

Therefore, the radiation theorem is unaltered by the
presence of neutral external particles. (We will see in Sec.
VIID that neutral internal lines present no problems.)
The null zone is simply the corresponding limit of (4.1).
Radiation zeros are no longer manifested by A; factors
alone, but are also associated with the vanishing or, in the
case of neutral internal particles, the cancellation of
currents in the radiation representation.

B. One external neutral particle

Suppose that only one external particle r has zero
charge, the rest of the particles with nonzero charges of
the same sign. If the charged external particles have equal
Q/p-q, then

pr'q=0 (null zone) , (7.4)
from (6.2a) and (6.2¢), so that
pr=K,q (7.5)

for constant K, >0. Therefore, a single external neutral
particle of any spin must be massless and must enter or
exit the scattering region parallel to the photon, for a
physical null zone to exist.>!

In order to have a zero in the radiation amplitude for
the vertex to which r is attached, the partial sum must
vanish,

> J;=0 (null zone) ,
ir

(7.6)

since J, is absent from the sum in (6.1). Equations (6.2b)
and (7.6) imply that

(7.7

Hence, even though Q,=0, its associated J, is still
relevant as a test of whether (7.6) is satisfied. It suffices to
consider the factors j, which can be calculated indepen-
dently of Q, (Appendix B).

The evaluation of j, for the different spins leads to the
following.

Lemma I. A neutral external particle may be included
in the radiation theorem if it is massless and, in case the
particle is a vector boson, it is coupled to a conserved
current in a nonforward direction (defined below).

Proof. Evidently, (7.5) implies that the corresponding
(external) convection, Dirac, and contract currents are
zero and that the vector spin current can be written as

J,=0 (null zone) .

Daglf =o€, , (7.8)
we may rewrite g, in (7.8),
9.=(p,1q)x/(K,t1), (7.9)

in terms of the momentum transferred to the vertex,
which is p, +q for photon emission from a particle in the
final/initial state. Therefore, (7.8) does not contribute in
the event that the vector particle is attached to a conserved
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current,?? with K,s1. In the exceptional case, K,=1,
(7.8) does not vanish and (7.7) does not hold if an initial-
state neutral vector particle has momentum identical to
the final photon. Such “forward scattering” transfers no
momentum to the vertex.

The lemma therefore sanctions additional external pho-
tons in the radiation theorem. For an example of K,51,
the reaction e e "—e ~e ~yy has a null zone where the
photons are parallel and which is a simple generalization
of the null zone for reaction (4.4), e "e ~"—e e~ y. The
fact that the “first” photon must be coupled to a con-
served current requires a gauge-invariant set of source
graphs. For an example®® of K,=1, consider Compton
scattering, y+e—7y+e, where the forward amplitude is
nonzero, being proportional to €'€¢’. The null zone is the
forward direction, where the convection currents cancel,
but with zero momentum transfer the spin terms do not.

Further illustrations of the lemma can be found by ex-
amining the examples of Figs. 6 and 9 in zero-charge lim-
its. Recall also the forward zero>* for ve — Wy.

Since (6.2b) is based on Poincaré invariance (see Sec.
IX), we may look for a simple picture behind (7.7) using
momentum and angular momentum conservation. The
vanishing of the convection current can be attributed to
the fact that a scalar particle cannot emit a unit of helicity
collinearly. A massless spinor particle cannot flip its heli-
city with a vector coupling, and neither can a massless
vector particle whose longitudinal component has been el-
iminated. (This component is not eliminated, however, for
K, =1 which is the exceptional case of forward scattering.)

The calculations showing J,=0 exhibit the same
mechanism whereby collinear mass singularities are found
to be suppressed.* Related to this is the fact that the
g+2 photon-emission factors are divergent in the massless
limit*® (see Sec. V). Convergence for g =2 is crucial for
the inclusion of neutral particles in the radiation theorem.

The question of gauge dependence arises for the evalua-
tion of J, in the case of a massless neutral vector particle.
Since we are after the defect in (6.2b), where it is only the
interactions of the nonzero charges that concern us, the
question is irrelevant; the unitary-gauge emission factors
(5.24) are sufficient for the purpose of evaluating the par-
tial sum (7.6).

Nevertheless, we can show that the emission factors
(5.24) apply in a more general (covariant) gauge,’® where
we replace the propagator factor (5.23) by

(1— é-)p wPv
p*—&m?
The emission factor (5.24a), for example, is replaced by

Q2
pyq

P, (p)=—gu,+ (7.10)

p-qn-€ (

‘€N, +w,m’—
P €Ny T OpyM g +(1—E)m?

P+ | -

(7.11)

The presence of a conserved current eliminates the
(p +q), term in (7.11).

C. Additional external neutral particles

Lemma II. Lemma I applies independently of the num-
ber of neutral external particles.
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Proof. If each neutral particle r satisfies the criteria of
Lemma I, we have the following null zone specialized to a
set of neutral particles {r}:

Aij(Q)=0, Lj#r ,
prrq=0 (p=K.q).

(The set of such neutral particles and the photon can be
regarded as a massless composite and can easily be includ-
ed in the discussion of a physical null zone; see Appendix
A.) By (7.12b) and the arguments in Sec. VII B, each of
the missing currents is zero, so that (7.6) is true for each
vertex.

Are the sufficient conditions (7.2) also necessary?
Could the null zone be larger? To address this suppose
that there are ny <n —2 external neutral particles®® at a
given vertex. If the remaining n —n, particles have the
same Q /p-q factor, the generalization of (7.4) is

(7.12a)
(7.12b)

P-q=0 (null zone) , (7.13)
where P is the total neutral momentum
no
P=36,p, . (7.14)
r

[Compare (7.2).] Therefore, P must be lightlike, P « g, if
the neutral particles are all in the initial state, or all in the
final state. In such cases, such p, satisfies (7.12b).

Consider the alternative possibility corresponding to
neutral particles in both initial and final states, where
(7.13) does not lead to (7.4) for the individual particles.
Since (7.6) is required for each vertex, the sum over the
currents J, for the neutral particles at each vertex must
vanish. Without neutral internal particles, the vanishing
for arbitrary photon polarization of the total convection
current in this sum, p €, necessitates P «gq. (It is to be em-
phasized that a radiation zero, as we have defined it, refers
to cancellations that are not peculiar to the various polari-
zation states.) The spin and contact currents could cancel
by Lorentz invariance. The conclusion is that we can aug-
ment (7.12), but only by configurations where the momen-
tum transfer is lightlike and where the neutral sector in
each vertex factorizes in a Lorentz invariant manner such
that its spin and contact currents are not needed to cancel
the currents in the charge sector.

D. Internal neutral particles

We now verify that the radiation theorem holds without
qualification for neutral internal tree lines I, as it might be
expected in view of the fact that the null-zone condition
involves only the external particles. The limit Q; —0 after
the imposition of the null-zone condition (4.1) obviously
shows the standard cancellation within each vertex, in
terms of the radiation vertex expansion.

The case of interest, however is Q; =0, ab initio, which
involves cancellations between vertices:

Lemma III. The defects in the respective terms of the
radiation vertex expansion (5.19), due to a given neutral
internal particle, cancel each other in the null zone.

Proof. The sum of the two defects is proportional in the
null zone to

D(p")jou(p')+Jjin(p)D(p) (null zone) , (7.15)
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since the remaining factors in the MR products are the
same. In (7.15) the subscript I is suppressed (p'=p —q)
and the currents j refer to the vertices that the internal
line has left and entered (and can be found along with the
propagator D in Appendix B).

In fact, (7.15) can be seen to vanish from the radiation
decomposition identity (Appendix B). From a considera-
tion of the original photon coupling to the internal line
(the left-hand side), the decomposition (D'j’+ jD)/p-q (the
right-hand side) must be regular at p-g=0 (Q; factors
out.). Asin (7.4),

pq=p’'*q =0 (null zone) (7.16)

for any neutral internal line p, so (7.15) is zero.

The vanishing of (7.15) establishes the lemma and al-
lows us to regard a neutral line as a short circuit between
two vertices, leaving a composite gauge-invariant vertex
that could be used in a reorganized radiation vertex expan-
sion. Lemma III may be illustrated by explicit calculation
of (7.15) for the various cases. We leave the details to the
reader, but note that (7.16) does not imply (7.5), in con-
trast to external particles. In general, p-e=p’ €540 in the
null zone.

VIII. EXTENSIONS TO NONGAUGE
INTERACTIONS AND CLOSED LOOPS:
A LOW-ENERGY THEOREM

We now consider more general interactions including
first- or higher-order derivatives of Dirac and vector fields
(other than the Yang-Mills form) and/or second- or
higher-order derivatives of scalar fields. If we also allow
closed loops, the source graphs are entirely arbitrary.

A. A low-energy theorem

Null-zone low-energy theorem. For any source graph
S, with g =2 external legs, the radiation amplitude can
be written as®’

M [SG)=M,(S5)+0(q) , (8.1)

where M, =0 in the null zone and has a radiation repre-
sentation.

This theorem is the union of the standard low-energy
theorem for bremsstrahlung®®3® and the radiation
theorem. In the low-energy expansion the leading (in-
frared) term vanishes in the null zone; the next-order (spin
and contact) term also vanishes in the null zone provided
that g =2 for the external particles.

We define an effective tree-graph substructure of S by
contracting all closed loops to points, which implies an ef-
fective vertex radiation amplitude

0./
pi'q

in direct correspondence with (6.1). The infrared terms in
M, come from the 0(q°) convection terms in the effec-
tive currents #; which cancel in Y, #; by momentum
conservation. The zeroth-order terms in .#, correspond
to the first-order spin and contact terms in #; which can-
cel in the same sum by Lorentz invariance, provided that
the photon couplings to the fixed lines in the effective tree
graph correspond to g =2. In the absence of a general

MV =3 (8.2)
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mechanism for the cancellation of higher powers of g,
(6.2b) is replaced by

S £i=0(g? .

Any terms on the right-hand side of (8.3) must be due to
nongauge derivative couplings and closed loops.

The contact currents associated with the nongauge cou-
plings and the closed-loop graphs* are straightforward to
determine. The term that is linear in ¢ in the expansion of
the radiation graph where the photon is attached to an ex-
terior leg of the closed loop or to a leg connected with a
derivative coupling yields the momentum-shift part of the
contact current. The seagull can be derived by requiring
gauge invariance for both cases. (Alternatively, for the
closed loop, the linear term from the graph where the pho-
ton is attached to the loop itself yields the seagull.) See
Sec. VD.

Internal spinning particles are not required to have
g =2 for the null zone low-energy theorem to hold, since
anomalous moments for internal particles contribute only
at the O(q) level. [See (5.20) and (5.29).] For example, in
the Dirac decomposition (5.18) internal g2 corrections
correspond to quadratic terms in the numerators.

The zeroth-order and first-order terms in the #; serve
to define M, in (8.1). It follows from Sec. VI that M, has
a radiation representation. The quadratic terms associated
with the Yang-Mills source vertex, which are the only
higher-order terms in gauge-theoretic interactions and
which cancel cyclically, could be included either in M, or
in the O (q) remainder of (8.1). This ambiguity shows that
]

(8.3)
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FIG. 10. The amplitude for radiative decay, 1-—+2+3+17,
separated into (a) radiation from the external legs and (b) inter-
nal radiation including seagulls.

the null zone low-energy theorem is not equivalent to the
radiation theorem, but is rather its corollary. On the other
hand, the content of the radiation theorem is the remark
that the O(q) terms in (8.1) are zero for gauge-theoretic
couplings and tree graphs.

B. Example

We first derive the standard low-energy theorem for the
decay 1—2+3+y where the particles 1—3 are scalars.
The amplitude (Fig. 10) separates into external and inter-

nal radiative parts,
M, (Fig.10) =4 (q)+.#"™(q) . (8.4)

If D(m,%,m,%,m5? is the amplitude for the source decay,
1—-2+43, then

Y Qo
Mg)= —“LIH eD((p, _q)2,m22’m32)+_2_p2.€D(m12,(1,2 +¢)%,m3%)+ o5 p3-€D(m*,my?, (p3+9)?) .
pi1°q pP2q p3q
(8.5)
The expansion of (8.6) in ¢ leads to
MG =M, +A.M4+0(q), (8.6)
where
M= —-——]pl -+ Q2 p2'€+ 3 P3°€ D(mlszz M32) (87)
4 Piq pP2q pP3q ’ ’ ’
d 0 d 2. 2. 2
A =2 lel'G_’“2“+Q2p2'€'“—i‘+Q3‘D3'€ ) D(m1 smy~,mj3 ) . (88)
am[ am2 8m3
‘ r
4™ is infrared convergent and can be expanded as A (Fig.10)=M,+0(q) . (8.12)

M g) = #"(0)+0(q) . (8.9)

In order to proceed further, we may follow either the
approach of Ref. 39 or of Sec. VD. The former approach
centers on the observation that if g*f F:O(qz) for arbi-
trary ¢, and if f, is independent of ¢, then f, =0. In our
particular case, such an f,, can be defined by

e*f =DM +.4'™(0), (8.10)
because M, is separately gauge invariant. Therefore,
HM0)=— A, (8.11)

so that

In the approach of Sec. VD, A.# in (8.8) and .#™(0) in
(8.9) correspond to the momentum-shift and seagull terms,
respectively, in the contact current (5.33). The fact that
the contact current actually vanishes (from pfw,,p/=0)
corresponds to (8.11). [For the external leg i, p =r =p; in
(5.32).]

The leading term in (8.12) vanishes in the null zone, ver-
ifying the null-zone low-energy theorem. In more compli-
cated cases, spin currents lead to zeroth-order terms in
(8.12) which can also be incorporated into M, provided
that g=2 holds for the external particles with spin.

We note that the gauge-invariant radiation vertex ex-
pansion is useful in the general construction of low-energy
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theorems. In particular, it is well suited for dealing with
the complications arising from cancellations between the
two ends of a fixed internal line, from the effective-tree
organization of graphs with closed loops, and from the
definition’” of O (g).

The null-zone low-energy theorem enlarges the scope of
experimental tests, since we are not restricted to perturba-
tive tree graphs. Some of these possibilities are proposed
in the conclusion, Sec. XI.

C. Closed loops

The existence of amplitude zeros, central to the radia-
tion theorem, may appear to violate the uncertainty princi-
ple. We do not expect, quantum mechanically, to find an
exact cancellation in the interference among the various
radiators at a specific point in momentum space, unless
there is complete uncertainty in the particle positions.
Indeed, the theorem refers only to the tree approximation
where the radiation is controlled by the classical currents
of plane-wave states; # corrections from closed loops
which provide coordinate correlations are expected to fill
in the radiation amplitude zeros. In this respect, radiation
zeros are in marked contrast to the exact amplitude zeros
due to conservation laws such as angular momentum.

The absence of a radiation zero for particles with g=£2
(see Sec. V) is an example which can be attributed to quan-
tum effects inasmuch as closed-loop radiative corrections
give rise to anomalous magnetic moments. (In fact, the
basic content of the Drell-Hearn-Gerasimov sum rule*! is
that deviations from g=2 must be due to internal excita-
tions.)

We recall from (8.1) that violations of the radiation
theorem appear as O(q) contributions with no radiation
zero. In this context, the decay 1-—>2+y provides a sim-
ple but instructive example (cf. Sec. IVB). A physical
n=2 decay automatically satisfies the null-zone condition
so that M, vanishes identically. However, closed loops
and nongauge couplings must lead to nonvanishing O (q)
contributions, unless another mechanism intervenes.
Indeed, closed-loop amplitudes*? for u—ey do not vanish
and are O (q) (in theories where lepton number is not con-
served). Although the n=2 decay amplitude is identically
zero to all orders for scalar particles 1 and 2, this is due to
angular-momentum conservation.

The existence and position of a radiation zero does not
depend on the spin of the external (or internal) particles
and, moreover, does not depend on masses, charges, and
momenta except in the Q/p-q combinations allowed by
the null-zone condition (4.1). By changing these parame-
ters, one may fest for a radiation zero. In the case of the
n=2 decay, adding spin eliminates the <‘“angular-
momentum” zero. As another example, the general ampli-
tude, including closed loops, for the electron bremsstrah-
lung reaction (4.4) would vanish by an angular momentum
argument in the null zone (4.1), if the electrons were iden-
tical scalar bosons. Adding spin removes the angular-
momentum zero in (every order of) the amplitude. On the
other hand, adding closed loops removes the radiation
zero, in general.

The previous remarks suggest two categories of closed-
loop amplitudes for which there are amplitude zeros in the
null radiation zone:
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Category 0. This is the trivial class where the amplitude
and its higher-order corrections vanish in the null zone be-
cause an additional mechanism is also operative for cer-
tain charge, mass, and spin assignments. Such mechan-
isms may be deactivated by changing the assignments or
moving to another part of the null zone. These amplitude
zeros are not radiation zeros. v

Category 1. This is the class of source closed loops that
produce no correlations or corrections to g=2. We have
in mind scalar self-energies, which can be included to all
orders (see Sec. VA), and “neutral” closed loops. If a
closed loop is completely neutral (meaning there are no
photon couplings to its internal lines with no charge
transferred to it by external particles at any of its ‘“exter-
nal” vertices) and if the loop can be factorized so as to
leave a Lorentz-invariant tree structure in the remainder,
then the null-zone cancellation can proceed according to
that tree structure. It is noted that, if Ap; is the momen-
tum transfer to a neutral loop through its ith neutral leg,
Ap;-Ap; is invariant under photon emission from external
lines, since Ap;*¢=0 in the null zone.

Box graphs are closed loops that produce correlations.
Self-energy source loops for spinning particles lead to
g52. These examples do not belong to category 1.

IX. PHOTON COUPLING:
POINCARE TRANSFORMATIONS AND BMT

In this section we discuss photon couplings in terms of
the Poincaré group of transformations and we make a
connection between the BMT equations and the null-zone
cancellations.

A. Poincaré transformations

Let us recall the first-order universal Lorentz transfor-
mation (5.11),
Ay =8y +Awy, , 9.1)

where A represents the freedom in normalization. We ex-
press (5.12),

}\'wuv:quv_dpqv ’ 9.2)
in terms of the spacelike four-vector

d,=\e, . (9.3)
The generalization of (9.1) to finite A is exp(Aw) or

A‘Z

Ayv=guv+}\'(‘)pv+ _Z-quv . (9.4)
Since

Atogu A'p=g B »

won p s 9.5)

At q"=q",

the A,, form an Abelian subgroup of the little group
E,(q).® Also, A generates gauge transformations on the
polarization vector €,

AF =€t —AgH . (9.6)

An important result of Sec. V is that the spin and con-
tact currents can be written in terms of the universal
first-order term in the Lorentz transformation (9.1). In
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addition, the convection current p-€ can be understood as
the universal first-order term in the translation
(e®P9 51 +ip-a) in the direction €. Since the relative nor-
malization among the currents is fixed, we must have
a =d. The length d, then appears universally in the gen-
erator (9.2) for the spin and contact currents and as the
displacement for the convection currents. Thus we con-
sider the full Poincaré transformation £ ={d,A}:
x'=Ax +d. Each of the current contributions in Appendix
B can be expressed universally in terms of the first-order
Poincaré transformation & acting on the particle wave
functions. (The internal currents act through the decom-
position identities as transformations on bilinear wave
functions.) (See note added in Sec. XI.)

The vanishing in the null zone of the radiation ampli-
tude for tree diagrams in gauge theory can be described in
terms of Poincaré symmetry: The convection current can-
cellation by translational invariance and the spin and con-
tact current cancellation by Lorentz invariance.** (The
Yang-Mills cancellation involves additional symmetry.)

The electromagnetic current J* in lowest order has a
Gordon decomposition*® into the separately conserved
convection and spin currents,

ch‘onv = 2 inJ;é”lpj ’ 9.7
j

Thin= 3 2iQ;0,(9;5""Y;) , 9.8)
i

where the spin indices of the fields ¢ have been suppressed

and where ¥y=v¢* or ¥/2m as the case may be. The spin

tensor in (9.9) is

0, scalar,

Suy= {—~0,, Dirac, (9.9)

[2ad 2

i(8u08vp —8up8vo)s Vector .

[The indices o,p in the vector case are those of the fields
in (9.9).] The spin-current Lagrangian —J¥; 4, corre-
sponds to the interaction Hamiltonian
%im= EIQJ(/}JS“vlij#V y (910)
Jj
which, for the S,, given by (9.11), implies the gyromag-
netic value g=2, for each particle with spin.

From our diagrammatic analysis in Sec. V, we may in-
terpret the photon currents as effective generators of Poin-
caré transformations in momentum space, even though
(9.7) and (9.8) are not space-time Poincaré generators. In
particular, (9.9), which is also the set of matrix representa-
tions of the generators of Lorentz transformations on
spins O, %, and 1, respectively, exhibits a direct connection

between the spin current and the Lorentz transformation
of the fields,*® but only for g=2.

B. The BMT analysis and the null zone

Since the radiation amplitude is linear in the photon
field, the correspondence principle implies that there
should be a classical counterpart for the relationship of
g=2 to the universal Lorentz transformation. Consider a

classical particle with spin moving in a slowly varying
external electromagnetic field F*¥. Our neglect henceforth
of forces dependent upon the gradients of the fields is con-
sistent with the fact that the null-zone cancellation in-
volves only the first two orders in g.

The Lorentz force law for a particle with charge Q,
mass m moving in F*¥ is*

dut :—Q~F’"’u
v

9.11
dr m ( )

where u is the four-velocity and 7 is the proper time. The

BMT equation for the four-polarization s of the particle
(47,48
is*”

ﬂ:giFﬂVs +.Q_

kg FMv,
uvs) u, .
dr m 2 v

(9.12)

£
2

A significant and well-known feature of (9.11) and (9.12)
is that, for g=2, the changes in « and s in time d7 can be
described in terms of the same infinitesimal Lorentz
transformation,

Ay=g +-Q—F dr . (9.13)

uv uv m y75%

Consequently, in proper time dr, the orbital and preces-
sional frequencies of the particle are identical.

What is of interest is the situation involving a system of
particles moving in F**. In order to compare the Lorentz
transformation (9.13) for each particle we refer to a single
common observer at a (retarded) time ¢, which is related to
the particle times ¢’ by*

dt =dt’(1—t’z‘-V)=%-E£dt’ ) (9.14)

Here V (E) is the velocity (energy) of a given particle and
7 is the unit vector from this particle to the (distant) ob-
server such that n =(1,7) is a lightlike four-vector propor-
tional to the radiation-wave four-vector.

From (9.13), (9.14), and dt' =Ed1/m,

Y
e (9.15)

At a given time, all particles with identical Q/p-n and with
g=2 are observed to have the identical response to the pres-
ence of a constant external field. The condition of identi-
cal Q/p-n is equivalent to the null-zone condition since
the photon energy can be scaled out of the equations in
(4.1). (An initial particle simply corresponds to an earlier
t' than does a final particle.) The first-order Lorentz
transformation (9.15) can be compared to (9.1), noting that
®,, is the Fourier transform of the radiation counterpart
to F,.

Thus all Lorentz invariants constructed of u;,s; and
their derivatives, such as those that arise in the Lagrang-
ian, are fixed (for g=2) in the time interval during which
all Q/p-n are equal. [Equivalently, we may think of mak-
ing an instantaneous Lorentz transformation which can-
cels (9.15).] In this sense, a system of particles in its null
zone experiences no linear response to a slowly varying
external field. If we identify F,, with the radiation field,
in semiclassical approximation, then this result corre-
sponds to the radiation interference theorem.
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X. EXTENSIONS TO RADIATION
OF OTHER GAUGE BOSONS

In this section we extend the radiation theorem to the
emission/absorption of other massless gauge bosons. We
also briefly discuss the emission of particles with different
mass and spin.

A. Other gauge bosons

The radiation theorem, representation, and associated
corollaries can be proven for an arbitrary gauge group G
where the role of the photon is assumed by the massless
gauge boson(s) g assigned to the adjoint representation of
G. If the generalized “charges” (calculated from the rep-
resentation of G to which the particles belong) are con-
served, then it is easy to adapt the previous proof. The
current for g emission has a dual connection to both inter-
nal transformations and space-time transformations and
the invariance under each group can be exploited.

Our task is facilitated by the results and notation of
Ref. 5 where the four-body amplitude zero is related to
factorization for general G, and our first step is to general-
ize their work to an arbitrary n-vertex source graph.

We assume that g has local gauge couplings to all other
particles (possibly including more gauge bosons g), which
belong to the various representations of G and whose
couplings are invariant under G. If we use factorized
Feynman rules, the n-vertex source graph can be written
as a product,

SVzra‘az--'anV(Pl’pZ;---;Pn) ’ (10.1)

with factors invariant under G and Lorentz transforma-
tions, respectively. The space-time factor V is the same as
in the photon case. The internal-group factor I' is the
Clebsch-Gordan coefficient for the n-particle coupling, la-
beled by the internal indices a; which refer to the particle
representations.

The corresponding radiation amplitude has the struc-
ture of (6.1) with the same space-time current J;,

n ’3J
M,=3 i/ (10.2)
1 Pi'q
The gauge-boson couplings,
Q"g=r"1“2"'“i—1b"i+1""’an_Mi ’ (10.3)

where a sum over b is understood, generalize the U(1)
charge. I, is the Ciebsch-Gordan coefficient for the

three-vertex which couples an incoming particle i, the
gauge boson g (index a), and an outgoing particle (index b).
Common factors,

o _of
pbi'q Pijq
lead to the vanishing of the amplitude in (10.2) in familiar

fashion. The generalized charges also sum to zero [cf.
(6.2a)],

S 8,0f=0,

i=1

, alli, anyj, (10.4)

(10.5)

by G invariance. Since g is in the adjoint representation of
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G, FEM' refers to a matrix representation of the corre-

sponding generator. Therefore, an n —2 double-difference
radiation representation can also be obtained for (10.2),
with the qualifications concerning any derivative cou-
plings in J; the same as in the photon case.

The above results can be extended to general tree graphs
where the emission of g from any given internal line in-
volves the G-space factors,

RS 3 00 - LR (10.6)
in which the “left” vertex, with coefficient I'%, is connect-
ed to the “right” vertex, l"? by the original internal line,
Op., in the source graph. The other source-graph indices
and Clebsch-Gordan factors are suppressed in (10.6). The
remaining task is to generalize the radiation decomposi-
tion identity to include (10.6).

Referring to Fig. 5, we associate I'g,  first with I‘g and
then with Ik, respectively, in the corresponding emission
terms of the decomposition identity so that there is a com-
plete set of conserved charges, analogous to (10.3), associ-
ated with each source vertex. This thus gives a general-
ized gauge-invariant radiation vertex expansion. The radi-
ation theorem, corollaries, representation, and the other
photon results all generalize with the replacement of Q; by
oFf.

Examples of the generalized charges have already been
worked out by Zhu® for four-body zeros. Suppose that the
three-vertex source graph is the spinor-spinor-vector cou-
pling z-Z'y“T,,d/V,ﬁ‘, where the Dirac particles 1 and 2, and
the vector particle 3, belong to the fundamental and ad-
joint SU(N) representations, respectively. Then the con-
straint Q% /p; g =Q% /p,-q becomes

(T, Tp)y _ (T Tp)ji . (10.7)
piq p2q

There is a practical limitation to the observation of cer-
tain non-Abelian radiation zeros. In the case of QCD, the
gluon is coupled to (presumably) unobservable color
charges. Therefore, the color-singlet physical states are
connected to quark and gluon particles only through color
averaging and summing. Since their positions depend on
the charges, such amplitude zeros are smeared out in the
physical cross sections (as noted previously in the three-
vertex case).® We emphasize, however, that the radiation
representation for the gluon amplitudes can still be uti-
lized.

B. Other spins and masses

The vector character of the gauge boson is essential to
the association of the currents with Poincaré invariance.
Nevertheless, other spins and relationships shouid be in-
vestigated. We have in mind graviton emission and
Riemann invariance, as well as superfield emission and su-
persymmetry. These questions are not addressed in this
paper, but the search for currents that satisfy analogous
dualities may be fruitful.

Finally consider vector gauge bosons with g?s£0, ad-
dressing the two cases where the radiated boson is virtual
(e.g., lepton scattering and e *e ~ annihilation) and where
it is real with nonzero mass (e.g., Z° production in elec-
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troweak theory). Although g-€ still vanishes, it may be
kept to exhibit (any) gauge invariance. In the virtual case
we assume that e* represents a conserved current source.
Upon recalculation, the convection and Dirac spin fac-
tors in Appendix B for both external and decomposition-
identity emission factors are changed only the replacement

o, 9

P4 pgEsq
for outgoing ( + ) or incoming (—) particles. (Strictly, the
gauge-invariant convection current is *p-e++g-€) The
vector-particle spin factor requires two changes, (10.8) and

(10.8)

Opy—> Oyt —1—2(p tq).(q%,—q€q,) , (10.9)

2m
where p+q is the momentum of the vector particle be-
tween the source vertex and the emission. The change in
(10.9) does not contribute in the event that the vector par-
ticle is itself coupled to a conserved current. However, if
gauge invariance requires seagull contributions, the con-
tact current is significantly altered,

oPp,—oPp, F5(q%P—(q-€)qP] . (10.10)
Evidently, Lorentz invariance does not also imply the can-
cellation of the new term, appearing in (10.10), in the >, J;
sum.

Another difference is that the new factors (10.8) cannot
be equal in the physical region, in general.®® The absence
of physical null zones corresponds to the absence of
asymptotic radiation fields (r ! behavior). Furthermore,
there is no analog to (6.2c) for the denominators, unless
the number of particles is unchanged during the collision,
so that we cannot generally reduce the number of differ-
ences from n —1 to n —2. Despite these remarks, we can
again write a radiation representation, in terms of n —1
(or n —2) differences or products of differences, depending
on whether (6.2a) and (6.2b) are valid. In the case of bro-
ken gauge symmetries such as the SU(2)xU(1) elec-
troweak theory, the radiation interference theorem holds
in the approximation at high energies where masses are
neglected. (See the angular distributions for gg— W*Z°
in Ref. 3)

XI. SUMMARY AND FUTURE DIRECTIONS

A. Summary

We have introduced a useful radiation vertex expansion
S M, (V)R (Vg). The complete set of Feynman dia-
grams for the photon (or other massless gauge boson) at-
tachments to the source tree graph T; is expressed in
terms of radiation vertex amplitudes M, (V;), each of
which is a sum ¥, QJ /p-q over photon attachments to Vg
calculated as if all vertex legs were external. Consequent-
ly, each M (V) is separately gauge invariant. The radia-
tion decomposition identity is instrumental in effecting
this reorganization.

The general form Y QJ/p-q for the radiation vertex
amplitude clearly shows the basic algebra leading to the
radiation theorem and its complement. If Q/p-q (J/p"q)
is the same for all legs of the vertex, and if ¥ J=0
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(S 0=0), then M, Vg)=08% Because >J=2 Q
= ¥ p-q =0, M,(V¢) can be rewritten as

> p-q(Q/pq—A)NJ/p-q—B)

for any A4,B. The radiation representation is obtained by
choosing 4 (B) to be a particular factor Q /p-q (J /p-q), ex-
hibiting the radiation theorem(s).

The fundamental relation is ZJ =0, which might be
called the Poincaré-Yang-Mills sum rule. With 2 Q =0,
we see a dual role for the electromagnetic (or other gauge-
group) current: Generating transformations in the inter-
nal space and, also, in effect, transformations in space-
time. (After factoring out Q /p-gq, the convective current
effectively generates a universal displacement, the spin
current effectively generates a universal Lorentz transfor-
mation of its associated wave function, and the contact
current effectively generates the same universal Lorentz
transformation of its associated derivative coupling. The
BMT discussion of Sec. IX shows the classical spinning-
particle limit of the universal currents cataloged in Ap-
pendix B.) In this way we can view the massless gauge bo-
son as characteristic of the adjoint representation of both
the internal group and the relevant little group, whose at-
tachment generates the product of the first-order gauge
and Poincaré (displacement and Lorentz) transformations,
provided we have the prescribed derivative couplings.
Poincaré and Yang-Mills symmetries®' are thus respon-
sible for the null-zone cancellations.

A physical null-zone theorem has been proven which
states that if particles have the same Q/m ratios (more
generally, the common value of Q /m for the initial state
may be different from that for the final state) then we can
always find, at any c.m. energy, physical regions where the
radiation zeros occur (i.e., where all Q/p-g are equal).
The Q /m restriction can be relaxed for any particle that is
massless; we note that the physical null zone is generally
smaller for particles with mass. We have also studied
physical null-zone limits for more general Q,m values in
the n =3 case and for equal Q/m in n =4.%?

For a radiation zero, any external neutral particle
must be massless and travel in the same direction as the
photon. This leads to J,=0. (The analogous remark for
the complementary theorem is that J,=0 would require
Q,=0.) Neutral internal particles, however, do not have
such restrictions.

The radiation theorem is the statement that gauge in-
teractions preserve the classical zeros in tree approxima-
tion. The null-zone condition can be defined equivalently
as the condition under which there is complete destructive
interference of the classical radiation patterns of the in-
coming and outgoing charged lines (the infrared limit). In
the nonrelativistic limit, this corresponds to the well-
known absence of electric dipole radiation for collisions
involving particles with the same charge-mass ratio.

The spin independence of the null zone should be em-
phasized. Reactions which include ud— Wy have been
examined recently,”> with the result that the presence of
nonradiation zeros depends on the polarization. Only the
radiation zero is present in every helicity channel.

Radiation zeros are generally destroyed by closed loops.
The existence of these short-range quantum corrections
can be anticipated from the uncertainty principle. One
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cannot expect exact amplitude zeros for subregions of an-
gles and energies except in the violation of a conservation
law. The special class of closed loops, where there are no
correlations and no g =2 corrections, is an exception.
Thus, we can include certain neutral closed loops defined
in Sec. VIII. We can also include scalar self-energies in
the source graph since there the radiation decomposition
identity is correct to all orders.

Indeed, in a recent study of scalar particles in the null
zone®* it is shown that first-order bubbles preserve the ra-
diation zero while a triangle source graph does not. In the
context of our discussion, the former example introduces
neither a correlation nor an anomalous moment, while the
latter generates a correlation.

A null-zone low-energy theorem is based on the fact
that the radiation theorem can be applied to the leading
terms in photon momentum ¢g. The infrared term is
guaranteed to vanish in the null zone for arbitrary ampli-
tudes. The O(g°) term also vanishes there provided that
the external particles have g =2. Therefore, low-energy
theorems automatically separate out terms that have radi-
ation zeros. We have also presented a useful formalism
for the study of low-energy theorems and the null zone by
means of a generalized radiation vertex expansion for an
arbitrary source graph.

B. Remarks

It is well-known that gauge-theory couplings can be de-
rived by imposing a unitarity constraint on the high-
energy limit of tree amplitudes.*> Since minimal couplings
can also be inferred by the requirement that the radiation
theorem hold, we seem to be building a bridge from the
classical infrared limit to high-energy behavior. Note also
that the Drell-Hearn-Gerasimov sum rule for anomalous
moments implies g =2 for all spins at the tree level (classi-
cal limit), given a high-energy condition on the spin-flip
Compton amplitude. The same conclusion follow for the
existence of null radiation zones.

Furthermore, it has been suggested to us that the radia-
tion theorem could possibly be stated directly in terms of
renormalizability®®: “The necessary and sufficient condi-
tion for a tree amplitude with one or more external mass-
less gauge particles to have a zero independent of spin is
that the model be renormalizable, where the renormaliza-
bility may be disguised by a Higgs mechanism or by heavy
particles whose exchange looks like a point interaction
(tree segments of zero length).” In this sense, gauge-
theoretic interactions may be called quasirenormalizable.

The most striking experimental implication of the radi-
ation zeros involves the original reaction, gg— Wy, which
may be measurable’’ in future proton-collider experi-
ments. Although the actual external legs are hadrons with
anomalous moments, the high-transverse-momentum pho-
ton, recoiling against the W, couples in leading twist only
to the hard-scattering subprocess; diagrams involving radi-
ation from spectators, etc., are suppressed by powers of
m?2/My? where m is the hadronic mass scale. In addition
there is transverse-momentum smearing and gluon radia-
tive corrections of order a,(My?)/m. To this accuracy,
gauge-theory couplings can be probed. The investigation
of null zones in bremsstrahlung reactions such as hard-
quark scattering, eq—eqy, 9qq9—>qq7, or in radiative de-
cays may give a measure of heavy-quark and heavy-lepton

magnetic moments.

In principle, a measure of neutrino masses can be found
in the decay, 4 —>B +v+7, since its null zone requires
m,=0."® (But examples such as m—evy do not have phys-
ical null zones.) It has also been suggested that correc-
tions to PCAC (...) (partial conservation of axial-vector
current) may be similarly studied.’® In general, the devia-
tions from zero in the null zone provide estimates of
higher-order corrections [which must also be O(gq) by the
null-zone low-energy theorem] in any process, from the
standard reactions such as e "e "—e "e "y to exotic pro-
cesses involving new particles.

The null-zone condition can be applied very simply to
composite particles with arbitrary spin and with collinear
constituents i (momenta p; =x;p in terms of the composite
momentum p), such as hadrons involved in hard-scattering
QCD processes. In the region where x; «< Q;, the tree-
graph approximation with gauge couplings for the constit-
uents implies that the composite has the same Q /p-q fac-
tor as its constituents, and its resultant effective current
follows the description in Appendix B, corresponding to
an effective gauge coupling for the composite. The null
zone is preserved. More generally, we may use a compos-
ite picture to understand the null zone in any radiative re-
action. Both the initial and final states can be considered
to be composites, and, in the null zone, the reaction is
equivalent to 1—2-+y whose tree amplitude vanishes for
Q. /p1-q, irrespective of the spin of the composites.

Another interest is whether the radiation representation
could be used to simplify computations. Recent calcula-
tions in QED and QCD have shown that lowest-order ra-
diative amplitudes reduce to simple forms. In particular,
massless five-body results factorize.’ We have verified
that radiation zeros are present in these forms. For exam-
ple, both reactions ete~—ete ™y and ete " —utu~y,
which have the same (unphysical) null zone when lepton
masses are neglected, yield a common amplitude factor in
which the zeros reside. The symmetries inherent in the
concept of radiation zeros can be instrumental in under-
standing the simplicity of the forms obtained.

Finally, it is important to determine the extent to which
currents in theories of higher spins such as supersymmetry
play an analogous role. Do they also generate transforma-
tions in both internal and external spaces in the manner of
the massless-vector-gauge-boson currents? Will they also
lead to equations which relate variables in both spaces like
Q:/pi*q =0Q;/p;"q?

Note added in proof. Double derivatives of scalar fields
can be included in the gauge-theoretic couplings by replac-
ing a vector field by a derivative of a scalar field, in the
manner of Higgs, in the Yang-Mills vertex. See the dis-
cussion of “radiation symmetry” by R. W. Brown, in Elec-
troweak Effects at High Energies, proceedings of the Eu-
rophysics Study, Erice, 1983 (unpublished). The finite
Poincaré transformation is related to classical plane-wave
interactions. The Yang-Mills cancellation can be
described in terms of the Bianchi identity (cf. Ref. 51).
Also, g =2 is necessary but not sufficient for gauge-
theoretic couplings. See R. W. Brown and K. L. Kowalski
(unpublished). The radiation representation has recently
been used to simplify certain polarization calculations.
See C. L. Bilchak, R. W. Brown, and J. D. Stroughair (un-
published).
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APPENDIX A

We address the location of the null radiation zone and,
in particular, some details behind the equations of Sec. IV.

1. The n =3 decay

We begin with the boundary limits for the decay
1—2+4347v. The lower (upper) limit on the range in (4.9)
is derived from p;-q >0 (E; >m;). The range in (4.10) is
obtained from g2=0 and (B,"B3)* < B,2Bs% or

YAX +p?)+yx (x +pt4+pt—D+p*x*<0. (AD
In terms of the relative charge
[}
Q=—, (A2)
Q;
(A1) and (4.8) yield
Q%us®+Q (u* +p3’— 1 +p," <0 . (A3)
Therefore,
0_<0<0Q,, (Ad)

Qs ={1—p*—ps’
i[( 1 _“22_“32)2 _4#22”32]1/2}(2“32)—1 .

Given some masses, m, and mj, only those charges that
lie in the range (A4) can lead to a physical null zone. The
massless limit is 0 < Q < w0, giving a physical null zone for
all same-sign charges.

To see the range allowed for u;0, we calculate the
mass limits for a given Q, using (A3),

Q

O<ut< <1, (A5a)
SH2 < 0+1

2

1 H2
O<pus’< - (A5b
<p3"< 0+1 0 )

consistent with

my+m3<m, . (A6)

The nonrelativistic limit is the upper limit of (A6),

pa+ps=1. (A7)
From (A5) and (A7),
@ _0 o "
m; mj m,
Assume
__Qi — _%’_ , - (A9)
n, msj

but not the nonrelativistic limit. [Equation (A8) holds

only in that limit.] Then (A5) leads to

Q
. (A10)
0+1
However, this is equivalent to (A6) and (A9) alone. Thus,
all values of m,/m; consistent with (A6) and (A9) pro-
duce a null zone.

Hr=Qu3<

2. The n =3 scattering

In terms of the initial c.m. speeds v, and v,, (4.11) may
be written

COSGZ(Q2/U1"‘Q]/U2)/Q3 . (A11)
From |cosf| <1, we obtain for given v;,
v, -1 v, 11
2 <0<t 5—, (A12)
Ul— +1 Uy —1
where
2,
Q=—. (A13)
Qi
On the other hand, given Q,
1<, 7 '< o, (Al4a)

max[1,0(v; " '—=1)—1] <v, ™! <Q, '+ 1)+1.

(A14b).
In the equal-mass case, (A13) reduces to
lo=1] <v<l, (A15)
o+1

with v; =v, =v.
The limits of the above equations are by now familiar.
For example, the nonrelativistic limit of (A12) is

2 (A16)
Q= o
or
o9 _Q (A17)
m, m;

Note that the third particle is not required to be nonrela-
tivistic and thus Q3/m is not necessarily equal to the ra-
tios in (A17). (We only require equal Q/p-q.) In lowest
order, (4.11) places no restriction on cos6, implying totally
destructive interference in the nonrelativistic limit,
whereas (A11) and (A16) give the first-order correction,
which is satisfied by cos@=0.

A physical null zone is guaranteed for all energies by
(A17), since this combines with (A11) to yield

1

my m;
my;+m;

cosf= (A18)

vy U

Equation (A 18) always satisfies | cos8| < 1.

3. An n =4 example

If all particles have the same charges and the same
masses, (4.11) leads to a photon c.m. direction perpendicu-
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lar to the beams (Fig. 2), 6=m/2. The other null-zone
equation (4.13) reduces to E;=E,=E’', momentum con-
servation obviously demands that 8;=6,=6, and the pho-

ton energy is given by
w=E —2E'=—-2E"'v'cosb’ , (A19)

where vy =v,=v’. As a check, the third null-zone equa-
tion also leads to (A19).

4. Null-zone theorems

We first prove the physical null-zone theorem of Sec.
IV D for the decay 1--n — 1+ in the parent rest frame.
If the n —2 null-zone equations are chosen to be

o _ o

, i=3...,n—1, (A20)
bi'q p2q
we find
2 L 1 L , (a2

m; vi(1—v;cos6;)  m, (1 —v,c086,)

in terms of particle speeds v; and angles 6; (relative to the
photon). We are given that all Q;/m; are equal for i > 2.
Therefore, if the particles travel together, opposite to the
photon (6; =m,v;=v,), (A21) is satisfied. This corre-
sponds to the maximum energy for the photon and resem-
bles the two-body decay m;—M +y, where M
= Eg—‘migml. More generally, (A21) is satisfied by
some finite neighborhood, but we have already proven that
the physical null zone is not empty, without resorting to
zero photon energy.>?

We next consider the reaction 1+2—>n —2+y in the
c.m. frame. One null-zone equation is taken as
Q.1/p1'q=Q,/p,°q, which can always be satisfied, for
Q,/m=Q,/m,, at some physical photon angle [cf.
(A18)]. The remaining n —3 equations can be satisfied
when the n —2 final particles travel together opposite to
the (fixed) photon direction.

Finally, k particles in the initial state can be arbitrarily
separated into two bunches with equal and opposite three-
momenta (c.m. frame), choosing the initial phase-space re-
gion where each particle in a given bunch has the same
velocity (same rest frame). These two composites have the
same Q/m ratio by virtue of the identity (4.3). Thus k —2
equations are satisfied within the bunches, arguing as in
the decay case, and another equation is satisfied for some
photon angle, as in (A18). The final particles may be
again clumped together opposite to the photon, satisfying
another n —k — 1 null-zone equations, for a total of n —2.
The case where the photon is in the initial state is a simple
reversal of this discussion.

The physical null-zone theorem for massless charges
has a similar proof (and we can consider it to be a corol-
lary to the previous theorem). In the general decay,
1—-n —1+47v, a physical null zone exists where all the
final-state particles are massless, and travel together oppo-
site to the photon. So (A20) reduces to

2_o

, A22
E " K, ( )

and it is only necessary that the energy m/2 may be di-
vided up according to the fraction of the total charge Q,
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that each particle carries. For more general initial states,
Eq. (4.12) applies to two initial particles and, by construc-
tion, to the bunched initial states for k > 2.

In a null zone, neutral particles must be massless and
travel along with the photon (cf. Sec. VII). As such, they
are easily incorporated into the physical null-zone theorem
and its corollary. [It is intriguing that all known neutral
structureless (elementary) particles have mass measure-
ments consistent with zero.]

5. General equations and remarks

To prove the physical null-zone theorem, we only need-
ed to show that the null-zone condition is satisfied some-
where in the physical region. We outline below an analyti-
cal approach that may be useful in the full determination
of physical null zones for more particles (larger n) and
general mass and charge values.

The n —2 constraints are to be superimposed on phase
space. For general decay, 1--n —1+7v, the 3n —7 final
state variables imply a null zone with 2n —5 dimensions.
For two-body collisions, 1+2-—n —2+%, the 3n —8 vari-
ables imply a null zone with 2n —6 dimensions. (n =3
corresponds to a single point.) A given k-particle initial
state, with no symmetry axis, corresponds to 3(n —k)—1
final variables and 2n — 3k + 1 null-zone dimensions.

We discuss an inductive analysis where we build larger-
n null zones from smaller-n results by systematically re-
placing a particle by a composite of particles. For defin-
iteness, consider the replacement of particle 3, in the n =3
decay, by a composite of n —2 particles. Denoting com-
posite variables by the subscript ¢, we may replace one of
the n —2 null-zone equations by

o _ 0

P9 P29
Equations (4.6)—(4.10) and (A1)—(A4) can be adapted by
the change 3—c. The lower (upper) limit of p.? corre-
sponds to the constituents traveling together (particle 2 at
rest with zero photon energy), but for a fixed x and y these
limits are changed. The limits on x,y, and Q=Q,/Q, are
found by the substitution 3—c in Egs. (4.9), (4.10), and
(A4) using the minimum value of p.2. The original discus-
sion can be repeated here, but it must be kept in mind that

(A23)

TABLE I. The (only) modifications of source graphs neces-
sary for the construction of the amplitudes M, (V) in (5.19).

Radiator Factor Position
Vertex leg Q j Factor goes
with charge Q pq between wave

function and
vertex in
source graph
(internal wave
functions are
Kronecker &
functions in
spin space)

along momen-
tum p (or

p +q) before
emitting pho-
ton with
momentum g
and polariza-
tion €, seagull
included (if
any)
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TABLE Ii. Feynman rules for (spin < 1) propagators and single-photon vertices.

Scalar Dirac Dirac antiparticle Vector
Propagator i(p?—m?)~! i(g—m)~! i(—p—m)~! iP,(p)(p?—m?)~!
D(p) . Eq. (5.27)
Photon vertex —iQ(2p —q)-€ —iQe +iQe iQY o5(p —q,9, —p)ef
I'(p —q,9,p) Fig. 7

the other null-zone equations are not yet satisfied.

We may regard c as a two-body system made up of par-
ticle 3 and another composite d with momentum p,; and
charge Q;. To (A23) we add

o _ o

Paq P3'q
This procedure can be continued, peeling away constitu-
ents from the composite and adding the null-zone restric-
tions. At the second stage of telescoping we are led to de-
fine variables analogous to (4.6). The next stage is to re-
gard d as made up of particle 4 and another composite e,
and so on. There remains the task of determining the
nested sequence of limits on the independent variables.!

An alternative procedure for smaller n or for the selec-
tion of points in the null zone, if not the whole null zone,
is to rewrite (4.1) in c.m. coordinates:

(A24)

Qi
E;(1—v;cos0;)=—E .
Q

For e; =2E; /E,q; = Q, /Q, the relativistic version is
e;sin%(6;/2)=gq; .

(A25)

(A26)

We observe that smaller charges must have less energy
and/or smaller angles with the photon. It is essentially

Jeonv = (first-order coefficient in) universal displacement

of wave function= +p-€ for outgoing (+) or incoming (—) ,

these equations and their implications that were used in
the proof of the null-zone theorem.

APPENDIX B

In this appendix we present the rules for the construc-
tion of the radiation vertex expansion (5.19) for radiation
amplitudes generated by any source tree graph with
gauge-theoretic couplings. The factors in Table I modify
the external or internal leg of each source vertex and are
derived in Sec. V. All propagators are included in the fac-
tors R in (5.19), where the momentum assignment follows
photon emission from vertex v. There is no momentum
shift from derivative couplings in the coefficient of the
convection current since this product is included in the
contact current (see Ref. 23). In the Yang-Mills vertex,
however, the coefficient of the spin currents includes the
momentum shift, yielding the quadratic terms discussed in
Sec. VE. Internal-leg factors are derived from the radia-
tion decomposition identity, generalized to include possi-
ble contact currents.

The current j in Table I is

J =Jconv +jspin +Jcont (B1)

where

(B2a)

Jspin = (first-order coefficient in) universal Lorentz transformation

. ] i
of wave function =(0; + 0 Pwag — Zo"ﬁwaﬁ;gaﬂ—»wag)

4

for (scalar; spinor #,7; spinor u,v; vector 7]a=ga37]ﬂ ) 173;=gag71m) ,

(B2b)

Jeont = (first-order coefficient in) universal Lorentz transformation

of derivative coupling, g,g—w,g for p, =gaBpB

with

a)aﬁ:qae,g—eaqﬁ .

The radiation decomposition identity is

(B2c)

(B3)

D(p —q)T'D(p)+seagulls (if any)=D (p ——q)j—pQ.—q+p%jD(p) ,

where the various propagators and photon vertices are exhibited in Table II.

(B4)
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