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Shifman, Vainshtein, and Zakharov (SVZ) have proposed a procedure for calculating hadronic
masses and determining nonperturbative parameters in QCD using the operator-product expansion
for two-point functions and (exponential) moments of the corresponding spectral functions. In this
paper we present a detailed theoretical analysis of the SVZ procedure in the context of nonrelativistic
potential theory. %'e find that the phenomenologieal success of the usual first-order SVZ method in
relating hadronic energies (masses) is due to a hidden variational principle and a semiclassical struc-
ture which gives correct JWKB-type relations between energies. The first order m-ethod fails
theoretically: it does not reproduce the correct potential-model or field-theoretic parameters, e.g., the
gluon-condensate parameter of QCD. We show why it breaks down in this application, and that its
reliability can be greatly improved in all applications by using higher-order approximations for the
moment function. Our results are directly relevant for the SVZ analysis of charmonium and b-
quarkonium. The general conclusions should also hold for light-quark systems.

I. INTRODUCTION

In a series of papers published in 1979, Shifman,
Vainshtein, and Zakharov' (SVZ) showed that one could
use the dispersion relations for two-point functions in
QCD in combination with first-order perturbation theory
and the operator-product expansion to determine the
masses of quark-antiquark bound states in terms of pa-
rameters in the field theory. The SVZ procedure has now
been used to correlate masses and spin splittings of a large
number of qq states in terms of a few parameters. ' For
example, if it is applied to charmonium, with the QCD
parameters adjusted to fit the J/g mass, the predictions
for the 'So, 'P&, and Po & 2 masses agree with the ob-
served masses to within a few tens of MeV. '

This success has been remarkable, but mysterious. Bell
and Bertlmann studied the nonrelativistic SVZ pro-
cedure numerically using potential models in an attempt
to assess its reliability. They found that the usual first-
order method failed to give accurate energies for known
potentials, and conversely, failed to reproduce the poten-
tial parameters from given energies. As an example, the
analog of the gluon-condensate parameter was underes-
timated by a factor of 2.

In this paper, we show in the context of nonrelativistic
potential models for the qq system that the success of the
first-order SVZ procedure in correlating energies, and its
failure in predicting absolute energies or determining pa-
rameters, are consequences of the structure of the approxi-
mation scheme. This structure includes a hidden varia-
tional principle for the ground-state energy E» and a hid-
den semiclassical approximation which gives JWKB-type
relations among the energies El I for different angular mo-
menta I and different quark masses.

In one class of phenomenological applications of the
SVZ procedure, the potential parameters —or QCD con-
densate parameters —are adjusted to fit E», for example,
in charmonium. The semiclassical structure in the first-
order approximation then guarantees that the nearby ener-
gies Elr are given with reasonable accuracy, and that the
predictions for b-quarkonium are also valid. This success
in simultaneously fitting many energies does not imply
that the first-order SVZ procedure is reliable in other ap-
plications. It is not. The variational principle for E&&
shows, in fact, that the analog of the gluon-condensate pa-
rameter in the operator-product expansion is necessarily
underestimated by a large amount in the fits to charmoni-
um, a fact already noted empirically by Bell and
Bertlmann. "' %'e conclude that the field-theoretic param-
eters obtained using SVZ are suspect.

To see if it is possible to eliminate these problems, we
extend the nonrelativistic SVZ analysis to higher order
and obtain substantial improvement. We show that we
can further improve the results for singular interactions by
making a Pade-type resummation of the perturbation
series. Our results suggest strongly that it would be
worthwhile to extend the field-theoretic calculations to in-
clude nonleading terms in the operator-product expansion.

We also show by counterexample that it is not possible
to determine the form of the qq confining interaction us-
ing the finite-order SVZ method or its nonrelativistic lim-
it. This has the unfortunate consequence that informa-
tion about qq excited states which is easily obtained in po-
tential models is not accessible from the present low-order
SVZ method.

The organization of the paper is as follows: In Secs.
IIA and IIB, we review the SVZ program and set up its
nonrelativistic analog. In Sec. II C we develop criteria for
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determining the bound-state energies from the SVZ ex-
ponential moment function 8 (~). In Sec. II 0, we prove a
variational bound on E&z in terms of the first-order ap-
proximation to 8{x). In Secs. IIE and IIF we generalize
our results to arbitrary angular momentum and derive our
semiclassical relation for F. &~.

In Sec. IIIA we test our results for general power-law
potentials including the realistic Coulomb-plus-linear po-
tential, and show that the first-order SVZ technique
"works" only when the potential parameters are adjusted
to fit the lowest-energy levels (a particularly striking ex-
ample for charmonium and b-quarkonium is given in
Table II). We extend our results to second (and higher) or-
ders in the perturbation series for 8 (r) in Sec. III B and
show that substantial improvements result. Pade summa-
tion of the series is considered in Sec. III C, and the prob-
lems in determining the interaction by the SVZ technique
are discussed in Sec. III D. Finally, we summarize our re-
sults and discuss their implications for the SVZ program
in Sec. III E.

1 p 2 ImH(8 )
J

( gr2+g2)N+1

M„r„(e+e )

(M 2+g2)N+1

1 (."d~2 W cr(8')
3 2e 2 J so ( gr2+Q2)N+1

where M„and I „(e+e ) are the mass and leptonic width
of the nth resonance.

The left-hand side of Eq. (I) can be calculated by using
perturbative QCD and the operator-product expansion to
evaluate the vacuum expectation value of the time-ordered
product of quark currents

i f d x e''2'"(0( T(j&(x),j„(0))[0)
= (q~ q —q g~„)II(q ),

and is given to first order in a, by

II. THEORETICAL ANALYSIS

A. Sackl;round

The Shifman-Vainshtein-Zakharov (SVZ) program is an
extension of the old idea of duality, e.g., for the process
e+e ~hadrons, in which the average behavior of the ob-
served, highly structured cross section is described using
low-order QCD results for the "free" cross section for
e+e ~qq. Duality has been used to test perturbative
QCD, ' determine quark masses and predict leptonic
widths for vector-meson decays, '" and to estimate gluon-
ic radiative corrections to these widths. ' It was realized
by SVZ (Ref. 1) that one could go further by including
some nonperturbative effects in the theoretical calcula-
tions, and use duality to predict the masses of qq bound
states.

To implement their program for e+e annihilation via
a virtual photon, SVZ used the duality relations obtained
by repeated differentiation of the dispersion relation satis-
fied by the photon vacuum-polarization function II(q ),

N

dQ 2
II( —Q )

1 yd~ I II(8')
{~2+ Q2)n+1 '

1mlI(s) is related to the physical cross section for
e+e ~y—+hadrons at the center-of-mass energy Fby

I II(W')=
16m a2e 2

where we restrict our attention to a single- (heavy-) quark
flavor. The right-hand side of Eq. (1) is therefore just an
energy average of 8' o. calculated by convoluting 8' o.
with a smearing function f(W +g ) ~(8' +Q )
and reduces for a sum of narrow resonances (qq bound
states) and a continuum to

dg'

'N

II{—Q )

=AN(g )[1+a,aN(Q )+($1/16m )bN(Q )] .

The functions AN, aN, and bN were calculated for Q =0
by SVZ, ' and for general Q by Reinders, Rubenstein, and
Yazaki (RRY).2 The constant P, is the nonperturbative
gluon-condensate parameter which appears in the leading
correction in the operator-product expansion,

4m',*(oiG„'„G~ io),

where 6 is the gluon field-strength tensor.
For X sufficiently large, only the ground state of the qq

system contributes significantly to the sum in Eq. '(3), and
Eqs. (1), (3), and (S) give a relation connecting the mass
M& and leptonic width I &(e+e ) of the qq ground state to
the field-theoretic expression. The ratio of Eqs. (1) for
two successive values of N is independent of I 1(e+e )
and depends linearly on M~ . By requiring that this ratio
be stationary with respect to variations in N (and Q ), SVZ
(H.ef. 1) and RRY (Ref. 2) could determine P, in terms of
the J/f mass M1 (we note that a, and m~ were deter-
mined using moments with X small), and could then use
the result with sum rules for different two-point functions
to predict the masses of other states, e.g., the 'So, I'0, P],
I'2, and 'P~ states in charmoniu.

In later work, SVZ replaced the inverse power moments
of W o with respect to (fV +g ) defined by Eq. (3) by
"exponential moments" which further emphasize the con-
tribution of the ground state to the sum rule and snake it
easier to determine the ground-state energy. The exponen-
tial moments are obtained by applying a Borel transform
to Eq. (1). This involves multiplying Eq. (1) by (g )
and taking the limit N~oo with the ratio A, =N/Q
fixed. The right-hand sides of Eqs. (1) and (3) are then re-
placed by an exponentially weighted average of the physi-
cal cross section,
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M(A, )=—f dW e ImII( W )
1

G( r ', r, t) =i 8(t)K( r ', r, t) . (10)
3 QM„I „(e+e )e

—A,M„2

4~

+ f dW W o(W)e
16m ae (7)

Here K ( r ', r, t) is the Feynman propagation function
which describes the propagation of an initial qq state for-
ward (t ~0) or backward (t &0) in time, and is given expli-
citly by the usual sum over states,

while the left-hand side of Eq. (1) is replaced by the Borel
transform of Eq. (5) (explicit results are given by
Bertlmann ).

It is clear from Eq. (7) that the exact value of the func-
tion R(A)= —d 1nM(A)/dA, approaches M~ as A~ao.
While the approximate QCD expression for M(A, ) is not
reliable for A, large, SVZ suggest that one can nevertheless
obtain a good value of M1 by evaluating R,~„„„ata
point where this function is stable with respect to varia-
tions of A, , dR,»„„/dA, =O. (This corresponds in the
power-moments method to evaluating the ratio of succes-
sive moments in the region of stability with respect to N. )
The advantages of the exponential-moments method have
been discussed by SVZ, ' Bell and Bertlmann„' and
Vainshtein et al. ' %"e will use exponential moments in
the following analysis of the SVZ program.

B. The SVZ program for potential models

To study the reasons for the unexpected success of the
SVZ program, we will model the qq systeIn using nonrela-
tivistic potential models in which the quarks are confined
in a Schrodinger potential V(r), and attempt to determine
the ground-state energy E1~ for angular Inomentum l using
a first-order {or low-order) perturbation expansion of the
appropriate two-point function and the SVZ exponential
moments. The first-order S-wave problem was studied for
simple power-law potentials by Bell and Bertlmann ' who
showed that the SVZ procedure gave reasonably good re-
sults for E&z, but did not provide an explanation for that
success. Those authors also showed that the exponential-
moments method was generally more accurate than the
power-moments method used in most of the work of SVZ
{Ref. 1) and RRY. Bertlmann later used the nonrela-
tlvlstlc exponential-moment llmlt of the RRY power mo-
ments to study P wave energies in-the charm (tP) and bot-
tom (Y) systems, and found that the nonrelativistic and
relativistic results agreed to —10 MeV for these heavy-
quark systems.

In the following sections, we will repeat the Bell-
Bertlmann ' analysis of the nonrelativistic S-wave prob-
lem and show why the SVZ procedure works in this case.
We will then extend the first-order analysis to general l,
again with emphasis on the reasons for its success. Final-
ly in Sec. III, we will give a number of numerical exam-
ples, and show how the results are improved by going to
higher order in the perturbation expansion.

The nonrelativistic photon vacuum-polarization func-
tion is simply a multiple of the qq energy Green's function
evaluated at the origin,

II(E)~—,
'

mq G(O, O,E),

K(r ', r, t)= gf„t (r ')e "'f"„t (r),
nlm

where g„t (r) is the qq wave function for principal quan-
tum number n, orbital angular momentum l, and magnetic
quantum number m. (We will suppress the spin quantum
numbers which are irrelevant in the following arguments. )
The cross section W ob „„dfor e+e ~(qq bound state) is
proportional to K(O, O, E) (Refs. 14 and 15) and depends
only on the S states,

W crb „„d(E)=12&aeq mq K(O, O, E),
where

K(O, O, E)= f dt e'~'K(0, 0, t)

=2' g t@„s(0)
~

5(E E„s) . —
n=1

(12)

The Green s function G(O, O,E) satisfies a dispersion re-
lation which follows from Eqs. (9)—(13):

G(() 0 E) 1 dE ImG(0 0 E )

0 E' —E
where

(14)

ImG(O, O, E)= —,K(O, O,E)

=~ X I 4~(0) I
'@E—E~)

n=1
(15)

mq ~ W o.b,„„d(E')dE'
3 2 2 P (E~ EP+1

Application of the Borel transform"

a= »m ( —E)"+'(~ )
N~ac

E=—N/v

(17)

to Eq. (16) gives the nonrelativistic version of the exponen-
tial SVZ moments defined in Eq. (7),

N

8 — G(O, O,E)X! dE

f dE'e E W ob „„g(E')
12 rx eq

The dispersion relations analogous to the SVZ relations in
Eq. (3) are obtained by repeated differentiation of Eq. (14),

1 d
G( )

1 ~ d, ImG(O, O, E)
N! dE rr o (E' E)++'—

n=1
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The sum in Eq. (18) is just the Euclidean or imaginary
time form of the Feynman propagation function for
r '=r=O,

IC(0,0, —tr)=g ~y„s(0)~'e
' '. (19)

We may therefore identify the left-hand side of Eq. (18)
with E(0,0, ir—) and rewrite Eq. (18) in a form similar to
the relativistic expression in Eq. (7),

IC(0,0, ir—) = I dEe '8' ab,„„d(E) .
12% A eq

(20)

C. Properties of Eo{~)and the determination of Eis

If we follow SVZ (Ref. 1) and Bell and Bertlmann45
and attempt to determine E~q from a low-order perturba-
tion expansion of Ao(w) (first order in the cases considered
by those authors), the approximate Ro(r) will not have the
proper asymptotic behavior for wahoo, and the limiting
procedure in Eq. (21) will fail. We therefore need a cri-
terion for selecting a "best" value for our approximate
EI,~. %'e can easily establish two useful criteria from for-
mal properties of Ro(~). It is convenient for this purpose
to introduce a discrete normalized, positive distribution
function [f ] = [f„, n = 1,2, ... ], with the functions f„de-
fined by

Equation (20) is a special case of the general duality rela-
tion for e+e annihilation studied in the preceding pa-
per' (we will denote this paper by WDD).

The ground-state energy E~~ of the qq system can clear-
ly be calculated from Eq. (19) or (20) as

f„(r)= ) P„s(0) (
e g ( P„s(0) j

e

Ro(~) is then given by

(24)

Eis= »m &o(&) (21) Ro{r)= &Z),=Fis+ &E Fts).&—&ts

Ro(r) = — lnK(0, 0, ir), I —=0, (22)

provided the large-~ behavior of Ro{~) is known. The
SVZ procedure (already studied by Bell and Bertlmann
for power-law potentials) uses instead the expression for
Ro(~) obtained in first-order perturbation theory, and esti-
mates E)g as

(]. )E].s ~~ o (+min) ~ (23)

TABLE I. Comparison of the exact ground-state energies for
the power-law potentials V(r) = Vor" given in Ref. 4, Table I,
with the results obtained using the first-order perturbative ex-
pansion of R (r) and the SVZ procedure [EIs'——min, R ' "(r)] and
its variational improvement (E~s „,„——min, [R' "(r)—1/4r]).
The energies are given in units of Vo

' +"'m~ " ' + '.

where ~;„is the value of w for which dR"'/d~=O. It is
by no means clear on the surface that this procedure
should work: The perturbation expansion is essentially a
small-r expansion [see the discussion in WDD (Ref. 16)],
yet one is trying to determine the large-v behavior of
K(0,0, —ir). The "magic" in the procedure is that it
works reasonably well, as shown in Table I. To show why,
we will first study the general properties of the limiting
procedure in Eq. (21), and will then show that Eq. (23)
gives what is essentially a Rayleigh-Ritz variational esti-
mate for E]g.

The approach of Ro(r) to its limit is therefore monotonic.
The difference (8, —E]z) is of order e ' ' for
7 ~ (x) ~

Bell and Bertlmann ' observed that (for all the poten-
tials they considered) the first-order approximation to Ao
always has a minimum as a function of ~, and took this
minimum for their best estimate of the ground-state ener-

F. ',"= min [R"'(r)] . (27)

This choice was of course motivated by the fact that the
exact Ro(w) must approach its limit (monotonically) from
above. [The same is true for the ratios RI(r) defined for
arbitrary orbital angular momentum I in Sec. IIE.] We
will show in the next section that it corresponds also to a
variational calculation of E]q and that E'~q' & E]q.

Unfortunately, the minimum in the approximate Ao can
disappear in higher orders of perturbation theory. %'e
therefore consider the next derivative,

d'R, ydd=((Z —&Z))') .

where the average ( ), is calculated with respect to [f].
The final inequality follows from the ordering of the ener-

gy eigenvalues and the positivity of [fJ, and establishes
the (obvious) fact that Rp(~) approaches iis limit from
above. A simple calculation shows in addition that

dR, Zdr= (Z') + (E—)'

1

2

i
2

Eis
exact

i
4

1.833

2.338
3

3.800

E is
( I)

—0.131

—0.369

1.977

2.616
3.464
4.500

&]s
variational

—0.157

—0.392

1.906

3.162

This quantity does not have a definite sign for an arbitrary
distribution function. However, for the specific distribu-
tion defined by Eq. (24), we can show that d R/dr &0
for ~ not too large, (E2g —E]g)7 & 1, by using the relation'
(vahd in the JWKB approximation)

(29)
dn

and replacing sums by integrals. For ~ large,
ft »f2 ». . . , a direct calculation neglecting terms of
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order f„2 for n &1 also gives d Rp/dr ~0. The latter
condition holds in the regions with which we will be most-
ly concerned. We conclude that a change in sign of
d Rp/dv as r increases signals a departure from the ex-
pected behavior, and will use the value of ~ at the inflec-
tion point in Rp(r) to calculate the approximate value of
Ei~. This procedure is remarkably successful, as will be
shown in Sec. III.

The minimum and inflection-point criteria for deter-
mining optimum estimates for the energy can also be used
to determine E&I, the ground-state energy for angular
momentum l, from the ratios R~(~) defined in Sec. IIE.
The derivations are similar to that given here.

We remark finally that neither of the criteria above
guarantees the existence of a bound state unless the ap-
proximate E&~ is negative. They simply provide ways to
determine a best estimate for E~~ if it is assumed that a
bound state exists. The same assumption is implicit in all
applications of the relativistic SVZ procedure.

D. The variational principle

Bell and Bertlmann ' noted that R'"(~} always has a
minimum for power-law potentials, and that the minimum
value E i~ was always greater than the exact ground-state(1)

l

energy E&z. E&z'~Ejz. We wi11 show next that this in-
equality holds for general potentials as a consequence of
the Rayleigh-Ritz variational principle. This (hidden)
variational principle makes the best possible use of the
limited input in the first-order SVZ procedure, and ac-
counts, we believe, for its (theoretically unexpected) suc-
cess.

The Euclidean propagator K(0,0, —ir) is given to first
order for a general potential V(r) by'

K(0,0, —i~) =
3/2

V(r)+ .

(30)

Expanding —in% to first order in V (Ref. 19) and calculat-
ing its derivative with respect to ~, we find that

()) 3 Plq —rn r /wRp"= + jd rre ~ V(r) .
2r 2~2

The Rayleigh-Ritz variational principle states that

g2
E,q ( f d r P"HP f d r P'P = f d r P' — + V(r) P f d r P'P

m&
(32)

for any normalizable trial wave function P(r). The second
term in Eq. (31) is exactly equal to the potential term in
Eq. (32) for the trial function

1/2 mr2/2». —
(33)

We therefore use this trial function in Eq. (32) and find
after calculating the kinetic energy term that for any ~ & 0

E,s& + ' f d're " 'rv(r)
4& 2~

(i) l (1)=Ro — (Rp
4~

Thus, Ei~ is strictly less than the approximate value deter-
mined by the minimum of Rp" (r),

E)g&E)s ——min[Rp (r)] . (35}

The value of E~~ obtained by minimizing (Ro" —1/4~)
instead of R o" is always somewhat better than E']~', but as
shown in Table I, the improvement is not spectacular for
simple power-law potentials [the correction term I /4r is
generally small near the minimum of Rp" (r)]. Much
better trial wave functions are easily found, e.g., a simple
Gaussian without the factor r' which appears in Eq.
(33). However, our intent is to test the SVZ procedure,
and we do not know of a relativistic version of the
Rayleigh-Ritz variational principle which is applicable to
their problem. %'e will therefore drop the variational ap-
proach.

The existence of the hidden variational principle ' has
two important implications. First, it explains why the
SVZ procedure gives a reasonable estimate for E&z (Table

I and Sec. III A} even though the values of ~ which mini-
mize Rp" (r) are so large that the first-order expansion is
invalid: ~ is used only as a Rayleigh-Ritz variational pa-
rameter in Eq. (27). Second, EIz' is the best estimate for
E~~ which can be obtained using the first-order procedure.
We can only improve the approximation to E~q by going
to higher-order approximations for Ro(7 ).

lim I g R«(r')R„'((r)5(E —E«),
r', r-~O (r'r} (36)

where R„I is the radial wave function for the nth state
with angular momentum l. Repeated differentiation of
the dispersion relation and application of the Borel
transformation in Eq. (17) leads to an exponential-moment
relation analogous to the S-wave relation in Eqs.
(18)—(20),

~j(0»0» ~r) = »m, g R«(r')R„;(r)e
r', r O (r r)

~ f dEe 'IV oi(E) .

Here o.I(E) is the cross section for the production of qq

E. Generalization to arbitrary angular momentum

The nonrelativistic generalization of the SVZ method to
states with orbital angular momentum l ~ 0 is based on the
properties of the two-point functions for irreducible tensor
currents TI (V) (we again omit possible spin dependence).
The scalar polarization function III(E) satisfies a disper-
sion relation of the usual form with ImIII(E) proportional
to the quantity
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bound states with angular momentum l through the action
of the tensor current Tl (V).

Equation (37) is of exactly the same form as Eqs. (19) or
{20) [but with A o(0,0, i r—) =4m K (0,0, i r—), an ir-
relevant change in normalization]. The energy E,i is
therefore given by the limit

The function (r'r) MI(r', r —i ~) is just the radial part of
the Euclidean propagator for angular momentum l, and
can be projected out of the full propagator

K(r ', r, —ir)= g P„i (r ')e "' P'„1 (r)
nlm

E&I ——lim AI{&),
T~ 00

where

gl(~) = in~I {Q,Q, —j~),
d~

(38)
= QR„i (r')Yi (r)e "' R„"~ (r)Yi' (r)

nlm

(41)

by using the orthogonality of the spherical harmonics FI

(r'r) A i(r', r, ir—)

EI'1'= min [Ri '(~)] . (40)

and we can use the criteria established in Sec. IIC to ob-
tain a best estimate for E&I from the perturbation expan-
sion of AI(w). %'e will restrict our discussion here to the
first-order theory, and use the estimate

= f dQ;, f dQ;Yi" (r ')K(r ', r, ir)Y—i~(r) .

(42)

The result is independent of m. We can calculate the per-
turbation expansion of ~I needed above by applying this
operation to the usual series

K(r ', r, —ir)=K' '(r ', r, ir) ——dr' f d r"K' '(r ', r ", i (~——r'))V(r")K' '(r ",r, ir')—+0 (43)

mqK' '(r ', r, —ir)=
4m~

' 3/2
—m (r' —r)2/4T

e (44)

The angular integrals encountered in this calculation can be evaluated by using the expansion

m r r '/2T
e

1/2

(2l + 1 )Ii+1/2
l=p

' 1/2

(21 + 1)Ii+1/2
l=0

mqrr'
I'I(r" r ')

21-mqrr

mqrr'
L

mqrr
(&')Yi* (r") .

2~
(4S}

Here Il+~/2 is a hyperbolic Bessel function
t'

00 1 z
II+1/2(Z) =

k=p k!I {k+m+—,
'

)

m +1/2+2k

(46)

Dividing the result by (rr') and taking the hmit r', r ~0, we find that
I +3/2

(O, O, —ir) =(Q) . 2

r(l+-', ), «
and

' I +3/2 I +3/2

(47)

mI "(0,0, —ir) =— f drr + V(r) f d~'
[r(l + 3 )]2 o o 4(r r')

mq

4s'

Xexp[ mqr /4(r w) mqr /—4v'] . — — (48)

The integral over ~' in Eq. (48) can be evaluated by repeated differentiation of the identity

f 1 I
e = —ex /{~ 8) x lr' —2~~—1 ——4x /~

[(~—~')r']'"
and we find after some calculation that

1 2 k
(i) (0) mq 00 —m r2/T l.I (l —k + —,), mqr(0,0, is) = —Mi (—0,0, ir), —f dr rV{r)e1.(l + -', ) k!(l —k)!

(49)
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The perturbation expansion for Ri(r) is given to first order by

Ri"'(r)= — In[A P'(0, 0, —i~)+A 'i (0,0, —ir)+ ]=
O'7

Using the result in Eq. (50), we obtain our basic expression,

( ~(1)/~(p) )
d7

mqf

3l+ —,

+ f dzHi(z)V
0

1/2 '

z =mqr jr .

For 1=0, this expression reduces to the S-wave result
given in Eq. (31), and the estimate for the energy Eis
given by Eq. (40) is related to a variational principle as
shown earlier. There is no generalization of the variation-
al result for 1 ~ 0: The function Hi(z) which multiplies V
in the integrand in Eq. (52) is negative for z —+0 and posi-
tive for z~ 00, and cannot be interpreted as the square of
a trial wave function.

F. A semiclassical result for E~~

Although we do not have an analog of the variational
result for E&z for 1~0, we can derive an interesting first-
order relation for E j~, l) 0, which relates the ground-state
energies for different values of l (and mq) and shows why
the generalized SVZ relations work. We begin by making
an estimate of the integral in Eqs. (52). The function
Hi(z) in the integral is peaked for z =mqr /r slightly
larger than I (see Fig. 1), has unit area, and can be approx-
imated very roughly by a 5 function at z =l"'=I. A good

2.0

1.5

0

lOIN

0.5+

approximation for power-law potentials gives I'=i+ —', .
With this choice,

l'
~1( '(&)= —+ V

1 mq
L

The approximation is surprisingly good for smooth poten-
tials as we will see in the next section. More important for
present purposes, Eq. (53) indicates the way in which
RI'"(~) changes with changes in l and mq, and therefore
allows us to relate the energies of different angular
momentum states and different heavy-quark systems. For
these relations to be reliable, the functional form of V(r)
must not change rapidly between the regions of r which
are most important in determining the energies we wish to
relate. (This is the case for simple power-law potentials. }

If we now apply the criterion in Eq. (40) to determine a
best value for the first-order energy E'&I' for large I, we
find that v. ;„is determined by the equation

d (&)
l' 1 l'0= Ri '(r)= ——+— V'

dr r 2 mqr mq

2l'
+ V (rp) (54)2 mqt'p

(
m p

rp ——(1'q. ;„/mq)'~, I'=i+ —', .
The vanishing of the function in the square brackets in
Eq. (54} is just the condition that the classical effective po-
tential

1~2
V ff(r) =

2 + V(r)
mqr

have a minimum at the radius r =r p (the condition for a
stable circular orbit for classical angular momentum
I+ —,'), and E'j'I' is approximated by the energy at the
minimum,

-0.5

I

z/(f+ z)

We can understand this unexpected result as follows:
The Euclidean propagator K(r ', r, —i~) is given by the
Feynman path integral'

'r
K(r ', r, iq) = f 9—'r(r) exp —f H(r, r)dr, (57}

FIG. 1. Plot of the function (I+ 2 )H(z) defined in Eq. (52)

as a function of the scaled variable z/(I + ~ ).

where H is the Hamiltonian of the system and the integral
includes all paths which connect r and r ' in "time" ~. In
calculating A ~(0,0, —i~), we restrict the paths to those
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with classical angular momentum in a band around l by
the projection in Eq. {42). Paths which reach the origin
for l ~0 must then tunnel through a classically forbidden
region. The tunneling factors are divided out when we
divide Eq. (42) by (r'r) and take the limit r', r~o. The
leading contributions to M&(0, 0, i—r) arise from the paths
on which H(r, r ) is a minimum subject to the tunneling
constraints. In the approximation which leads to Eq. (S6),

T ~

we have in effect minimized H(r, r)dr for long times r
by using the classical circular orbit for angular momen-
turn l'=1+ —;,and have neglected quantum oscillations
about the orbit and the effect of the potential on the tun-
neling. (The appearance of 1' instead of 1 in rp is ap-

(r'r) A I(r', r, ir—) cc(r'r)e (Ss)

—l—n~I(o, o, &~—) =H.;„=EI~i'.
dv (S9)

The effect of localized radial oscillations about the clas-
sical path can be estimated by noting that Eq. (56) is an
approximation to the JWKB expression for the energy.
The JWKB quantization condition is

parently connected with the increasing phase space avail-
able in the path integral for increasing r ).These approxi-
mations give

I

n +———
rr= mz

'~ f dr [E„&—V ff(r)]'"

=mz' f drI[E„~ —V,ff(rp)]+ —,
'

V,ff(rp)(r rp) . . j— (60)

and

E I V ff{rp(1))+{2 n+1 —
2 )[2V'ff(rp)/m&] n = 1 2 . . . 1 & 1 (61)

The result for Eu in Eq. (S6) follows if we can neglect the zero-point (n = 1) energy of the radial oscillations.
We reemphasize at this point that Eq. (S6) [or Eq (61)].gives a useful relation between n =1 levels with different

values of l whether the approximate energies are correct or not. We will in fact see in the next section that these relations
give the proper JWKB l dependence of the ground-state energies for power-law potentials.

III. NUMERICAL TESTS AND EXTENSION OF THE SVZ METHOD

A. First-order results for power-law potentials

It is straightforward to evaluate RI "(v ) for a general power-law potential

V(r)= f dvp(v)(r/a)", v& —2

by using the identity

I

z)=( —1) + -z—z + ~
I ( —, )

I (1+—,
'

) dz dz vz

(62)

(63)

which follows from Eqs. (48)—(Sl), and integrating repeatedly by parts in Eq. (S2). The final integration gives a I' func-
tion, and we find that

I ( —,
'

)I (1+ /2+ —,
'

)I (2+ /2)
dvp(v) I.(-', +~/2)r(l+ -,' ) mqQ

We will first consider the case of the simple power-law potential

V(r)=(sgn v)Vp(r/a)", Vp&0,

' v/2

(64)

where we have chosen the sign of V(r) so that the potential supports bound states. It will be convenient to use a scaled
time variable x =A,~ and to express energies and RI" in units of A, , with

y 2c'(2+v)( 2) —v/(2+v)
0

Then with &I(x)=RI(7.)/X, we have

(66)

R,' "(x)= l+ —,
' I ( —,')I(l+ /2+ —,)l(2+ /2)

+(sgn v) X
X I-( —,

' +~/2) I (l + —,
'

)

I + —,
' I (-', )I (2+ /2)

+(sgn v) [(1+—', )x]"~
X I ( —', +v/2)

{67}
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The second form of this expression (obtained by using
Stirling's approximation for the I function} has the 1

dependence predicted by the large-I approximation in Eq.
(53) (but with /~1+ —,). However, the magnitude of the
second term in Eq. (67) is too small by 21% for v= —1,
correct for v=0, and too large by 18~o and 33%, respec-
tively, for v=1 and 2. These errors are / independent.
Their pattern is easily deduced from the form of the func-
tion Hl(z) in the integral in Eq. (52) (see Fig. 1).

The value of the first-order energy E'&'E' is easily deter-
mined using Eqs. (40) and (67):

EII'I'=A(l + —,
' )(1+2/v)[ —,

'
~

v
~
C(v)] '+ ',

v) —2 (68)

D

CO

LLJ

O
CL
CL
O

Vl

1.0

I ( —, )I (1+v/2+ —, )I (2+v/2)
C(v) =

I ( —', +v/2) I (1+—,
'

)

I ( —,
' )I (2+v/2)

(1 + )v/2 —I

r( —,+v/2)
(69)

X ( 1 + &

)
2v/( v+ 2 I (70)

The I dependence of this expression is just that obtained
for n=1 from the general JW'KB expressions given by
Quigg and Rosner

EJ%KB
nE

1 3 »/(z+ ~)r( —, )r( —, +1/v)
r(1+1/v)

If we use the approximate form of C(v) in Eq. (68), we
obtain the semiclassical scaling law for E'&E' implied by
Eq. (56):

z/(v+ z)

i
v

i
I ( —, )I (2+v/2)

E'II' =A (1+2/v)
2r(v/2+ —', )

0.9
0

FIG. 2. Plots of the ratio of the approximate 1S energy to the
exact energy for the confining power-law potential
V(r)=VO(r/a), VO~O, v~O. The curves give the results ob-
tained using the first-order and second-order exponential mo-
ments, Pade resummation of the second-order series, and the
modified JWKB formula of Quigg aIId Rosner (Ref. 25).

which we will discuss in the following sections. As may
be seen from the figures, the first-order result for E&z is
generally poor except for

~
v~ quite small. The accuracy

of the predicted ground-state energies E~E for higher I is
essentially the same as for E~~ because of the correct
JWKB scaling in 1 given by Eq. (70}. We note in this con-
nection that if we were to scale the potential strength Vo
in Eq. (65) by hand so that we fit E~~ exactly, we would
obtain a good simultaneous fit to all the energies E~E.
However, it would clearly be incorrect to conclude from
the accuracy of the overall fit either that the first-order
method was accurate, or that the value of Vo determined
in the fit was correct. This remark has obvious implica-
tions for the SVZ program, to which we will return.

I
i

I I I I

%KB
X(2n+1 ——, )

" ' +"', v&0, n =1,2, . . . {71) 1.0 -—

- zv/(z+~)

X{2n+I——, +v/2) " ' + ', v~0, n =1,2, . . .

D
PC

0.8CLP

CA

LLj

O

o 0.6

UJ

provided we neglect the v/2 in the last line of Eq. (72).
The overall coefficient in Eq. (70) differs from the coeffi-
cients in Eqs. (71) and (72), but this difference is indepen-
dent of I. The scaling of the energies with the potential
strength and the quark mass is the same in all expressions,
and is determined by Eq. (66).

The accuracy (or inaccuracy) of the first-order energies
E'I~' is shown in Figs. 2 and 3 where we compare the pre-
diction of Eq. (70) with the Quigg-Rosner JWKB predic-
tions from Eqs. (70) and (71), the higher-order predictions

0.4

—0.5

FICx. 3. Plots of the ratio of the approximate 1Senergy to the
exact energy for the attractive power-law potential
V ( r ) =- —Vo( r /a )", Vo & 0, v ~ 0. The curves give the results ob-
tained using the first-order and second-order exponential mo-
ments, Pade resummation of the second-order series, and the
modified JWKB formula of Quigg and Rosner {Ref.25).
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The first-order predictions for E&I are also quite poor
for the realistic Coulomb-plus-linear potential used in fits
to heavy-quarkonium systems,

In this case RI'" is given by the sum

3'+ ~
Rl (r) = ma I (l +1) ~q

4 r(l+-', )

]/2

3~b I (I+2)+ 3r(l+ —, )
(74)

and the energies must be determined numerically.
Miller and Olsson obtain a best fit to the spin-

averaged charmonium and b-quarkonium data for
m, = 1.35 CxeV, mb ——4.77 GeV, a =0.49, and b =0.17
GeV . Using these parameters, we find the results given
in Table II. &e find, for example, that the predicted S-
and P-state energies in charmonium are too large by 144
and 142 MeV, respectively, errors which are quite large on
the scale of the absolute energies or the level spacing
EIz —E&~

——408 MeV. The latter is given essentially
correctly, E'I p —E'~~' ——406 MeV. There are similar
discrepancies in b-quarkonium.

We can force a fit to the exact charmonium energies by
increasing the parameter a by 36% to a=0.665 and de-
creasing b by 16/o to b=0.146 GeV, and obtain at the
same time remarkable improvements in the b-quarkonium
energies. However, the potential which results is certainly
not a good approximation to the input potential.

We can also greatly improve the (apparent) match of the

first-order and exact resu1ts for the total energies
M],I ——EII+ 2mq simply by adjusting the quark masses
downward by -70 MeV for charmonium and —100 MeV
for b-quarkonium, again with misleading results (especial-
ly so if one looks only at the fractional error in M&I).

We conclude on the basis of these examples (and our
earlier theoretical considerations) that the first-order pre-
dictions for the bound-state energies EI~ can be expected
to be qualitatively correct, for example, to reflect the
correct pattern of leve1 spacings, but that the quantitative
predictions for a given potential are unreliable. Converse-
ly„potential parameters (or quark masses) determined by
forcing the first-order energies to fit a given spectrum are
likely to be substantially in error. This was pointed out
for the S states by Bell and Bertlmann"' who showed that
the gluon-condensate parameter P, in the SVZ effective
potential'

4a,
V(r) = — + ~ mqP)r

3p'

is underestimated by a factor of 2 in fits to E&~ in char-
monium. We will discuss the implications of these results
in more detail later.

B. Extension of the SVZ method to higher order

Because of the difficulties with the first-order SVZ
method discussed above, we have extended our analysis of
the S-state problem to second order for the genera1
power-law potential defined in Eq. (62), and to higher or-
der in some special cases. The second-order result for
Ro(v. ) follows easily from the corresponding expansion of
the Euclidean propagator K(0,0, ir) g—iven in the preced-
ing paper [WDD (Ref. 16)]:

Ro '(r)= + I dv~(vl)l 2+—
27.

' vi/2

r

~)+v~+2—f dip(v~) J dv)p(vl) 1+—+— I 1+—+—
2 2, (v, +1)(v,+1)

I (v, +1)l"(v&+1)
r(v, +v, +2)

V& Vp—I 1+—I 1+—
2 2 2

mrna

(2+vl+ v&)/2

(76)

This expression simplifies somewhat for a single power, i.e., the potential in Eq. (65). It is convenient in that case
to use the scaled time variable x =A,~ and the scaled function A'0 ' ——R. o '/A, with A, defined as in Eq. (66), and rewrite Eq.
(76) as

SFD '(x) = +(sgn v)1 2+ —x "~ —8~'+',3 V

2x 2

B„=(2+v) II (v+1) 1

v+1
I (v+1)

21"(2v+ 2)
——I 1+—, '1

2 2
(78)
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B„is positive in the region of interest (v & —2), and has a quadratic zero at v=0.
We can obtain a second-order estimate for the ground-state energy E&z by minimizing M0' '(x) with respect to x for—2 ~ v ~ —0.369 18. . . . However, for v~ —0.369 18. . . no minimum exists, and we will therefore use the inflection-

point criterion discussed following Eq. (29) and estimate E1& as

El.s' ~0 (xinf) ~

where

(2)
2

, ~o «;.f)=0
dx

After some calculation, we find that

E",,'= XW0"'(x ),
where

x '+"/ = — 1 2+ —— —,
' v I 2+ ——6(v+1)B„

2 2 2

1/2 '

(v+1)B„, v& —0.36918. . .

(79)

(80)

(81)

(82)

2

x +"/ =. ——1 I 2+ —+ ———1 I 2+ —+12v(v+1)B„V V V 2 V

2 2 2 4 2 2

,

1/2

V(v+ 1)B„, v & —0.369 18. . . .

(83)

To check the theoretical reliability of the minimum and inflection-point criteria for determining the optimum choice
of x, we have applied these methods for the Coulomb, linear, and oscillator potentials using the following extended re-
sults obtained in WDD (Refs. 16 and 27):

v= —1:

X(0,0, i r) =4& 7r—Plq

4m~
' 3/2

' 3/2
g(n) x

„~0 I [(n —1)/2] 4

n/2

3/2 ~ 2I+3/7rx' +—x+ —,3/7rg(3)x / + x +
6 180 (84)

R (x)=— ,'u 7rx '/ ————(7r—3)—', ~sr g(3)+ —— x'/ +— — +2((3)+7r x / +. . . . (85)2x ' 6 ' 3 3 2 30 3

v +1'

K(0,0, —iz) =
4m~

3/2 ~ 3 5~~ 9/2 221 61 — x +—x —— —x + x —-
2 64 6048 (86)

(87)

+ 2 0

K(0,0, —ir) =
4~~

3/2 ' 3/2
2x

sinh2x

3/2
2 19 4 631 6 1219 8+ 30 X f890 + 7560

2x „ 0 (2n)! 2x

where B„ is the nth Bernoulli number. It is interesting to
note that the contributions of the second- and higher-order
terms are much suppressed in &0 (even more so in —lnK)
relative to K, as would be expected from the arguments in
Ref. 19.

%'e show our high-order results for the oscillator and
Coulomb potentials in Figs. 4 and 5. The validity of the
minimum and inflection-point criteria for determining the
optimum estimate for E'1q' from A'0"'(x) is clearly evident
from these figures. %'e emphasize that the sequence of

(89)

I

optimum values converges to the exact function &0(x)
evaluated for x =x,~„„,and not to E,s =980(00 ). It is
necessary to estimate the contributions of higher states to
W(x) if one is to correct for this effect. The curves in
Figs. 4 and 5 show that the estimates for E1~ can be im-
proved substantially by including second- or higher-order
terms in &0(x), but illustrate also that the convergence of
the perturbation series is sufficiently slow that it is prob-
ably not worthwhile to go beyond second order. (Even go-
ing to second order would require a major effort in the



ND, AND ~HIT

3.6

&.0

3.0

2.8

2.Q 0.6

0

0.8

i.0

|.O

1.5

i.2

I

G. 6 Bh
X

2.0

mome
.

"' Of the
nt functions ~(i)

irst- and seco

tion of A(2)
'"' 0 '(x) and ~(2)

"cond-order ex 0

ti
x) for ~—+ 2

o (&) and th P
xponential

s pf ~ d
horizontal b

. Odifica

e horizontal l'
ermined by th

s indicate t

ine gives the ex
inQection- oi

e exact value of~
n-point criterion

0(~
FIG. 4

X

he exac
g nce pf ihe nth-

ct moment f
"order a

potential Th
n«ion ~,(~)

P p»matip» ~(~)

of ~(+)
e short hpri

=3 coth2~ f
0 (+ )

0 (~ &

«nta]
or the

for n 246 d
bars sho~ th

s &1&ator

erion of Sec II
' eterm, ned b

OPtimum

are give~ b
. e optimumC. C Th

y the
~

va ues
in ection

y the mi„im f
values of ~(~)

-P int cri

imaofthecorre . 0 (x) for n 5

sPondin
1,3,

field-theoretic

ng curves.

n . —,we show the behavior o

1s given by the mlnlm
d ear1 er T

11 h
erion to ck the opt

ear y evident fromrom Figs. 6—8

C. Pade suummaiion

ade summa
'The P nlque aPP o e par-

poy o

).

e Qvera11
mates f

ccuracy of th

25 (y(4
P er-1awfor

rst- and sec

sec
'n Fi s 2

Potentia1s
er esti-

econd-orde
and 3. yt

» shown

su1ts of . s are nearr resu]ts
1S enC

n Or

ulgg
y as go«at theouraging th

reasonab1
Rosner25 f, he JWKg

Stl ]
e eveny accurat

or l VQ—
re-

P«b1ems in th
. «r v 4 H

— ~ ~ and are

fore consider
interestin re

'
owever, there

s us jng pad,
e conver

matlOn 29

0.05 I I I I I I I I I I I I I
I 3.0

2.8—

—0.15—

—0.20—
2.4—

—0.25

2.2—

-0.30—

20
« I I

FI . nver enG. 5. Conver en

X

I

80

h exa ment func
e optimum val

p ximations &'"'

aof h

a ar for n=5.

t e curves
e in

'
int indicated b hyt e

2.0
0 2 3

I

FIG. 7. of

3 4

Behavior of
X

5 6

functions W'"
- and second-or

po rio
o 0(oo ).



28 THE SHIPMAN-VAfNSHTEfN-ZAKHAROV METHOD: WHY IT. . . 619

2.l I [ I I I I -0.05

-0.'lo—

—0.20—

l.7—
—0.25

I I I

0
I

5 10

-0.30—

40
X

I

80

FIG. 8. Behavior of the first- and second-order exponential
moment functions A'p"(x) and Ap '(x) and the Pade modifica-
tion of Ap'(x) for v= + 2. The horizontal bars indicate the

optimum values of &p determined by the inflection-point cri-
terion. The horizontal line gives the exact value of Ap( (x) ).

FIG. 10. Behavior of the first- and second-order exponential
moment functions Ap"(x) and &p '(x) and the Pade modifica-
tion of Ap '(x) for v= —1. The horizontal bar indicates the op-
tirnum value of A~' ' determined by the inflection-point cri-
terion. The horizontal line gives the exact value of Ap( ao ).

m+n
p(n+m) ~ j

J
j=O

are known, the [n, m] Pade

P[n, m]= gN~z~
j=O

(91)

approximant for I is the ratio

m

1+ g DJz'
i=~

n, m ~ oo, and moreover, that the convergence is more ra-
pid and the region of convergence larger than for the orig-
inal series. In essence, the Pade representation approxi-
mates the smoothly varying part of the series by the
smoothly varying ratio of two polynomials.

We have applied the Pade technique to &0'(x), Eq.
(77), by writing this function as

where the coefficients Xj and DJ are determined by the
condition that the expanded form of P[n, m] reproduce
the series to order z" + . It can be shown for many types
of series that the sequence of Pade approximants con-
verges to the function defined by the original series for

~(2)(&) p(2)(&)+v/2) (92)

and constructing a [l,l] approximant for P' ' in the vari-
able x'+ ~

-0.35
2.0

].5—

-0.40— Pade

].0—

-0.45— Pade'+ 0.5—

V= ——
2

-0.50
0

l

10
l

20 30

00 4
X

FICx. 9. Behavior of the first- and second-order exponential
moment functions A'~"(x) and Ap '(x) and the Pade modifica-
tion of A'p '(x) for v= —

z . The horizontal bar indicates the op-
r

timum value of A'p' ' determined by the inflection-point cri-
terion. The horizontal line gives the exact value of A p( ao ).

FICi. 11. Behavior of the first- and second-order exponential
moment functions Ap"(x) and Wp '(x) and the Pade rnodifica-
tion of Ap '(x ) for the Coulomb-plus-linear potential
V(r) = —ar '+ br with parameters a =0.49, b =0.17' GeV
chosen to fit the spin-averaged charmonium spectrum (Ref. 26).
The variable x is scaled using the scaling for a linear potential.
The horizontal line gives the exact value of Ap( ao ).
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1+v/2]X~~2I-a [1,1]= 1+a,x'+ " ' (93) V(r) = — —+ —,', mq[(1+/)r )'~ 1]—
3p'

where

r

X, =(sgn v) r 2+ —+a„r 2+— (94)

$ 4 3 2 4

3r
+ 64 mqf(r g)2 ming) r +. . . ,

P~r && 1,
S 1 ]/4 4

3'f + „m—qP) r, P~r ))1 . (97)

D~ ——(sgn v}8„ I 2+— (95)

The optimum values of x and %0 ' were then obtained for
x~ —1.2 using the inflection-point criterion. The Pade
approximations to A'o '(x) for power-law potentials and
the Coulomb-plus-linear potential are shown in Figs.
6—11.

The accuracy of the Pade method relative to other
methods is shown in Figs. 2 and 3. We see that the Pade
method gives substantial improvements in the estimate of
E&z for singular potentials. Thus for the Coulomb poten-
tial, the Pade estimate of E]~ is only in error by 3.5%
while the first- and second-order estimates are in error by
48% and 18%. Qn the other hand, there is no improve-
ment in the energy estimates for v~ 0. This difference re-
flects the fact that the series for A'0(x) for the singular po-
tentials have a number of slowly convergent terms with
the same signs which are efficiently summed by the Pade
technique. The alternating series which appear for v&0
are more sensitive to cancellations, and are summed less
accurately.

We conclude that the Pade method can be applied to
considerable advantage for realistic singular interactions,
but that the simple second-order method is adequate for
nonsingular interactions.

D. Determining the effective QCD potential

4s
V(r) = ——— + ~ mqP)r

3T

in the sense that RB'n(r)=Rsv'z(r). However, the quartic
behavior of this potential at large r and the Aavor depen-
dence generated by the quark mass in the quartic term are
in conflict with the many successful potential-theory re-
sults obtained for charmonium and b-quarkonium. It is
therefore important to recognize that one cannot use the
first-order SVZ procedure with the leading terms in the
operator-product expansion to determine the nature of the
long-range confining interaction in qq systems. To illus-
trate this, we consider the hypothetical potential

Bell and Bertlmann showed that one can associate the
small-r expansion of Ro(r) obtained as the nonrelativistic
limit of the SVZ expansion with an effective confining
Coulomb-plus-quartic potential

Ro (r) =—+ „mqP(—(1)

45—~ myles + 0 ~ ~ (98)

The term linear in P, gives the leading (nonrelativistic}
dimension-four term in Ro"(r). The term proportional to

is of dimension eight, and is therefore nonleading in
the sense of the operator-product expansion, and would
have been omitted in the calculations carried out to date.
Since Flory ' has recently produced a potential of this
more complicated sort by summing the gluon-condensate
terms to all orders in an ultralocal, large-X, approxima-
tion, the ambiguity noted here may not be entirely hy-
pothetical, and it will be important to extend the
operator-product expansion to include higher-dimension
operators.

The limitations of the SVZ approach for determining
V(r) and the energies of excited states are rather striking
when it is compared to the inverse scattering method of
potential theory. In the latter, information on, e.g., a set
of 5-state energies can be used to construct an approxi-
mate potential which can then be used with the
Schrodinger equation to predict the energies of states with
l&0. There is no {practical) restriction to ground-state en-
ergies E]I. This procedure is quite successful for char-
monium and b-quarkonium. ' Unfortunately, no analog
is known which is appropriate to the general field-
theoretic problem.

E. Summary and implications for the SVZ program

In this paper we have investigated the theoretical foun-
dations of the SVZ approach to the prediction of hadronic
masses in QCD, modeling the SVZ procedure using non-
relativistic potential models. The relevance of these
models to heavy-quark systems was established by
Bertlmann who showed that the predictions of the non-
relativistic and relativistic versions of the SVZ procedure
agreed quite well with each other for charrnonium and b-
quarkonium. We believe that our general theoretical con-
clusions are also applicable to light-quark systems.

This potential has the Bell-Bertlmann Coulomb-plus-
quartic behavior for r small, but for the parameters used
by those authors, is very nearly a (flavor-dependent)
Coulomb-plus-linear potential in the region which is
relevant for charmonium. The predicted energies are very
different for the two potentials.

The exponential-moment function for the potential in
Eq. (97) behaves for r~o as
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Our results show how the first-order SVZ method can
work as well as it seems to in correlating hadronic masses,
but still be unreliable in other applications, e.g., in predict-
ing masses from known QCD parameters, or determining
those parameters from fits to hadronic data. Our princi-
pal results are as follows.

{1)The first-order calculation of the S-wave energy E»
using the SVZ exponential moments is quasivariational,
and gives the best value of E&~ which can be obtained with
the given input and method. The unexpected success of
the SVZ procedure in extracting large- (Euclidean-) time
results from a perturbation expansion valid at short times
is a consequence of the hidden variational nature of the
calculation. The predicted energy always lies above the
true energy, E'~~'&E~&. As a result, the value of the
gluon-condensate parameter Pi in the effective quark-
antiquark potential in Eq. (75) will always be underes-
timated if it is adjusted so that E'iz' matches the correct
energy. This effect was found by Bell and Bertlmann in
their numerical studies of power-law potentials, and was
also shown to occur in the 1/X, expansion in two-
dimensional QCD by Bradley et al. and by Ditsas and
Shaw. Miller and Olsson have recent1y concluded on
purely phenomenological grounds that P, was underes-
timated by SVZ and RRY. Their analysis of the char-
monium data using finite-energy sum rules gave a value of
Pi a factor of 2 larger than that obtained in the fits to Eis.

We emphasize that the contribution of higher bound
states (or the continuum} to the exact Ao does not account
for the difference between the first-order and exact values
for E&z. As shown in Figs. 4 and S, the minimum values
of %0" for the oscillator and Coulomb potentials lie
substantially above the exact values of %0 at the same
points. The "continuum" corrections may be important in
some cases but the basic problem remains.

(2) The first-order predictions for the ground-state ener-
gies E&I for different angular momentum series are con-
nected by an approximate semiclassical relation (precisely
the JWKB relation up to an overall normalization for sim-
ple power-law potentials) which guarantees that the ener-

gies scale properly with the quark mass, and that an entire
set of levels will be fitted reasonably well if the potential is
adjusted to fit the lowest levels. A striking example of
this phenomenon for the Coulomb-plus-linear potential is
shown in Table II.

(3) Conversely, success in fitting an entire complex of en
ergy (eUels (e.g., the spin-averaged charmonium and &-

quarkonium levels in Table II) does not guarantee that the
potentia/ parameters obtained in the fit are correct. We
conclude by analogy that the spectacular success of SVZ, '

RRY, and others ' in fitting a large number of hadronic
masses is essentially unrelated to the correctness of the
QCD condensate derived in these fits. The situation is
further complicated by the presence of extra adjustable
parameters —quark masses, the quark condensate used in
fits to light-quark data, etc.—which make definitive com-
parisons between different systems difficult. The clearest
test of the method is probably the calculation of spin split-
tings within a given system. These depend on the conden-
sates as well as the single-gluon-exchange terms, hence test
the theoretical input. The results are only moderately suc-
cessful. '

(4) The second-order predictions for Eis appear to be
quite reliable for a variety of potentials, especially if sup-
plemented by Pade summation in the case of singular in-
teractions. Use of the higher-order expressions in field-
theoretic calculations would require that the operator-
product expansion be extended to include higher-
dimensional operators (the gluon condensate appears qua-
draticaily in dimension eight). Considerable progress on
this task has been made recently by Nikolaev and Ra-
dyushkin. %'e emphasize that it is only with the use of
such higher-order methods that one can hope to obtain re-
liable values for the nonperturbative condensate parame-
ters, e.g., for comparison to the results of lattice calcula-
tions. We remark finally that high-order calculations are
also required before one can determine the nature of the
confining interaction (and then only in the region directly
sampled by the bound states).

TABLE II. Comparison of the exact ground-state energies for the Coulomb-plus-linear potential
V= —ar +br with the parameters of Ref. 26 with the first-order energies calculated by minimizing
the SVZ exponential moments function RI'", Eq. (74). The masses of the charm and bottom quarks are
m, =1.35 GeV and rnb ——4.77 GeV. The last two columns give the results obtained for b-quarkonium
when the potential is modified so that the first-order 1S and 1P charmonium energies are correct.

State

a=0.49, b=0.17 GeV2

E)I,exact E )I
(1) Error

(MeV) (MeV) (MeV)

a=0.665, b=0.146 GeV
E(1) Error

g'NeV) (MeV)

Charmonium
1S
1P
1D
1I'

364
772

1060
1305

508
914

1221
1487

+ 144

+ 142
+ 161
+ 182

364
772

1063
1314

Fitted
Fitted
+3
+9

b-quarkonium

1S
1P
1D
1F

—98
349
585
769

106
479
714
905

+ 204
+ 130
+ 129
+ 136

—94
343
581
767

+4
—6
—4
—2
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