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Short-time perturbation theory and nonrelativistic duality
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We give a simple proof of the nonrelativistic duality relation (W~trb, „„d)=(Wot„„) for ap-
propriate energy averages of the cross sections for e+e ~(qq bound states) and e+e ~(free qq
pair), and calculate the corrections to the relation by relating 8' o. to the Fourier transform of the
Feynman propagation function and developing a short-time perturbation series for that function.
We illustrate our results in detail for simple power-law potentials and potentials which involve com-
binations of powers.

I. INTRODUCTION

There is an assumed duality between the observed
(bound-state) cross section for e +e ~(confined qq
system )~hadrons and the (free) cross section for
e+e ~(free qq pair) calculated in perturbative QCD: if
both cross sections are appropriately averaged over energy,
the averages are approximately equal,

where 8'is the total energy of the e+e pair. This duali-
ty has been used extensively in the analysis of heavy-quark
data.

Until recently, the nonrelativistic duality relation had
been demonstrated to hold only in the JWKB or Thomas-
Fermi approximations' or in numerical calculations in
specific potential models. The corrections to the relation
were not known. In two earlier papers, we gave proofs of
nonrelativistic duality for the single-channel and
coupled-channel problems, and investigated the correc-
tions to Eq. (I). (The corrections were also investigated by
Pasupathy and Singh using an extension of the JWKB
aproximation. ) We subsequently extended the JWKB
proof of duality to the relativistic Bethe-Salpeter problem
and investigated the relativistic-nonrelativistic connection
in detail. '

Our method of proof of the nonrelativistic results was
based on a short-time expansion of the Feynman propaga-
tion function. (The possibility of using this method was
noted by Bell and PasUpathy in Ref. 1.) As presented in
Refs. 3 and 4, our method required that the qq potential be
analytic in r at the space origin. We have since extended
our results to general potentials, and have used them to in-
vestigate the extent to which the Shifman-Vainshtein-
Zakharov (SVZ) program of determining bound-state pa-
rameters from perturbation theory (as modeled by poten-
tial theory) can be improved by including higher-order ef-
fects. We report that work in this and the following pa-
per.

In Sec. II A, we review the connection between the cross
section for e+e ~hadrons in confining potential models
and the Fourier transform of the Feynman propagation
function, and use the result to give a precise definition of

the duality relation. In Sec. II B, we establish the series of
corrections to the simple duality relation in Eq. (I) by
developing the short-time Born series for the propagator.
We illustrate our results on the short-time perturbation
series for the case of power-law potentials in Sec. IIC,
give some examples in Sec. IID, and apply the results to
the duality relations for the exponential moments of SVZ
(Ref. 7) in Sec. IIE. In Sec. IIF, we consider the case of
the Coulomb-plus-linear potential, and show how the du-
ality relations can be improved by extracting Coulomb
corrections and treating them exactly, as was discussed in
Ref. 3. We conclude with some comments in Sec. III.

In the Appendix, we derive exact expansions for
K(0,0, —ir) [the Euclidean propagator K(r', r, ir)—
evaluated at the origin r ' = r =0] for the harmonic-
oscillator, linear, and Coulomb potentials. This function
determines the SVZ exponential moments of the nonrela-
tivistic e +e annihilation cross section. Our results for
the linear and Coulomb propagators are to our knowledge
new.

In the following paper, we use the results obtained here
to study the nonrelativistic version of the SVZ method
for determining the nature of the (relativistic) qq interac-
tion and the energies of qq bound states from duality. Our
work extends the earlier analysis of the SVZ method given
by Bell and Bertlmann, and we propose some improve
ments of the method.

II. SHORT- TIME PERTURBATION THEORY
AND DUALITY

A. Duality and the Feynman propagator

Our derivation of the duality relation in Ref. 3 was
based on two observations, first that the free and bound
cross sections for e+e ~qq can be expressed in terms of
Fourier transforms of the corresponding Feynman propa-
gators, and second that the two propagators are approxi-
mately equal at short times. We begin by reviewing and
extending these results.

The nonrelativistic cross section for e+e annihilation
into a qq pair bound in a confining potential V(r) is given
for three quark colors by
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ob,~'d=24qr a eq mq W Q ~
/~{0)
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K(r', r,E)= f dte' 'K(r', r, t)

=2rrgg„t (r ')g'„t (r)5(E E„t) .—
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Since only S states contribute to E for r ' = r =0, the cross
section in Eq. (2) is simply proportional to K(O, O,E),

ob, q=12&a2eq mq
W' 2K(O, O,E)

Similar results hold for the free cross section,

ot„„——6+a e UW ())/s(0)
~

=12m. a eq mq W Ko(O, O, E),
where Ep(r ', r, t) is the free propagator,

3/2
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Ko(r ', r, t) =
4m(it +e)

Ptq (r ' r)
)& exp

4 it+@

Ep is its Fourier transform,

Ep(O, O, E)=m& v/2m, (8)

and v =(E/m&)' is the velocity of either quark in the
center-of-mass system.

Although the energy dependence of the cross sections
ob „„d and ot„„[orequivalently, of the functions K(O, O, E)
and K()(O, O, E)] is drastically different, the propagators
K{0,0, t) and Xp(O, O, t) are nearly equal at short times. In
particular, in the presence of a potential V(r), E is related
to Ep by the integral equation

(2)

Here a is the fine-structure constant, e& is the quark
charge in units of e, m~ is the quark mass, 8'=2m&+E is
the total energy in the center-of-mass system, and g~(r)
is the qq wave function for the nth S state. The sum in
Eq. (2} is just the Fourier transform K(O, O,E) of the Feyn-
man propagator K( r ', r, t) for the qq system in the con-
fining potential, evaluated for zero-quark separation,

K{r',r, t)= gf„t (r')e "'g*„t {r), (3)
alan

x V(r ")K(r ",r, t') .
(9)

The integral term vanishes relative to Ep as t~O for po-
tentials V(r) less singular than r at the origin. To make
use of this information and obtain a duality relation con-
necting a.b,„„d and o.f„„we average the cross sections over
a range of energies by convoluting 8' o. with a smooth
function f (E' —E), ' and use Eqs. (5) and (6) and the con-
volution theorem for Fourier transforms to write the re-
sults in terms of K(0,0, t):

(W o')—:f dE'f(E' E)W —cr(E')

=12+a eq mq f dE'f(E' —E)K(O, O,E')
=12m a eq mq f dt f(t)K'(0, 0, t)e' '. (10)

Iff(E' E) is ch—osen so that its Fourier transform f(t) is
sharply peaked around t =0, we may use the approximate
equality of E and Ep at short times to obtain the simple
duality relation in Eq. (1). This relation corresponds phys-
ically to our expectation that a qq pair produced at r =0 is
unaffected by the potential for a short period of time, i.e.,
until the quarks encounter the confining potential barrier.
%'e will next make this assertion more precise, and obtain
a corrected version of Eq. (1).

S. Short-time perturbation expansion

In Ref. 3, we estimated the corrections to the duality re-
lation by using the operator expression for the full propa-
gator K(r ', r, t),

K(r' r t)=e ' '" "5(r' — )

H(r ')= —V, /mq+ V(r' ), and making a (Wigner-
Kirkwood") expansion in terms of derivatives of the po-
tential evaluated at the origin. This procedure fails for
potentials which are singular or have singular derivatives
at the origin, and we have since found it much more con-
venient to use the integral equation in Eq. (9) directly, and
solve for E by iteration. This gives the Born series

K(0,0, t) = K, (0,0, t)+K, (0,0, t)

+K,(0,0, t)+
with

E2

K„(0,0,t)=( i)"f dt„ f "dt„) . f—dt) f d r„ f d r)KO(O, r„,t t„)V(r„)Ko(r„,r„(,t„—t„))—
& V(r„&) . V(r& )Ep(r &,O, t& ) .

It is straightforward to perform the time integrations in Eq. (13) recursively using the explicit form of Ko in Eq. (7) and
the identity

I

dt7 I 1
e x I(( ) —x'(~/(' — ~)r X+X— —(x+x') /(—e

[(t t' )t' ] —t XX'
(14)

We find that
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K„(0,0, t) = mq

4m(it +e)

' 3/2 'n

f d r„.f d riV(r„) . V(ri)

Xexp[ mq(—r„+r„„ i+ . +r, ) /4(it+e)],
where r,j——

~
r; —rj j. The remaining spatial integrals can be simplified somewhat by referring the polar angle of r; to

r; ~, cos8;; &
——r; -r; ~, and the azimuthal angle to the plane defined by r; I and r; 2. The integrations over the n —2

azimuthal angles and the Euler angles which specify the orientation of r~ and r2 are then trivial, and give a factor
2.(2n. )". The integrations over the angles 8;; i can be replaced, finally, by integrations over the lengths r;; i, and we
find that K„(0,0, t) is given by

3/2 n

K„(0,0, t) = 2
4m(it +e)

Ntq

2

x f, dr„. . - f dr, V(r„). . . V(r, )

P +r P2+r
X dr„„ i

. . dr2i(r„+r„„ i+ . +ri)
j

ll~ 1j

Xexp[ m, (r„+—r„„,+ . +r, )'/4(it+e)] . (16)

Equation (16) gives K„(0,0, t } as a weighted average of V (r„).. . V (r, ) over the region with the r; and
r;;, &(t/me}'r~, i =1, . . . , n (This. is the region which can be sampled by the quarks in a random walk in time t.)
Successive terms in the Born series in Eq. (12) therefore differ in magnitude by a factor -t ( V) „where ( V), is an aver-
age of V(r) for r &(t/mz)'~, and the series will give a useful expansion of the full propagator for t( V), sufficiently
small. We conclude that Eqs. (12) and (16) give a short-time perturbation expansion for K(0,0, t)

When we substitute the series for K(0,0, t) in the expression for ( W ob,„„d) in Eq. (10), we obtain our corrected duali-
ty relation,

( IV trb „„d)=12m a e& me f dt e' f(t)[Kp(0 0 t)+Ki(0 0 t)+ ' ' ' ]

=( W at «)+12mae~ m&
. f dt e' 'f(t)K, (0,0,t)+. . . (17)

By the arguments above, we can make the correction terms in Eq. (17) small by making use of the short-time convergence
of the perturbation series, and choosing f(t} to be sharply peaked around t =0, that is, by using a broad, smooth smear-
ing function f(E E) in the co—nvolution in Eq. (10). We will use power-law potentials in the next section to illustrate
the short-time nature of the perturbation series, and explicitly calculate the corrections in Eq. (17).

C. Perturbation series for power-law potentials

General power-law potentials of the form

V(r) = Vp f dvp(v)(r/a)", —2 & v;„
min

have been used extensively in the analysis of quarkonium systems, and are flexible enough to be of broad interest. For ex-
ample, the popular Coulomb-plus-linear potential, ' the Martin potential V =A +Br",' and the logarithmic potential
considered by Quigg and Rosner' are all in this class. [In the last case, p(v}= —5'(v).] The short-time character of the
perturbation series for K(0,0, t) is also particularly clear for power-law potentials, so we will consider them in detail.

The nth-order term in the perturbation series is given for a power-law potential by
3/2

K„(0,0,t}=2"+'[—(it+e) V, ]" 4'(it +e)

(v, + . +v„)/2
x f dv„p(v„) . f dvip(vi)

mqa

x +xf dx~x~ ' f dxixi f d&g pg

x2+ —(x +x + . . +x&)2
X «2~(~. +X.. ~+ . . +~I)~ (19)

x2 —x

where we have introduced dimensionless variables x; = [me /4(it +e)]' r;. The factor [m~ /4m(it +e)] in this expres-
sion is just Kp(0, 0, t) [Eq. (7)]. The leading t dependence of K„(0,0, t) is clearly determined by the minimum power in the
potential V(r),
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K„(0,0, t)/Kp(0, 0, t) ~ t {20)

In the case of a single power, V= Vo(r/a)", K(0,0, t)/Ko(0, 0, t) is given by a power series in t'+"~ . From Eq. (19), we
can identify the nth term in the series for K with the nth power of tV((t/m&)'~ ), where (t/mq)'~ is the characteristic
distance discussed after Eq. (16).

It is straightforward to calculate K] and E2 for the general potential in Eq. (18). A simple calculation for K~ gives

v) /2

K) (0 0 t) = —Ko(0 0 t)(it +e) Vo f dv]p(v] )
it+@
mqa

v)
I 1+—

2
(21)

The calculation for E2 involves a triple integration on the spatial variables. Integrating first on x2~, we find that

K,(0,0,t) = K,(0,0,t)4[(it +e) Vo]'
' (v&+v2)/24(it+t ) cc oo v2 v) —4xx f dvpp(v~) f dv, p(v, ) f dx, f dx, x, 'x, '(e ' —e

mqa 0 p

—4(x
&
+x2)~), (22)

where x & is the greater of x],x2. The remaining integrals can be evaluated in terms of gamma and beta functions, with
the result

K,(0,0, t) = K,(0,0, t)[(it +e) V, ]'
' (vl+v2)/2it+a

X J dv2p(v2) J dv~p(v~) z
mqa

v)+ v2—I" 1+2 2

(+ 2+2 I ( (+1)l"( 2+1)
(v)+ 1)(vp+ 1) I (v(+ vp+2)

(23)

We will use the general results in Eqs. (21) and (23) later to discuss the physically interesting case of the Coulomb-
plus-linear potential. For the special case of the simple power laws V(r) = Vo(r/a)", p(v;) =5(v; —v), these results reduce
to

' v/2

E](0,0, t) = —Ep(0, 0, t)(it +e) Vp
—— I 1+—it+a v

mqa
(24)

, V

K,(0,0, t) =K,(O, D, t)[(it+e)V, ]' —,I (v+1)
mqa

1

v+1
I (v+1)

2I(2v+2)

We have not evaluated K3(0,0, t) for a general power-law potential. However, one of us [J.B.W. (Ref. 16)] has per-
formed the rather lengthy calculation for a single power with the result

' 3v/2 I (
3 v+ 3)

K, (0,0, t) = K,(0,0, t—)[(it +e)V, ]'
m, a' (»+4)(»+3)

r'(v+1)
I (3v+3)

4I (v+ l)I (2v+2) 2 1 3v+3, 1, 1

(v+1)1 (3v+3) (v+1)2 (2v+2)2 2v+3, 2v+3+ + 3F2 1 (26)

where 3F2 is a generalized hypergeometric function.

D. Examples: The oscillator, linear, logarithmic, and Coulomb propagators

It is interesting to examine the expansions of I( (0,0, t) more closely for some familiar cases, for some of which exact
results are known. For the oscillator potential V(r) =

~ marco r, Eqs. (7), (24), and (25) give the expansion [see Eq. (A4)
with reit]

(00 t)
4m(it +e)

' 3/2

(1+ et+ et+ )

in agreement with the expansion of the exact result for v=2 (Ref. 12):

K(0,0, t) =(moto/4rri sincot)3~ (28)

The expansion of K(O, D, t)/Ko(0, 0, t) converges in this case for
~
cot

~

&m.. It could also be obtained as in Ref. 3 using the
Wigner-Kirkwood expansion. "

For the linear potential V(r) =br, our expansion gives
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mq
K)inear(0~0~ t) =

44m(rt +e)

' 3/2

[1—, v—qr[A{it+e)]~ +—„[A(it+e)]3+ . . ], A, =(bi/m )'~ (29)

again in agreement with the exact result discussed in the Appendix [Eqs. {A10)and (A12)]. In this case, V(r) is not ana-
lytic at the origin in three-dimensional space, and the Wigner-Kirkwood expansion fails as noted in Ref. 3. The present
methods are clearly superior to those used there.

The logarithmic potential V= Voln(r/a) discussed by Quigg and Rosner' is a special case of Eq. (18) with
p(v) = —5'(v}. The approximate expansion of K(0,0, t) can be obtained from our general results in Eqs. (21) and (23) by
differentiating with respect to the independent indices v& and v2 and then setting both equal to zero. We find that

3/2

K),g{0,0, t) = mq

4~(it +e)
it+a1+—,(it +e) Vo y —ln
mqa

P

+ —,[(it +e) Vo], y —»1 2 (it +e)
mqa

2
5m+ —8.+. (30)

mq
Kcoui(0, 0, t) =

4~(it +e)
(31)

Finally, the expansion of K(0,0, t) for the Coulomb potential can be obtained by taking the limit v~ —& in Fqs. (24)
and (25}. The singularities in the I functions in Eq. (25) cancel, and we find that for V(r}= a/r, —

3/2

I 1+[ma mq(it+e)]'r + 6na—mq. (it+e)+. . .
I

.

This result agrees with the expansion of the exact Coulomb propagator derived in the Appendix,
' 3/2 ' n/22A Plq

(it +e)~ + g{n)
„~o I [(n —1)/2]

Plq

4m. (it +e)Kcou& {0,0, t) =

where g(n } is the Riemann g function.

E. Duality for simple power-law potentials

The duality relation in Eq. (17) can be restated conveniently in terms of the (convolution} average of K(O, O, E),

(K(O, O,E) ) = (K(E) ) .

Using this notation, and the result in Eq. (21), we find for a simple power-law potential V(r) = Vo(r/a) that

(32)

(K(E) ) = f dt e' 'f(t)Ko(0, 0, t) 1 (it +e)Vo——00 ~Pl Qq

' v/2
VI 1+—+
2

=«.{E})+«, (E))+

f(E' —E)=8(E' E)e " ', r) 0— (34)

(35)

With this choice of f, (K(E)) is proportional to the Eu-

The sizes of the correction terms (K i (E)), etc., depend on
both the potential and the choice of the function f(t), or
equivalently of the smearing function f(E' E) in Eq. —
(10}. Several choices for f have been used frequently in re-
cent work, e.g., the Gaussian smearing used by Barnett
et aL' and the inverse power moments and so-called ex-
ponential moments used in Ref. 7. The corrections were
investigated in Ref. 3 for Gaussian smearing and power
moments using our earlier methods. We will now illus-
trate the content of Eq. (33) using exponential moments,
thus connecting with the work of Shifman, Vainshtein,
and Zakharov which we will examine in detail in the fol-
lowing paper.

Exponential moments are defined by the smearing func-
tion

(33)

f

clidean or imaginary time propagator for the qq system,

(K(E)) =2~g ~ 1{„,(o)
~

'e

=2m.e+'K(0, 0, is) . —

This connection with Euclidean propagators was recog-
nized earlier by Novikov, Shifman, Vainshtein, and
Zakharov and by BeB and Bertlmann.

We can develop a perturbation expansion for
K{0,0, —iv} by iterating the Euclidean version of the in-
tegral equation for K, Eq. (9}, or equivalently and more
directly by evaluating the time integrals in Eq. (33}using
the Cauchy residue theorem. [This procedure is valid for
E &0. The general result follows by analytic continuation.
It is important in this calculation to know the branch of
the {it+e) 3r~+" +""r in Eq. (19), hence our retention
throughout of the e.] The result for the simple power po-
tential V{r)= Vo{r/a) is
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x(o,o, —i~) =
3/2

Vp
4m'

,
v/2

1+—+(&Vp)
1 I (v+ 1)I (v+1)

ping a2,
,
v+1 2I (2v+2)

This expansion was given to first order by Bell and
Bertlmann in their nonrelativistic study of the Shifman-
Vainshtein-Zakharov program. The method of derivation
used by Bell and Bertlmann is to apply a Borel transform
to the energy Green's function for the qq system. While
this technique appears natural in the field-theoretic con-
text considered by SVZ, in our view it obscures the simple
connection of the exponential moments to the convolution
averaging basic to duality.

The leading correction term in Eq. (37) has the magni-
tude

(K, (E) ) /(Ko(E) ) =K, (0,0, —ir)/Ko(0, 0, ir)—
v/2

'r v= —&Vp I 1+—
22

f7lqa

(38)
where we note that

F. The Coulomb-plus-linear potential

It is important to recognize that (for fixed Vp and a) the
series in Eq. (37) converges less rapidly for singular than

Ko(0,0, ir) =(m—q/4qrr)

More generally Eq. (38) gives a reasonable estimate of the
leading correction for any smooth smearing function
f(E' E) with a —width r in energy space. The condi-
tion that this correction be small then determines the
minimum allowable width for f (E' E). —

for nonsingular potentials. This becomes important for
potentials which combine more than one power of r. For
example, the Coulomb potential gives a series in powers of

, Eq. (31), while the linear potential gives a series in
H~, Eq. (29). The first-order corrections for the physical-
ly interesting Coulomb-plus-linear potential therefore
differ by a factor of ~, and it is quite possible for the
linear correction to be negligible while the Coulomb
correction is still significant.

This quite different behavior of the correction terms in
Eq. (37) for different powers is illustrated in Fig. 1, where
we have plotted the ratio K(0,0, ir)/—Ko(0,0, —ir) as a
function of the dimensionless variable

g~2/(2+ v) i 2 y —v/(v+2) '7

for the (attractive) linear and Coulomb potentials using
the exact results discussed in the Appendix, and also for
the Coulomb-plus-linear potential. The corrections are
dramatically different for the different potentials.

As we noted in Ref. 3, we can greatly improve the dual-
ity relation for the Coulomb-plus-linear potential by ex-
tracting the slowly convergent Coulomb series and treat-
ing it exactly. (The same technique can be used in princi-
ple for other singular potentials. ) Thus, using the results
of Eqs. (21) and (23) for V(r)= —a/r+br (and exponen-
tial smearing), we find that

(,K(E) ) =2m.e
4~&

3/2

[1+a(qrmqr) + 6 mamqr 2'(qr/mq) —br 2abd+O(r —)]

= &K,.„,(E))[I ,' (~/m, )'"br—'"—+,
' (~ 3)abd+O—(r'"—)],

where (Kc,„i(E)) sums the Coulomb terms only. In this
form, the correction to the leading Coulomb contribution
is of order ~, and is easily made small.

In terms of the cross sections, Eq. (41) and its generali-
zations state that

( W~ob, „„d) = ( W o.,h,„„„s,) +small corrections,

where o.,h,„„„g,is the cross section calculated including
only the singular short-range components of the interac-
tion (e.g. , the Coulomb components). This relation was
used by Barnett et al. ' in their tests of perturbative QCD
in e+e annihilation. Those authors compared a Gauss-
ian average of the physical cross section for
e+e ~hadrons with the same average of the free cross
section calculated including short-range gluonic correc-

tions. The effects of the (nonperturbative) confining in-
teraction are suppressed by the averaging, and the success
{or failure) of the comparison tests the calculated cross
section.

III. COMMENTS

In this work, we have used the connection between the
Fourier transform of the Feynman propagation function
at the origin and the nonrelativistic e+e annihilation
cross section to establish a (quantitative) duality relation
connecting convolution averages of the cross sections for
e+e ~(qq bound states) and e+e —+ (free qq pair).
The convolution averaging procedure allowed us to
transform the problem to one involving the short-time
behavior of the Feynman propagator K(0,0, t) which we
could investigate using the Born expansion for E. {Other
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2.5

2.0

l.5

function f(E' E—) in Eq. (10) to isolate the contribution
of a single state. This procedure leads to large corrections
in Eq. (17). They then attempt to obtain information
about the confining interaction of the energies of the
bound states by comparing the corrected expressions with
experiment. %'e will examine the limitations of this pro-
cedure in detail in the following paper, and will suggest
improvements based on our present results.
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APPENDIX

FIG. 1. Plots of the ratio K(0,0, —ir)/Ko(0, 0, —iv. ) of the
exact Euclidean propagator to the free Euclidean propagator for
power-law potentials V(r) = Vo(r/a)" as functions of the dimen-
sionless variable x = Vo ' + '(mqa )

" ' +"'~. The curves show
the very different rates at which the correction terms grow for
the linear potential (v=1), and the Coulomb potential (v= —1).
%'e also show the correction to second order for the realistic
Coulomb-plus-linear potential for o.=0.25, b =0.2 GeV, and
mq = 1.5 GeV, with x scaled according to the linear term (v= 1).

averaging procedures do not give such a simple method
for calculating the corrections to the duality relation. ) We
illustrated the short-time nature of the duality relation in
detail for the case of (simple or multiple) power-law poten-
tials, and presented a number of examples. We emphasize
the important conclusion that duality holds as usually ap-
plied if the smearing function used in the energy averaging
is sufficiently broad and smooth, so that the conjugate
time variable is small, and that the corrections are calcuI-
able for a given model of the interaction.

A very different and important use of duality was pro-
posed in the relativistic context by Shifman, Vainshtein,
and Zakharov. Those authors use a narrow smearing

We collect here some exact results on the Euclidean
propagators E(0,0, —ir) for the oscillator, linear, and
Coulomb potentials. These have been useful in checking
our expressions and investigating the rate of convergence
of the short-time perturbation series in Eq. (37) and the
transition to the exponential behavior at long times im-
plied by Eq. (36). The results for the linear and Coulomb
propagator are to our knowledge new.

K(0,0, —i~) = Plq CO

4m. sinhco~
J

We obtain a series expansion for this quantity by using the
Taylor series for sinhco~, then expanding the result using
the binomial and multinomial expansions. '

K(0,0, —i9.) =K0(0,0, i 9.) 1+—g cl(a)9.) '
1=1

(A2)

Harmonic-oscillator potential

The exact propagator for the oscillator potential
V(r)= 4 mqco r is well known and gives

' 3/2

Explicitly,

3
2

P?
1

' ' '
7?I

+ +?? 77k
1 I

n1+2n2+ + Ini ——I

rn!

(3!) 'n !(15!) 'n2! [(2l+1)!]'ni!
(A3)

K(0,0, —i~) =
4m&

3/2
1 2 19 4 631 6 1219 g 5723 10[ —
4 (&T) + 480 (Mr) —

120960 (MT) + 1935360 (Mr) —
24649600 (MV) + j

Linear potential Ai( —cz„)=0, n =1,2, . . . (A6)

The bound-state energies for an S-state qq pair confined
in the three-dimensional linear potential V (r }=br are
given by

The square of the bound-state wave function at the origin
is independent of n,

E„g——(b /m )'/ o.„,
where a„ is the nth zero of the Airy function,

(A5) {A7)

The exact Euclidean propagator for the linear potential is
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X X

contour, and find that

Ai( ~) ( ~)1/2

da 4o;

5 15

32( —a) 64m
+

1105
„/2+ .

, ~arg( —a)
~

&7r.
2048( —a)"/

(A12)

When this result is substituted in Eq. (A10), the integrals
on u can be evaluated using Hankel's representation for
the reciprocal of the I function,

+~X-X-X"X—~- ~-~
)
—s —ak~ («)'

2mi c' I (s)
(A13)

X(00, ir)=—

The result is the desired expansion of the Euclidean propa-
gator for the linear potential„

', 3/2

[1——,
' v ~(Xr)'"+ —,', (Xr)'

4m~

FIG. 2. (a) The contour of integration C in the exact expres-
sion for the Euclidean propagator for the linear potential, Eq.
(A10). The crosses denote poles of Ai'( —a)/Ai( —a) at the
zeros of the Airy function. (b) The expanded contour C' used in
the evaluation of the integral. %'e must take the overall scale of
the contour to Oo with 6&0 in order to use the asymptotic ex-
pansion of the integrand in Eq. (A12).

therefore given by

E(0,0, ir)= g—~
lij„s(0)

~
e

+ ~'8 (~r)' — 1 . (A14)

Coulomb potential

This result is probably exact despite our use of the asymp-
totic expansion of Ai( —o.) in the integral. Vainshtein
et al. have obtained the first terms in this expansion by a
somewhat different method, but their result contains some
errors as published.

where

mqb

4m.
an

—a A,s
e (A8) The expression for the Euclidean propagator for the

Coulomb potential V(r)= —a/r includes an integral over
the continuum as well as a sum over the discrete bound
states,

~=(~'/m, )"~ . (A9)

We can easily convert the sum in Eq. (AS) into a con-
tour integral:

~( .
)

~q& 1
d x, Ai'( —a)

4~ 2+i c Ai( —a)
Plq b —at~ df da e '— indi( —o, ),
4m 2mi c do!

(A10)

where the contour C encircles the zeros of Ai( —u) as
shown in Fig. 2(a), and —a=e ' a, 0&arga &2m.. If we
expand the contour outward to C' with

j arg( —a)
~

&m. —5 as shown in Fig. 2(b), we can use the
asymptotic expansion of the Airy function '

Ai(z) —— -z ' exp( ——,z )

X—X"

( —1)"I (3k + —, )xg
I (k+ —,

' )I"(k+1)(36z'~ )"

~argz
~
&~,

to calculate the logarithmic derivative in Eq. (A10) on the

FIG. 3. (a) The contour of integration C in the exact expres-
sion for the Euclidean propagator for the Coulomb potential,
Eq. (A19). The crosses denote the poles of the integrand at
x =1/n, n =1,2, . . . . (b) The modified contour C' used in

Eq (A20)
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K(0,0, i—r)= f dEp(E)
I y, (0) I'e

+ g I l(„s(0)
I

'e
n=1

Here p(E)=m~ / E'/ /4n is the usual density of states,
gz(0) is the continuum S-state wave function at the ori-
gin,

and

am&
3

2
A P?lq

n =1,2, . . .
4n

(A17)

(A 18)

1/2
It will be convenient to use a scaled energy E =Eoz,

Eo ——
~ a m&, in Eq. (A15). With this convention,

CX Ol
K(0,0, —ir)= — J dz e +2 g 3e16m o 1 —exp( 2~/—z ) „,n3

3 3
CK 77lq 1 —Eo'

dZ e
16rr & 1 —exp( —2m /~z )

(A19)

In the second line we have used the fact that the entire expression in square brackets can be written as a contour integral
on the contour C shown in Fig. 3(a). We can complete the contour as shown in Fig. 3(b) by adding and subtracting a seg-
ment below the real axis, and find that

CX Plq
K(0,0, —i~) =

16m.

1 OO 1 —Eovz
dZ e + dz e

1 —exp( 2vr/V z—) o 1 —exp(+2m/v z )
(A20)

The second integral can itself be related to K(0,0, —i~) by using the identity

dZ
1

e = dz 1—so~ 1
e

—Eors

1 —exp(2m. /V z ) o 1 —exp( —2m'/Mz )

1 oo —Eovz
dZ e

Eor o 1 —exp( —2m/v z )
(A21)

1 1 Eov /n 2

e + +2 3e
1 —exp(2m/vz ) Eo& „)n'

and the first equality in Eq. (A19). The combination of these results with Eq. (A20) gives the expression

A' 77lq
K(0,0, ir) = — f dz

32& C' (A22)

We can evaluate the contour integral in Eq. (A22) by expanding the contour so that
I
z

I
& 4, using the Bernoulli expan-

sion
r n

1 vz ~ ( —1) ~ 2m
I I

4
1 —exp( —2m. /vz ) 2~ „o n! " vz

and integrating term by term. This gives

(A23)

f 1
, dz

1 —exp( —2m/v z ) „o n! I [(n —1)/2]

«o&) " 2$(2k) (E )k —3/2

k=i &(k ——,)

where we have used the relations

1)„+i 2((2n )(2n )!

( 2 )2ll

(A24)

(A25)

to express the Bernoulli numbers Bq„ in terms of the Riemann g function.
We can convert the series in Eq. (A22) to a power series in r by expanding the exponentials and then summing on the

principle quantum number n, . The result is

1 Eo~/n' ~ 2$(2k + 1)

k=i

Combining Eqs. (A22), (A24), and (A26), we obtain as our final result the remarkably simple expression

(A26)
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a'ms (Eor)
X(00, t—'r) =

321r 2 rr

1 + 2((n) (» 3}/p

' 3/2
4~m/(n )

o I [(n —1)/2]
3/2

1/2I +21/rr(Eor) + — Eor+4V re(3)(Eor) ~ + (A27)

I
Ep =

4 cx flzq

where g(0) = ——,
' and

g(n) 1
lirn
n t I [(n —1)/2] 2

(A28)

This result holds also for the repulsive Coulomb potential if we insert an extra factor ( —1) corresponding to the re-
placement of a by —a. One of us (J.B.W.) obtained a particularly compact derivation of the latter result using the identi-
tyI6

1 } 0'+ I oo
—I dsa '1 (s)g(s)—I 2&l

in the second integral in Eq. (A20) (the integral for the repulsive Coulomb propagator), integrating over the energy vari-
able, and then evaluating the remaining integral by closing the contour in the left half plane.
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