Short-time perturbation theory and nonrelativistic duality

James B. Whitenton* and Bernice Durand[†]

Physics Department, University of Wisconsin-Madison, Madison, Wisconsin 53706

Loyal Durand

Theory Group, Fermi National Accelerator Laboratory, Batavia, Illinois 60510 and Physics Department, University of Wisconsin–Madison, Madison, Wisconsin 53706[‡] (Received 27 December 1982)

We give a simple proof of the nonrelativistic duality relation $\langle W^2 \sigma_{\text{bound}} \rangle \approx \langle W^2 \sigma_{\text{free}} \rangle$ for appropriate energy averages of the cross sections for $e^+e^- \rightarrow (q\bar{q}$ bound states) and $e^+e^- \rightarrow (free q\bar{q}$ pair), and calculate the corrections to the relation by relating $W^2\sigma$ to the Fourier transform of the Feynman propagation function and developing a short-time perturbation series for that function. We illustrate our results in detail for simple power-law potentials and potentials which involve combinations of powers.

I. INTRODUCTION

There is an assumed duality between the observed (bound-state) cross section for $e^+e^- \rightarrow$ (confined $q\bar{q}$ system) \rightarrow hadrons and the (free) cross section for $e^+e^- \rightarrow$ (free $q\bar{q}$ pair) calculated in perturbative QCD: if both cross sections are appropriately averaged over energy, the averages are approximately equal,

$$\langle W^2 \sigma_{\text{bound}} \rangle \approx \langle W^2 \sigma_{\text{free}} \rangle , \qquad (1)$$

where W is the total energy of the e^+e^- pair. This duality has been used extensively in the analysis of heavy-quark data.

Until recently, the nonrelativistic duality relation had been demonstrated to hold only in the JWKB or Thomas-Fermi approximations¹ or in numerical calculations in specific potential models.² The corrections to the relation were not known. In two earlier papers, we gave proofs of nonrelativistic duality for the single-channel³ and coupled-channel⁴ problems, and investigated the corrections to Eq. (1). (The corrections were also investigated by Pasupathy and Singh⁵ using an extension of the JWKB aproximation.) We subsequently extended the JWKB proof of duality to the relativistic Bethe-Salpeter problem and investigated the relativistic connection in detail.⁶

Our method of proof of the nonrelativistic results was based on a short-time expansion of the Feynman propagation function. (The possibility of using this method was noted by Bell and Pasupathy in Ref. 1.) As presented in Refs. 3 and 4, our method required that the $q\bar{q}$ potential be analytic in r^2 at the space origin. We have since extended our results to general potentials, and have used them to investigate the extent to which the Shifman-Vainshtein-Zakharov⁷ (SVZ) program of determining bound-state parameters from perturbation theory (as modeled by potential theory) can be improved by including higher-order effects. We report that work in this and the following⁸ paper.

In Sec. II A, we review the connection between the cross section for $e^+e^ \rightarrow$ hadrons in confining potential models and the Fourier transform of the Feynman propagation function, and use the result to give a precise definition of

the duality relation. In Sec. II B, we establish the series of corrections to the simple duality relation in Eq. (1) by developing the short-time Born series for the propagator. We illustrate our results on the short-time perturbation series for the case of power-law potentials in Sec. II C, give some examples in Sec. II D, and apply the results to the duality relations for the exponential moments of SVZ (Ref. 7) in Sec. II E. In Sec. II F, we consider the case of the Coulomb-plus-linear potential, and show how the duality relations can be improved by extracting Coulomb corrections and treating them exactly, as was discussed in Ref. 3. We conclude with some comments in Sec. III.

In the Appendix, we derive exact expansions for $K(0,0,-i\tau)$ [the Euclidean propagator $K(\vec{r}',\vec{r},-i\tau)$ evaluated at the origin $\vec{r}' = \vec{r} = 0$] for the harmonicoscillator, linear, and Coulomb potentials. This function determines the SVZ exponential moments of the nonrelativistic e^+e^- annihilation cross section. Our results for the linear and Coulomb propagators are to our knowledge new.

In the following paper,⁸ we use the results obtained here to study the nonrelativistic version of the SVZ method⁷ for determining the nature of the (relativistic) $q\bar{q}$ interaction and the energies of $q\bar{q}$ bound states from duality. Our work extends the earlier analysis of the SVZ method given by Bell and Bertlmann,⁹ and we propose some improve ments of the method.

II. SHORT-TIME PERTURBATION THEORY AND DUALITY

A. Duality and the Feynman propagator

Our derivation of the duality relation in Ref. 3 was based on two observations, first that the free and bound cross sections for $e^+e^- \rightarrow q\bar{q}$ can be expressed in terms of Fourier transforms of the corresponding Feynman propagators, and second that the two propagators are approximately equal at short times. We begin by reviewing and extending these results.

The nonrelativistic cross section for e^+e^- annihilation into a $q\bar{q}$ pair bound in a confining potential V(r) is given for three quark colors by

28 597

598

$$\sigma_{\text{bound}} = 24\pi^3 \alpha^2 e_q^2 m_q^{-2} W^{-2} \sum_n |\psi_{nS}(0)|^2 \delta(E - E_{nS}) .$$
(2)

Here α is the fine-structure constant, e_q is the quark charge in units of e, m_q is the quark mass, $W = 2m_q + E$ is the total energy in the center-of-mass system, and $\psi_{nS}(\vec{r})$ is the $q\bar{q}$ wave function for the *n*th S state. The sum in Eq. (2) is just the Fourier transform $\tilde{K}(0,0,E)$ of the Feynman propagator $K(\vec{r}',\vec{r},t)$ for the $q\bar{q}$ system in the confining potential, evaluated for zero-quark separation,

$$K(\vec{\mathbf{r}}',\vec{\mathbf{r}},t) = \sum_{nlm} \psi_{nlm}(\vec{\mathbf{r}}') e^{-iE_{nl}t} \psi_{nlm}^*(\vec{\mathbf{r}}) , \qquad (3)$$

$$\widetilde{K}(\vec{r}\,',\vec{r},E) = \int_{-\infty}^{\infty} dt \, e^{iEt} K(\vec{r}\,',\vec{r},t)$$
$$= 2\pi \sum_{nlm} \psi_{nlm}(\vec{r}\,') \psi_{nlm}^{*}(\vec{r}) \delta(E-E_{nl}) \,. \tag{4}$$

Since only S states contribute to \tilde{K} for $\vec{r}' = \vec{r} = 0$, the cross section in Eq. (2) is simply proportional to $\tilde{K}(0,0,E)$,

$$\sigma_{\text{bound}} = 12\pi^2 \alpha^2 e_q^2 m_q^{-2} W^{-2} \widetilde{K}(0,0,E) .$$
 (5)

Similar results hold for the free cross section,

$$\sigma_{\rm free} = 6\pi \alpha^2 e_q^{2} v W^{-2} | \psi_E(0) |^2$$

= $12\pi^2 \alpha^2 e_q^{2} m_q^{-2} W^{-2} \widetilde{K}_0(0,0,E) ,$ (6)

where $K_0(\vec{r}', \vec{r}, t)$ is the free propagator,

$$K_{0}(\vec{\mathbf{r}}',\vec{\mathbf{r}},t) = \left(\frac{m_{q}}{4\pi(it+\epsilon)}\right)^{3/2} \times \exp\left[-\frac{m_{q}}{4}\frac{(\vec{\mathbf{r}}'-\vec{\mathbf{r}})^{2}}{it+\epsilon}\right], \quad (7)$$

 \widetilde{K}_0 is its Fourier transform,

$$\widetilde{K}_{0}(0,0,E) = m_{q}^{2} v / 2\pi , \qquad (8)$$

and $v = (E/m_q)^{1/2}$ is the velocity of either quark in the center-of-mass system.

Although the energy dependence of the cross sections σ_{bound} and σ_{free} [or equivalently, of the functions $\tilde{K}(0,0,E)$ and $\tilde{K}_0(0,0,E)$] is drastically different, the propagators K(0,0,t) and $K_0(0,0,t)$ are nearly equal at short times. In particular, in the presence of a potential V(r), K is related to K_0 by the integral equation

$$K(\vec{r}',\vec{r},t) = K_0(\vec{r}',\vec{r},t) - i \int_0^t dt' \int d^3r'' K_0(\vec{r}',\vec{r}'',t-t') \times V(\vec{r}'') K(\vec{r}'',\vec{r},t') .$$
(0)

The integral term vanishes relative to K_0 as $t \rightarrow 0$ for potentials V(r) less singular than r^{-2} at the origin. To make use of this information and obtain a duality relation connecting σ_{bound} and σ_{freer} we average the cross sections over a range of energies by convoluting $W^2\sigma$ with a smooth function f(E'-E),¹⁰ and use Eqs. (5) and (6) and the convolution theorem for Fourier transforms to write the results in terms of K(0,0,t):

$$\langle W^2 \sigma \rangle \equiv \int_{-\infty}^{\infty} dE' f(E' - E) W^2 \sigma(E')$$

= $12\pi^2 \alpha^2 e_q^2 m_q^{-2} \int_{-\infty}^{\infty} dE' f(E' - E) \widetilde{K}(0, 0, E')$
= $12\pi^2 \alpha^2 e_q^2 m_q^{-2} \int_{-\infty}^{\infty} dt \, \widetilde{f}(t) K(0, 0, t) e^{iEt} .$ (10)

If f(E' - E) is chosen so that its Fourier transform $\tilde{f}(t)$ is sharply peaked around t = 0, we may use the approximate equality of K and K_0 at short times to obtain the simple duality relation in Eq. (1). This relation corresponds physically to our expectation that a $q\bar{q}$ pair produced at r = 0 is unaffected by the potential for a short period of time, i.e., until the quarks encounter the confining potential barrier. We will next make this assertion more precise, and obtain a corrected version of Eq. (1).

B. Short-time perturbation expansion

In Ref. 3, we estimated the corrections to the duality relation by using the operator expression for the full propagator $K(\vec{r}', \vec{r}, t)$,

$$K(\vec{\mathbf{r}}',\vec{\mathbf{r}},t) = e^{-iH(\vec{\mathbf{r}}')t}\delta(\vec{\mathbf{r}}'-\vec{\mathbf{r}}), \qquad (11)$$

 $H(\vec{r}') = -\nabla_{\vec{r}'}^2/m_q + V(r')$, and making a (Wigner-Kirkwood¹¹) expansion in terms of derivatives of the potential evaluated at the origin. This procedure fails for potentials which are singular or have singular derivatives at the origin, and we have since found it much more convenient to use the integral equation in Eq. (9) directly, and solve for K by iteration. This gives the Born series

$$K(0,0,t) = K_0(0,0,t) + K_1(0,0,t) + K_2(0,0,t) + \cdots$$
(12)

with

$$K_{n}(0,0,t) = (-i)^{n} \int_{0}^{t} dt_{n} \int_{0}^{t_{n}} dt_{n-1} \cdots \int_{0}^{t_{2}} dt_{1} \int d^{3}r_{n} \cdots \int d^{3}r_{1}K_{0}(0,\vec{r}_{n},t-t_{n})V(r_{n})K_{0}(\vec{r}_{n},\vec{r}_{n-1},t_{n}-t_{n-1}) \times V(r_{n-1})\cdots V(r_{1})K_{0}(\vec{r}_{1},0,t_{1}) .$$
(13)

It is straightforward to perform the time integrations in Eq. (13) recursively using the explicit form of K_0 in Eq. (7) and the identity¹²

$$\int_{0}^{t} dt' \frac{1}{\left[(t-t')t'\right]^{3/2}} e^{-x^{2}/(t-t')-x'^{2}/t'} = \frac{\sqrt{\pi}}{t^{3/2}} \frac{x+x'}{xx'} e^{-(x+x')^{2}/t} .$$
(14)

We find that

$$K_{n}(0,0,t) = \left[\frac{m_{q}}{4\pi(it+\epsilon)}\right]^{3/2} \left[-\frac{m_{q}}{4\pi}\right]^{n} \int d^{3}r_{n} \cdots \int d^{3}r_{1}V(r_{n}) \cdots V(r_{1}) \frac{r_{n}+r_{n,n-1}+\cdots+r_{21}+r_{1}}{r_{n}r_{n,n-1}\cdots+r_{21}r_{1}} \\ \times \exp[-m_{q}(r_{n}+r_{n,n-1}+\cdots+r_{1})^{2}/4(it+\epsilon)], \quad (15)$$

where $r_{ij} = |\vec{r}_i - \vec{r}_j|$. The remaining spatial integrals can be simplified somewhat by referring the polar angle of \vec{r}_i to \vec{r}_{i-1} , $\cos\theta_{i,i-1} = \hat{r}_i \cdot \hat{r}_{i-1}$, and the azimuthal angle to the plane defined by \vec{r}_{i-1} and \vec{r}_{i-2} . The integrations over the n-2 azimuthal angles and the Euler angles which specify the orientation of \vec{r}_1 and \vec{r}_2 are then trivial, and give a factor $2 \cdot (2\pi)^n$. The integrations over the angles $\theta_{i,i-1}$ can be replaced, finally, by integrations over the lengths $r_{i,i-1}$, and we find that $K_n(0,0,t)$ is given by

$$K_{n}(0,0,t) = 2 \left[\frac{m_{q}}{4\pi(it+\epsilon)} \right]^{3/2} \left[-\frac{m_{q}}{2} \right]^{n}$$

$$\times \int_{0}^{\infty} dr_{n} \cdots \int_{0}^{\infty} dr_{1} V(r_{n}) \cdots V(r_{1})$$

$$\times \int_{|r_{n}-r_{n-1}|}^{r_{n}+r_{n-1}} dr_{n,n-1} \cdots \int_{|r_{2}-r_{1}|}^{r_{2}+r_{1}} dr_{21}(r_{n}+r_{n,n-1}+\cdots+r_{1})$$

 $\times \exp[-m_q(r_n + r_{n,n-1} + \cdots + r_1)^2/4(it + \epsilon)]$. (16)

Equation (16) gives $K_n(0,0,t)$ as a weighted average of $V(r_n) \cdots V(r_1)$ over the region with the r_i and $r_{i,i-1} \leq (t/m_q)^{1/2}$, $i = 1, \ldots, n$. (This is the region which can be sampled by the quarks in a random walk in time t.) Successive terms in the Born series in Eq. (12) therefore differ in magnitude by a factor $\sim t \langle V \rangle_t$, where $\langle V \rangle_t$ is an average of V(r) for $r \leq (t/m_q)^{1/2}$, and the series will give a useful expansion of the full propagator for $t \langle \overline{V} \rangle_t$ sufficiently small. We conclude that Eqs. (12) and (16) give a short-time perturbation expansion for K(0,0,t).

When we substitute the series for K(0,0,t) in the expression for $\langle W^2 \sigma_{\text{bound}} \rangle$ in Eq. (10), we obtain our corrected duality relation,

$$\langle W^{2}\sigma_{\text{bound}} \rangle = 12\pi^{2}\alpha^{2}e_{q}^{2}m_{q}^{-2}\int_{-\infty}^{\infty} dt \ e^{iEt}\tilde{f}(t)[K_{0}(0,0,t) + K_{1}(0,0,t) + \cdots]$$

$$= \langle W^{2}\sigma_{\text{free}} \rangle + 12\pi^{2}\alpha^{2}e_{q}^{2}m_{q}^{-2}\int_{-\infty}^{\infty} dt \ e^{iEt}\tilde{f}(t)K_{1}(0,0,t) + \cdots .$$

$$(17)$$

By the arguments above, we can make the correction terms in Eq. (17) small by making use of the short-time convergence of the perturbation series, and choosing $\tilde{f}(t)$ to be sharply peaked around t=0, that is, by using a broad, smooth smearing function f(E'-E) in the convolution in Eq. (10). We will use power-law potentials in the next section to illustrate the short-time nature of the perturbation series, and explicitly calculate the corrections in Eq. (17).

C. Perturbation series for power-law potentials

General power-law potentials of the form

$$V(r) = V_0 \int_{\nu_{\min}}^{\nu_{\max}} d\nu \rho(\nu) (r/a)^{\nu}, \quad -2 < \nu_{\min}$$
(18)

have been used extensively in the analysis of quarkonium systems, and are flexible enough to be of broad interest. For example, the popular Coulomb-plus-linear potential,¹³ the Martin potential $V = A + Br^{\nu,14}$ and the logarithmic potential considered by Quigg and Rosner¹⁵ are all in this class. [In the last case, $\rho(\nu) = -\delta'(\nu)$.] The short-time character of the perturbation series for K(0,0,t) is also particularly clear for power-law potentials, so we will consider them in detail.

The nth-order term in the perturbation series is given for a power-law potential by

$$K_{n}(0,0,t) = 2^{n+1} \left[-(it+\epsilon)V_{0} \right]^{n} \left[\frac{m_{q}}{4\pi(it+\epsilon)} \right]^{3/2} \\ \times \int dv_{n}\rho(v_{n})\cdots \int dv_{1}\rho(v_{1}) \left[\frac{4(it+\epsilon)}{m_{q}a^{2}} \right]^{(v_{1}+\cdots+v_{n})/2} \\ \times \int_{0}^{\infty} dx_{n}x_{n}^{v_{n}}\cdots \int_{0}^{\infty} dx_{1}x_{1}^{v_{1}} \int_{|x_{n}-x_{n-1}|}^{x_{n}+x_{n-1}} dx_{n,n-1}\cdots \\ \times \int_{|x_{2}-x_{1}|}^{x_{2}+x_{1}} dx_{21}(x_{n}+x_{n,n-1}+\cdots+x_{1})e^{-(x_{n}+x_{n,n-1}+\cdots+x_{1})^{2}},$$
(19)

where we have introduced dimensionless variables $\vec{x}_i = [m_q/4(it+\epsilon)]^{1/2}\vec{r}_i$. The factor $[m_q/4\pi(it+\epsilon)]^{3/2}$ in this expression is just $K_0(0,0,t)$ [Eq. (7)]. The leading t dependence of $K_n(0,0,t)$ is clearly determined by the minimum power in the potential V(r),

$$K_n(0,0,t)/K_0(0,0,t) \propto t^{n(1+v_{\min}/2)}$$
.

In the case of a single power, $V = V_0(r/a)^{\nu}$, $K(0,0,t)/K_0(0,0,t)$ is given by a power series in $t^{1+\nu/2}$. From Eq. (19), we can identify the *n*th term in the series for K with the *n*th power of $tV((t/m_q)^{1/2})$, where $(t/m_q)^{1/2}$ is the characteristic distance discussed after Eq. (16).

It is straightforward to calculate K_1 and K_2 for the general potential in Eq. (18). A simple calculation for K_1 gives

$$K_{1}(0,0,t) = -K_{0}(0,0,t)(it+\epsilon)V_{0} \int dv_{1}\rho(v_{1}) \left[\frac{it+\epsilon}{m_{g}a^{2}}\right]^{v_{1}/2} \Gamma\left[1+\frac{v_{1}}{2}\right].$$
(21)

The calculation for K_2 involves a triple integration on the spatial variables. Integrating first on x_{21} , we find that

$$K_{2}(0,0,t) = K_{0}(0,0,t)4[(it+\epsilon)V_{0}]^{2} \times \int dv_{2}\rho(v_{2}) \int dv_{1}\rho(v_{1}) \left[\frac{4(it+\epsilon)}{m_{q}a^{2}}\right]^{(\nu_{1}+\nu_{2})/2} \int_{0}^{\infty} dx_{2} \int_{0}^{\infty} dx_{1}x_{2}^{\nu_{2}}x_{1}^{\nu_{1}}(e^{-4x_{2}})^{2} - e^{-4(x_{1}+x_{2})^{2}}), \quad (22)$$

where $x_{>}$ is the greater of x_{1}, x_{2} . The remaining integrals can be evaluated in terms of gamma and beta functions, with the result

$$K_{2}(0,0,t) = K_{0}(0,0,t) [(it+\epsilon)V_{0}]^{2} \\ \times \int dv_{2}\rho(v_{2}) \int dv_{1}\rho(v_{1}) \left[\frac{it+\epsilon}{m_{q}a^{2}}\right]^{(v_{1}+v_{2})/2} \frac{1}{2}\Gamma\left[1+\frac{v_{1}+v_{2}}{2}\right] \left[\frac{v_{1}+v_{2}+2}{(v_{1}+1)(v_{2}+1)}-\frac{\Gamma(v_{1}+1)\Gamma(v_{2}+1)}{\Gamma(v_{1}+v_{2}+2)}\right].$$
(23)

We will use the general results in Eqs. (21) and (23) later to discuss the physically interesting case of the Coulombplus-linear potential. For the special case of the simple power laws $V(r) = V_0(r/a)^{\nu}$, $\rho(\nu_i) = \delta(\nu_i - \nu)$, these results reduce to

$$K_1(0,0,t) = -K_0(0,0,t)(it+\epsilon)V_0\left(\frac{it+\epsilon}{m_q a^2}\right)^{\nu/2} \Gamma\left(1+\frac{\nu}{2}\right)$$
(24)

and

$$K_{2}(0,0,t) = K_{0}(0,0,t) [(it+\epsilon)V_{0}]^{2} \left[\frac{it+\epsilon}{m_{q}a^{2}} \right]^{\nu} \Gamma(\nu+1) \left[\frac{1}{\nu+1} - \frac{\Gamma^{2}(\nu+1)}{2\Gamma(2\nu+2)} \right].$$
(25)

We have not evaluated $K_3(0,0,t)$ for a general power-law potential. However, one of us [J.B.W. (Ref. 16)] has performed the rather lengthy calculation for a single power with the result

$$K_{3}(0,0,t) = -K_{0}(0,0,t) [(it+\epsilon)V_{0}]^{3} \left[\frac{it+\epsilon}{m_{g}a^{2}} \right]^{3\nu/2} \frac{\Gamma(\frac{3}{2}\nu+3)}{(3\nu+4)(3\nu+3)} \times \left[\frac{\Gamma^{3}(\nu+1)}{\Gamma(3\nu+3)} - \frac{4\Gamma(\nu+1)\Gamma(2\nu+2)}{(\nu+1)\Gamma(3\nu+3)} + \frac{2}{(\nu+1)^{2}} + \frac{1}{(2\nu+2)^{2}} {}_{3}F_{2} \left[\frac{3\nu+3}{2\nu+3,2\nu+3} \left| 1 \right| \right] \right],$$
(26)

where ${}_{3}F_{2}$ is a generalized hypergeometric function.

D. Examples: The oscillator, linear, logarithmic, and Coulomb propagators

It is interesting to examine the expansions of K(0,0,t) more closely for some familiar cases, for some of which exact results are known. For the oscillator potential $V(r) = \frac{1}{4}m_q\omega^2 r^2$, Eqs. (7), (24), and (25) give the expansion [see Eq. (A4) with $\tau \rightarrow it$]

$$K_{\rm osc}(0,0,t) = \left(\frac{m_q}{4\pi(it+\epsilon)}\right)^{3/2} \left(1 + \frac{1}{4}\omega^2 t^2 + \frac{19}{480}\omega^4 t^4 + \cdots\right),$$
(27)

in agreement with the expansion of the exact result for v=2 (Ref. 12):

$$K(0,0,t) = (m_g \omega / 4\pi i \sin \omega t)^{3/2} .$$
⁽²⁸⁾

The expansion of $K(0,0,t)/K_0(0,0,t)$ converges in this case for $|\omega t| < \pi$. It could also be obtained as in Ref. 3 using the Wigner-Kirkwood expansion.¹¹

For the linear potential V(r) = br, our expansion gives

(20)

SHORT-TIME PERTURBATION THEORY AND

$$K_{\text{linear}}(0,0,t) = \left[\frac{m_q}{4\pi(it+\epsilon)}\right]^{3/2} \left\{1 - \frac{1}{2}\sqrt{\pi} [\lambda(it+\epsilon)]^{3/2} + \frac{5}{12} [\lambda(it+\epsilon)]^3 + \cdots\right\}, \quad \lambda = (b^2/m_q)^{1/3}, \quad (29)$$

again in agreement with the exact result discussed in the Appendix [Eqs. (A10) and (A12)]. In this case, V(r) is not analytic at the origin in three-dimensional space, and the Wigner-Kirkwood expansion fails as noted in Ref. 3. The present methods are clearly superior to those used there.

The logarithmic potential $V = V_0 \ln(r/a)$ discussed by Quigg and Rosner¹⁵ is a special case of Eq. (18) with $\rho(v) = -\delta'(v)$. The approximate expansion of K(0,0,t) can be obtained from our general results in Eqs. (21) and (23) by differentiating with respect to the independent indices v_1 and v_2 and then setting both equal to zero. We find that

$$K_{\log}(0,0,t) = \left[\frac{m_q}{4\pi(it+\epsilon)}\right]^{3/2} \left[1 + \frac{1}{2}(it+\epsilon)V_0 \left[\gamma - \ln\left(\frac{it+\epsilon}{m_q a^2}\right)\right] + \frac{1}{8}\left[(it+\epsilon)V_0\right]^2 \left\{\left[\gamma - \ln\left(\frac{(it+\epsilon)}{m_q a^2}\right)\right]^2 + \frac{5\pi^2}{6} - 8\right] + \cdots\right].$$
(30)

Finally, the expansion of K(0,0,t) for the Coulomb potential can be obtained by taking the limit $\nu \rightarrow -1$ in Eqs. (24) and (25). The singularities in the Γ functions in Eq. (25) cancel, and we find that for $V(r) = -\alpha/r$,

$$K_{\text{Coul}}(0,0,t) = \left[\frac{m_q}{4\pi(it+\epsilon)}\right]^{3/2} \left\{1 + [\pi\alpha^2 m_q(it+\epsilon)]^{1/2} + \frac{1}{6}\pi^2\alpha^2 m_q(it+\epsilon) + \cdots\right\}.$$
(31)

This result agrees with the expansion of the exact Coulomb propagator derived in the Appendix,

$$K_{\text{Coul}}(0,0,t) = \left[\frac{m_q}{4\pi(it+\epsilon)}\right]^{3/2} 4\sqrt{\pi} \sum_{n=0}^{\infty} \frac{\zeta(n)}{\Gamma[(n-1)/2]} \left[\frac{\alpha^2 m_q}{4}(it+\epsilon)\right]^{n/2},\tag{32}$$

where $\zeta(n)$ is the Riemann ζ function.

E. Duality for simple power-law potentials

The duality relation in Eq. (17) can be restated conveniently in terms of the (convolution) average of $\tilde{K}(0,0,E)$,

 $\langle \widetilde{K}(0,0,E) \rangle \equiv \langle \widetilde{K}(E) \rangle$.

Using this notation, and the result in Eq. (21), we find for a simple power-law potential $V(r) = V_0(r/a)^{\nu}$ that

$$\langle \tilde{K}(E) \rangle = \int_{-\infty}^{\infty} dt \, e^{iEt} \tilde{f}(t) K_0(0,0,t) \left[1 - (it+\epsilon) V_0 \left[\frac{it+\epsilon}{m_g a^2} \right]^{\nu/2} \Gamma \left[1 + \frac{\nu}{2} \right] + \cdots \right]$$
$$= \langle \tilde{K}_0(E) \rangle + \langle \tilde{K}_1(E) \rangle + \cdots$$
(33)

The sizes of the correction terms $\langle \tilde{K}_1(E) \rangle$, etc., depend on both the potential and the choice of the function $\tilde{f}(t)$, or equivalently of the smearing function f(E'-E) in Eq. (10). Several choices for f have been used frequently in recent work, e.g., the Gaussian smearing used by Barnett *et al.*¹⁷ and the inverse power moments and so-called exponential moments used in Ref. 7. The corrections were investigated in Ref. 3 for Gaussian smearing and power moments using our earlier methods. We will now illustrate the content of Eq. (33) using exponential moments, thus connecting with the work of Shifman, Vainshtein, and Zakharov⁷ which we will examine in detail in the following paper.⁸

Exponential moments are defined by the smearing function

$$f(E'-E) = \theta(E'-E)e^{-\tau(E'-E)}, \ \tau > 0$$
(34)

$$\tilde{f}(t) = \frac{1}{\tau - it} . \tag{35}$$

With this choice of f, $\langle \tilde{K}(E) \rangle$ is proportional to the Eu-

clidean or imaginary time propagator for the $q\bar{q}$ system,

$$\langle \widetilde{K}(E) \rangle = 2\pi \sum_{n} |\psi_{nS}(0)|^2 e^{-(E_{nS}-E)\tau}$$
$$= 2\pi e^{E\tau} K(0,0,-i\tau) . \qquad (36)$$

This connection with Euclidean propagators was recognized earlier by Novikov, Shifman, Vainshtein, and Zakharov⁷ and by Bell and Bertlmann.⁹

We can develop a perturbation expansion for $K(0,0,-i\tau)$ by iterating the Euclidean version of the integral equation for K, Eq. (9), or equivalently and more directly by evaluating the time integrals in Eq. (33) using the Cauchy residue theorem. [This procedure is valid for E < 0. The general result follows by analytic continuation. It is important in this calculation to know the branch of the $(it + \epsilon)^{-3/2 + n + n\nu/2}$ in Eq. (19), hence our retention throughout of the ϵ .] The result for the simple power potential $V(r) = V_0(r/a)^{\nu}$ is

<u>28</u>

$$K(0,0,-i\tau) = \left[\frac{m_q}{4\pi\tau}\right]^{3/2} \left\{1 - \tau V_0 \left[\frac{\tau}{m_q a^2}\right]^{\nu/2} \Gamma \left[1 + \frac{\nu}{2}\right] + (\tau V_0)^2 \left[\frac{\tau}{m_q a^2}\right]^{\nu} \Gamma(\nu+1) \left[\frac{1}{\nu+1} - \frac{\Gamma^2(\nu+1)}{2\Gamma(2\nu+2)}\right] + \cdots \right\}.$$
(37)

This expansion was given to first order by Bell and Bertlmann⁹ in their nonrelativistic study of the Shifman-Vainshtein-Zakharov⁷ program. The method of derivation used by Bell and Bertlmann is to apply a Borel transform to the energy Green's function for the $q\bar{q}$ system. While this technique appears natural in the field-theoretic context considered by SVZ, in our view it obscures the simple connection of the exponential moments to the convolution averaging basic to duality.

The leading correction term in Eq. (37) has the magnitude

$$\langle \tilde{K}_{1}(E) \rangle / \langle \tilde{K}_{0}(E) \rangle = K_{1}(0,0,-i\tau)/K_{0}(0,0,-i\tau)$$
$$= -\tau V_{0} \left[\frac{\tau}{m_{q}a^{2}} \right]^{\nu/2} \Gamma \left[1 + \frac{\nu}{2} \right],$$
(38)

where we note that

$$K_0(0,0,-i\tau) = (m_a/4\pi\tau)^{3/2} . \tag{39}$$

More generally Eq. (38) gives a reasonable estimate of the leading correction for any smooth smearing function f(E' - E) with a width τ^{-1} in energy space. The condition that this correction be small then determines the minimum allowable width for f(E' - E).

F. The Coulomb-plus-linear potential

It is important to recognize that (for fixed V_0 and a) the series in Eq. (37) converges less rapidly for singular than

for nonsingular potentials. This becomes important for potentials which combine more than one power of r. For example, the Coulomb potential gives a series in powers of $\tau^{1/2}$, Eq. (31), while the linear potential gives a series in $\tau^{3/2}$, Eq. (29). The first-order corrections for the physically interesting Coulomb-plus-linear potential therefore differ by a factor of τ , and it is quite possible for the linear correction to be negligible while the Coulomb correction is still significant.

This quite different behavior of the correction terms in Eq. (37) for different powers is illustrated in Fig. 1, where we have plotted the ratio $K(0,0, -i\tau)/K_0(0,0, -i\tau)$ as a function of the dimensionless variable

$$x = V_0^{2/(2+\nu)} (m_q a^2)^{-\nu/(\nu+2)} \tau$$
(40)

for the (attractive) linear and Coulomb potentials using the exact results discussed in the Appendix, and also for the Coulomb-plus-linear potential. The corrections are dramatically different for the different potentials.

As we noted in Ref. 3, we can greatly improve the duality relation for the Coulomb-plus-linear potential by extracting the slowly convergent Coulomb series and treating it exactly. (The same technique can be used in principle for other singular potentials.) Thus, using the results of Eqs. (21) and (23) for $V(r) = -\alpha/r + br$ (and exponential smearing), we find that

$$\langle \tilde{K}(E) \rangle = 2\pi e^{E\tau} \left[\frac{m_q}{4\pi\tau} \right]^{3/2} \left[1 + \alpha (\pi m_q \tau)^{1/2} + \frac{1}{6} \pi^2 \alpha^2 m_q \tau^{3/2} - \frac{1}{2} (\pi/m_q)^{1/2} b \tau^{3/2} - \frac{3}{2} \alpha b \tau^2 + O(\tau^{5/2}) \right]$$

$$= \langle \tilde{K}_{\text{Coul}}(E) \rangle \left[1 - \frac{1}{2} (\pi/m_q)^{1/2} b \tau^{3/2} + \frac{1}{2} (\pi - 3) \alpha b \tau^2 + O(\tau^{5/2}) \right],$$

$$(41)$$

where $\langle \tilde{K}_{Coul}(E) \rangle$ sums the Coulomb terms only. In this form, the correction to the leading Coulomb contribution is of order $\tau^{3/2}$, and is easily made small.

In terms of the cross sections, Eq. (41) and its generalizations state that $^{3}\,$

$$\langle W^2 \sigma_{\text{bound}} \rangle = \langle W^2 \sigma_{\text{short range}} \rangle + \text{small corrections} ,$$
(42)

where $\sigma_{\text{short range}}$ is the cross section calculated including only the singular short-range components of the interaction (e.g., the Coulomb components). This relation was used by Barnett *et al.*¹⁷ in their tests of perturbative QCD in e^+e^- annihilation. Those authors compared a Gaussian average of the physical cross section for e^+e^- hadrons with the same average of the free cross section calculated including short-range gluonic corrections. The effects of the (nonperturbative) confining interaction are suppressed by the averaging, and the success (or failure) of the comparison tests the calculated cross section.

III. COMMENTS

In this work, we have used the connection between the Fourier transform of the Feynman propagation function at the origin and the nonrelativistic e^+e^- annihilation cross section to establish a (quantitative) duality relation connecting convolution averages of the cross sections for $e^+e^- \rightarrow (q\bar{q})$ bound states) and $e^+e^- \rightarrow (free q\bar{q})$ pair). The convolution averaging procedure allowed us to transform the problem to one involving the short-time behavior of the Feynman propagator K(0,0,t) which we could investigate using the Born expansion for K. (Other

FIG. 1. Plots of the ratio $K(0,0,-i\tau)/K_0(0,0,-i\tau)$ of the exact Euclidean propagator to the free Euclidean propagator for power-law potentials $V(r) = V_0(r/a)^{\nu}$ as functions of the dimensionless variable $x = V_0^{2/(2+\nu)}(m_q a^2)^{-\nu/(2+\nu)}\tau$. The curves show the very different rates at which the correction terms grow for the linear potential (ν =1), and the Coulomb potential (ν =-1). We also show the correction to second order for the realistic Coulomb-plus-linear potential for α =0.25, b=0.2 GeV², and m_q =1.5 GeV, with x scaled according to the linear term (ν =1).

averaging procedures do not give such a simple method for calculating the corrections to the duality relation.) We illustrated the short-time nature of the duality relation in detail for the case of (simple or multiple) power-law potentials, and presented a number of examples. We emphasize the important conclusion that duality holds as usually applied if the smearing function used in the energy averaging is sufficiently broad and smooth, so that the conjugate time variable is small, and that the corrections are *calculable* for a given model of the interaction.

A very different and important use of duality was proposed in the relativistic context by Shifman, Vainshtein, and Zakharov.⁷ Those authors use a *narrow* smearing function f(E'-E) in Eq. (10) to isolate the contribution of a single state. This procedure leads to *large* corrections in Eq. (17). They then attempt to obtain information about the confining interaction of the energies of the bound states by comparing the corrected expressions with experiment. We will examine the limitations of this procedure in detail in the following paper,⁸ and will suggest improvements based on our present results.

ACKNOWLEDGMENT

This research was supported in part by the U. S. Department of Energy under Contract No. DE-AC02-76ER00881, and in part by the University of Wisconsin Graduate School with funds granted by the Wisconsin Alumni Research Foundation.

APPENDIX

We collect here some exact results on the Euclidean propagators $K(0,0,-i\tau)$ for the oscillator, linear, and Coulomb potentials. These have been useful in checking our expressions and investigating the rate of convergence of the short-time perturbation series in Eq. (37) and the transition to the exponential behavior at long times implied by Eq. (36). The results for the linear and Coulomb propagator are to our knowledge new.

Harmonic-oscillator potential

The exact propagator for the oscillator potential $V(r) = \frac{1}{4}m_q\omega^2 r^2$ is well known¹⁸ and gives

$$K(0,0,-i\tau) = \left[\frac{m_q\omega}{4\pi\sinh\omega\tau}\right]^{3/2}.$$
 (A1)

We obtain a series expansion for this quantity by using the Taylor series for $\sinh\omega\tau$, then expanding the result using the binomial and multinomial expansions.¹⁹

$$K(0,0,-i\tau) = K_0(0,0,-i\tau) \left[1 + \sum_{l=1}^{\infty} c_l(\omega\tau)^{2l} \right], \quad (A2)$$

where

$$c_{l} = \sum_{m=1}^{l} {\binom{-\frac{3}{2}}{m}} \sum_{\substack{n_{1} \cdots n_{l} \\ n_{1} + \cdots + n_{l} = m \\ n_{1} + 2n_{2} + \cdots + ln_{l} = l}} \frac{m!}{(3!)^{n_{1}} n_{1}! (5!)^{n_{2}} n_{2}! \cdots [(2l+1)!]^{n_{l}} n_{l}!}$$
(A3)

Explicitly,

$$K(0,0,-i\tau) = \left[\frac{m_q}{4\pi\tau}\right]^{3/2} \left[1 - \frac{1}{4}(\omega\tau)^2 + \frac{19}{480}(\omega\tau)^4 - \frac{631}{120960}(\omega\tau)^6 + \frac{1219}{1935360}(\omega\tau)^8 - \frac{5723}{74\,649\,600}(\omega\tau)^{10} + \cdots\right].$$
 (A4)

Linear potential

The bound-state energies for an S-state $q\bar{q}$ pair confined in the three-dimensional linear potential V(r) = br are given by

$$E_{nS} = (b^2/m_a)^{1/3} \alpha_n , \qquad (A5)$$

where α_n is the *n*th zero of the Airy function,

Ai
$$(-\alpha_n) = 0$$
, $n = 1, 2, ...$ (A6)

The square of the bound-state wave function at the origin is independent of n,²⁰

$$|\psi_{nS}(0)|^2 = \frac{m_q b}{4\pi}$$
 (A7)

The exact Euclidean propagator for the linear potential is

FIG. 2. (a) The contour of integration C in the exact expression for the Euclidean propagator for the linear potential, Eq. (A10). The crosses denote poles of $Ai'(-\alpha)/Ai(-\alpha)$ at the zeros of the Airy function. (b) The expanded contour C' used in the evaluation of the integral. We must take the overall scale of the contour to ∞ with $\delta > 0$ in order to use the asymptotic expansion of the integrand in Eq. (A12).

therefore given by

$$K(0,0,-i\tau) = \sum_{n} |\psi_{nS}(0)|^{2} e^{-E_{n}\tau}$$
$$= \frac{m_{q}b}{4\pi} \sum_{\alpha_{n}} e^{-\alpha_{n}\lambda\tau}, \qquad (A8)$$

where

$$\lambda = (b^2 / m_q)^{1/3} . \tag{A9}$$

We can easily convert the sum in Eq. (A8) into a contour integral:

$$K(0,0,-i\tau) = \frac{m_q b}{4\pi} \frac{1}{2\pi i} \int_C d\alpha \, e^{-\alpha\lambda\tau} \frac{\operatorname{Ai}'(-\alpha)}{\operatorname{Ai}(-\alpha)}$$
$$= \frac{m_q b}{4\pi} \frac{1}{2\pi i} \int_C d\alpha \, e^{-\alpha\lambda\tau} \frac{d}{d\alpha} \ln Ai(-\alpha) ,$$
(A10)

where the contour C encircles the zeros of Ai($-\alpha$) as shown in Fig. 2(a), and $-\alpha = e^{-i\pi}\alpha$, $0 \le \arg\alpha \le 2\pi$. If we expand the contour outward to C' with $|\arg(-\alpha)| \le \pi - \delta$ as shown in Fig. 2(b), we can use the asymptotic expansion of the Airy function²¹

$$\operatorname{Ai}(z) \sim \frac{\sqrt{\pi}}{2} z^{-1/4} \exp(-\frac{2}{3} z^{3/2}) \times \sum_{k=0}^{\infty} \frac{(-1)^k \Gamma(3k + \frac{1}{2})}{\Gamma(k + \frac{1}{2}) \Gamma(k + 1)(36z^{3/2})^k} ,$$
$$|\operatorname{arg} z| < \pi , \quad (A11)$$

to calculate the logarithmic derivative in Eq. (A10) on the

contour, and find that

$$\frac{d}{d\alpha}\operatorname{Ai}(-\alpha) = (-\alpha)^{1/2} - \frac{1}{4\alpha} - \frac{5}{32(-\alpha)^{5/2}} + \frac{15}{64\alpha^4} - \frac{1105}{2048(-\alpha)^{11/2}} + \cdots, \quad |\operatorname{arg}(-\alpha)| < \pi$$
(A12)

When this result is substituted in Eq. (A10), the integrals on α can be evaluated using Hankel's representation for the reciprocal of the Γ function,²²

$$\frac{1}{2\pi i} \int_{C'} d\alpha (-\alpha)^{-s} e^{-\alpha \lambda \tau} = -\frac{(\lambda \tau)^{s-1}}{\Gamma(s)} .$$
 (A13)

The result is the desired expansion of the Euclidean propagator for the linear potential,

> 2 /2

$$K(0,0,-i\tau) = \left[\frac{m_q}{4\pi\tau}\right]^{5/2} \left[1 - \frac{1}{2}\sqrt{\pi}(\lambda\tau)^{3/2} + \frac{5}{12}(\lambda\tau)^3 - \frac{5}{64}\sqrt{\pi}(\lambda\tau)^{9/2} + \frac{221}{6048}(\lambda\tau)^6 - \cdots\right].$$
 (A14)

This result is probably exact despite our use of the asymptotic expansion of Ai $(-\alpha)$ in the integral. Vainshtein *et al.*⁷ have obtained the first terms in this expansion by a somewhat different method, but their result contains some errors as published.²³

Coulomb potential

The expression for the Euclidean propagator for the Coulomb potential $V(r) = -\alpha/r$ includes an integral over the continuum as well as a sum over the discrete bound states,

FIG. 3. (a) The contour of integration C in the exact expression for the Euclidean propagator for the Coulomb potential, Eq. (A19). The crosses denote the poles of the integrand at $x = 1/n^2$, n = 1, 2, ... (b) The modified contour C' used in Eq. (A20).

$$K(0,0,-i\tau) = \int_0^\infty dE \,\rho(E) \,|\,\psi_E(0)\,|\,^2 e^{-E\tau} + \sum_{n=1}^\infty \,|\,\psi_{nS}(0)\,|\,^2 e^{-E_n\tau} \,. \tag{A15}$$

1/2

,

Here $\rho(E) = m_q^{3/2} E^{1/2} / 4\pi^2$ is the usual density of states, $\psi_E(0)$ is the continuum S-state wave function at the origin,

$$|\psi_E(0)|^2 = \frac{2\pi\eta}{1 - \exp(-2\pi\eta)}$$
, $\eta = \frac{\alpha}{2} \left[\frac{m_q}{E} \right]^{1/2}$, (A16)

$$|\psi_{nS}(0)|^2 = \frac{1}{8\pi} \left[\frac{\alpha m_q}{n} \right]^3$$
, (A17)

and

$$E_n = \frac{\alpha^2 m_q}{4n^2}$$
, $n = 1, 2, \dots$ (A18)

It will be convenient to use a scaled energy $E = E_0 z$, $E_0 = \frac{1}{4} \alpha^2 m_q$, in Eq. (A15). With this convention,

$$K(0,0,-i\tau) = \frac{\alpha^3 m_q^3}{16\pi} \left[\int_0^\infty dz \frac{1}{1-\exp(-2\pi/\sqrt{z}\,)} e^{-E_0\tau z} + 2\sum_{n=1}^\infty \frac{1}{n^3} e^{E_0\tau/n^2} \right]$$
$$= \frac{\alpha^3 m_q^3}{16\pi} \int_C dz \frac{1}{1-\exp(-2\pi/\sqrt{z}\,)} e^{-E_0\tau z} \,. \tag{A19}$$

In the second line we have used the fact that the entire expression in square brackets can be written as a contour integral on the contour C shown in Fig. 3(a). We can complete the contour as shown in Fig. 3(b) by adding and subtracting a segment below the real axis,²⁴ and find that

$$K(0,0,-i\tau) = \frac{\alpha^3 m_q^3}{16\pi} \left[\int_{C'} dz \frac{1}{1 - \exp(-2\pi/\sqrt{z}\,)} e^{-E_0 \tau z} + \int_0^\infty dz \frac{1}{1 - \exp(+2\pi/\sqrt{z}\,)} e^{-E_0 \tau z} \right].$$
(A20)

The second integral can itself be related to $K(0,0,-i\tau)$ by using the identity

$$\int_{0}^{\infty} dz \frac{1}{1 - \exp(2\pi/\sqrt{z}\,)} e^{-E_{0}\tau z} = \int_{0}^{\infty} dz \left[1 - \frac{1}{1 - \exp(-2\pi/\sqrt{z}\,)} \right] e^{-E_{0}\tau z}$$

$$= \frac{1}{E_{0}\tau} - \int_{0}^{\infty} dz \frac{1}{1 - \exp(-2\pi/\sqrt{z}\,)} e^{-E_{0}\tau z}$$
(A21)

and the first equality in Eq. (A19). The combination of these results with Eq. (A20) gives the expression

$$K(0,0,-i\tau) = \frac{\alpha^3 m_q^3}{32\pi} \left[\int_{C'} dz \frac{1}{1 - \exp(2\pi/\sqrt{z}\,)} e^{-E_0\tau z} + \frac{1}{E_0\tau} + 2\sum_{n=1}^{\infty} \frac{1}{n^3} e^{E_0\tau/n^2} \right].$$
(A22)

We can evaluate the contour integral in Eq. (A22) by expanding the contour so that |z| > 4, using the Bernoulli expansion²⁵

$$\frac{1}{1 - \exp(-2\pi/\sqrt{z}\,)} = \frac{\sqrt{z}}{2\pi} \sum_{n=0}^{\infty} \frac{(-1)^n}{n!} B_n \left(\frac{2\pi}{\sqrt{z}}\right)^n, \quad |z| > 4$$
(A23)

and integrating term by term. This gives

$$\int_{C'} dz \frac{1}{1 - \exp(-2\pi/\sqrt{z}\,)} e^{-E_0 \tau z} = -(E_0 \tau)^{-3/2} \sum_{n=0}^{\infty} e^{i\pi n/2} \frac{(2\pi)^n B_n}{n!} \frac{(E_0 \tau)^{n/2}}{\Gamma[(n-1)/2]} \\ = \frac{(E_0 \tau)^{-3/2}}{2\sqrt{\pi}} + \sum_{k=1}^{\infty} \frac{2\xi(2k)}{\Gamma(k - \frac{1}{2})} (E_0 \tau)^{k - 3/2},$$
(A24)

where we have used the relations²⁶

$$B_n = 0, \ n = 3, 5, \dots, \quad B_{2n} = (-1)^{n+1} \frac{2\xi(2n)(2n)!}{(2\pi)^{2n}}$$
 (A25)

to express the Bernoulli numbers B_{2n} in terms of the Riemann ζ function.

We can convert the series in Eq. (A22) to a power series in τ by expanding the exponentials and then summing on the principle quantum number *n*. The result is

$$2\sum_{n=1}^{\infty} \frac{1}{n^3} e^{E_0 \tau/n^2} = \sum_{k=1}^{\infty} \frac{2\zeta(2k+1)}{\Gamma(k)} (E_0 \tau)^{k-1} .$$
(A26)

Combining Eqs. (A22), (A24), and (A26), we obtain as our final result the remarkably simple expression

$$K(0,0,-i\tau) = \frac{\alpha^3 m_q^3}{32\pi} \left\{ \frac{(E_0\tau)^{-3/2}}{2\sqrt{\pi}} + \frac{1}{E_0\tau} + \sum_{n=2}^{\infty} \frac{2\xi(n)}{\Gamma[(n-1)/2]} (E_0\tau)^{(n-3)/2} \right\}$$
$$= \left[\frac{m_q}{4\pi\tau} \right]^{3/2} \sum_{n=0}^{\infty} \frac{4\sqrt{\pi}\xi(n)}{\Gamma[(n-1)/2]} (E_0\tau)^{n/2}$$
$$= \left[\frac{m_q}{4\pi\tau} \right]^{3/2} \left[1 + 2\sqrt{\pi}(E_0\tau)^{1/2} + \frac{2\pi^2}{3}E_0\tau + 4\sqrt{\pi}\xi(3)(E_0\tau)^{3/2} + \cdots \right],$$
(A27)

 $E_0 = \frac{1}{4} \alpha^2 m_q ,$

where
$$\zeta(0) = -\frac{1}{2}$$
 and

$$\lim_{n \to 1} \frac{\zeta(n)}{\Gamma[(n-1)/2]} = \frac{1}{2} .$$
 (A28)

This result holds also for the repulsive Coulomb potential if we insert an extra factor $(-1)^n$ corresponding to the replacement of α by $-\alpha$. One of us (J.B.W.) obtained a particularly compact derivation of the latter result using the identity¹⁶

$$\frac{1}{e^z - 1} = \frac{1}{2\pi i} \int_{\sigma - i\infty}^{\sigma + i\infty} ds \, \alpha^{-s} \Gamma(s) \xi(s) \tag{A29}$$

in the second integral in Eq. (A20) (the integral for the repulsive Coulomb propagator), integrating over the energy variable, and then evaluating the remaining integral by closing the contour in the left half plane.

*Present address: Physics Department, Southern Technical Institute, Marietta, Georgia 30060.

[†]Requests for reprints should be addressed to B.D. at the University of Wisconsin.

[‡]Permanent address.

- ¹M. Krammer and P. Leal Ferriera, Rev. Bras. Fis. <u>6</u>, 7 (1976);
 C. Quigg and J. Rosner, Phys. Rev. D <u>17</u>, 2364 (1978); J. S. Bell and J. Pasupathy, Phys. Lett. <u>83B</u>, 389 (1979); Z. Phys. C <u>2</u>, 183 (1979).
- ²K. Ishikawa and J. J. Sakurai, Z. Phys. C <u>1</u>, 117 (1979); J. S. Bell and R. A. Bertlmann, *ibid.* <u>4</u>, 11 (1980).
- ³B. Durand and L. Durand, Phys. Rev. D <u>23</u>, 1092 (1981).
- ⁴B. Durand and L. Durand, Phys. Rev. D <u>23</u>, 1531 (1981).
- ⁵J. Pasupathy and V. Singh, Z. Phys. C <u>10</u>, 23 (1981).
- ⁶B. Durand and L. Durand, Phys. Rev. D <u>25</u>, 2312 (1982); University of Wisconsin Report No. MAD/TH-62, 1982 (unpublished).
- ⁷M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov, Nucl. Phys. <u>B147</u>, 385 (1979); <u>B147</u>, 448 (1979); <u>B147</u>, 519 (1979);
 A. I. Vainshtein, V. I. Zakharov, V. A. Novikov, and M. A. Shifman, Yad. Fiz. <u>32</u>, 1622 (1980) [Sov. J. Nucl. Phys. <u>32</u>, 840 (1980)]; V. A. Novikov, M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov, Nucl. Phys. <u>B191</u>, 301 (1981).
- ⁸L. Durand, B. Durand, and J. B. Whitenton, following paper, Phys. Rev. D <u>28</u>, 607 (1983).
- ⁹J. S. Bell and R. A. Bertlmann, Nucl. Phys. <u>B177</u>, 218 (1981); <u>B187</u>, 285 (1981); R. A. Bertlmann, Acta Phys. Austriaca <u>53</u>, 305 (1981).
- ¹⁰Some other authors have defined duality somewhat differently, and equate an appropriate average of the bound cross section directly to the free cross section $\langle \sigma_{\text{bound}} \rangle \approx \sigma_{\text{free}}$ [see, e.g., Ref. 2 or R. K. Bhaduri and J. Pasupathy, Phys. Rev. D <u>25</u>, 1827 (1982)]. We have found the present definition to be more use-

ful, especially for calculating corrections to the simple duality relation.

- ¹¹E. P. Wigner, Phys. Rev. <u>40</u>, 749 (1932); J. G. Kirkwood, *ibid*. <u>44</u>, 31 (1933).
- ¹²R. P. Feynman and A. R. Hibbs, *Quantum Mechanics and Path Integrals* (McGraw-Hill, New York, 1965), p. 357.
- ¹³See, for example, E. Eichten, K. Gottfried, T. Kinoshita, K. D. Lane, and T.-M. Yan, Phys. Rev. D <u>17</u>, 3090 (1978); <u>21</u>, 203 (1980).
- ¹⁴A. Martin, Phys. Lett. <u>93B</u>, 338 (1980).
- ¹⁵C. Quigg and J. Rosner, Comments Nucl. Part. Phys. <u>8</u>, 11 (1978); Phys. Rep. <u>56</u>, 167 (1979).
- ¹⁶J. B. Whitenton, dissertation, University of Wisconsin-Madison, 1982 (unpublished).
- ¹⁷See, for example, R. M. Barnett, M. Dine, and L. McLerran, Phys. Rev. D <u>22</u>, 594 (1980).
- ¹⁸See, e.g., Ref. 12, Secs. 3.6 and 3.11.
- ¹⁹Handbook of Mathematical Functions, edited by M. Abramowitz and I. Stegun (Dover, New York, 1970), Sec. 24.1.2.
- ²⁰See, for example, C. Quigg and J. Rosner, Phys. Rep. <u>56</u>, 167 (1979).
- ²¹Reference 19, Sec. 10.4.59.
- ²²Reference 19, Sec. 6.1.4.
- ²³See Sec. 4.3 of the second paper in Ref. 7. A factor $\sqrt{\pi}$ is missing in their last term, and the time variable τ was omitted in the expansion.
- ²⁴The integral over this extra segment is just the propagator for the repulsive Coulomb potential $V(r) = +\alpha/r$. One of us (J.B.W.) would like to thank Professor C. J. Goebel for a useful discussion on this calculation.
- ²⁵Reference 19, Sec. 23.1.1.
- ²⁶Reference 19, Sec. 23.2.