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A Bethe-Salpeter harmonic-oscillator framework, developed recently for qq mesons io the
instantaneous (null-plane) approximation, is employed for the construction of MMM cou-

plings (M =P or V) through quark-loop diagrams. The resulting structure of the matrix
elements exhibits the central feature of the quark-pair-creation model, that is, a multiplica-
tive structure for the orbital and spin wave functions of all three qq states involved, together
with a couple of essential kinematical factors (but only in the numerator) as part of the
field-theoretic result. The model is illustrated through two typical meson couplings involv-

ing equal-mass quarks, p~mm and co~pm, as well as through the two electromagnetic pro-
cesses co~ye. and m «yy. The p«mm and co«y~ widths (via direct y coupling) come
out as 142.7 MeV and 888 keV, respectively, with no adjustable parameters. The co—+ye
matrix element also agrees to within l%%u~, with that obtained from the corresponding ~p~
coupling through vector-meson-dominance (VMD) substitution. The m. «yy width (7.7 eV)
agrees excellently with experiment when it is deduced from tope coupling via double VMD
substitution, but the corresponding amplitude obtained from direct y coupling is only about
half the experimental value. Theoretical reasons are given for this apparent paradox.

I. INTRODUCTION

Quark or duality diagrams' not only provide a
topological insight into hadronic processes in terias
of their quark content, but also bring out the spin
structure of the matrix elements, in particular the
Po foirri of a qq pair created out of the vacuum,

as an essential ingredient for the mesonic transition
M~«Mii+Mc and the similar baryonic process
8«8'+M. A more dynamical exploitation of
these ideas to include the orbital structure of the
matrix elements, was made by LeYaouanc et al.
through the suggestion that the complete matrix ele-
ment for M~ «Mii+Mc be given by a simultaneous
overlap integral of the foira

8 C vac

where T„„(—cr q) is essentially a Po operator
representing the J=0 structure of the qq pair lifted
out of the vacuum. The model, hereafter teriaed the
quark-pair-creation model (QPCM), was originally
nonrelativistic in content and clothed in harnionic-
oscillator wave functions, but was soon extended to
the relativistic level, " ' with several kinds of appli-
cations.

Despite its phenomenological character, the re-
markable predictive powers of QPCM soon became
apparent from its capacity to incorporate several
unifying principles, such as V-meson universality,

quark additivity, and SU(6)~, under a single broad
canvas. As a result its applications have been ex-
tensive, from nonrelativistic" to relativistic. ' ' On
the other hand, a foi-iual theoretical basis for its
structure, preferably from field-theoretic premises
has so far been lacking at the quantitatiue level, as
distinct from a qualitative understanding. ' The
nearest candidate was perhaps the four-dimensional
forriiulation of Bohm, Joos, and Krammer' for ex-
pressing transition matrix elements in terills of
Bethe-Salpeter (BS) amplitudes for the states con-
cerned. Their QPCM-like structures are fairly expli-
cit in the limit of infinitely large quark masses. '

However, apart from large quark masses the formu-
lation of Bohm, Joos, and Krammer' had other
"problems" caused by their Euclidean foiiiiulation
for all timelike internal momenta, leading to less
desirable consequences.

The purpose of this paper is to offer an alternative
field-theoretic basis for the QPCM in teinis of the
instantaneous approximation to the BS equation,
which is generally regarded as an acceptable
mathematical device for eliminating the (unwanted)
timelike momenta, so as to pave the way for a prob-
abilistic interpretation for the resulting wave func-
tions. In some recent publications, ' ' the original
instantaneous approximation to the BS equations'
has been generalized from qq to qqq (Ref. 16) and

qqqq (Ref. 18) systems, and employed for a calcula-
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tion of their spectra. ' ' The null-plane approxima-
tion is an alternative device for reducing the BS
equation to an effective three-dimensional
foriii. The resulting equation seems to exhibit
a strong foriaal resemblance to the corresponding
instantaneous-approximation structure, a fact
which can be usefully exploited for doing
instantaneous-approximation calculations in the
(simpler) null-plane language.

In this paper we shall examine the mathematical
structure for hadron couplings within an
instantaneous-approximation-oriented BS formal-
ism, and exhibit its strong similarity to QPCM-
like structures, including the effect of spin which
now appears as a well-defined factor in the numera-
tor of the matrix element in the form of. a trace.
The essential details of the procedure are illustrated
in terlns of the realistic cases of p~mm. and co~pm.
couplings, in each of which the spin effects play an
important role. Another related case considered in
this paper is the electromagnetic co +yn co—upling,
together with its possible link with the hadronic
co~pm coupling expected on a vector-meson-
dominance (VMD) basis. Finally we consider the
matrix element for vr ~yy in two different ways: (i)
a direct BS amplitude for 7r ~yy decay through the
standard quark triangle diagram and (ii) a QPCM
simulated virtual cop m coupling supplemented by
double electromagnetic substitution on the lines of
Schwinger. The only additional ingredient needed
for making absolute predictions in all these cases is
an ansatz relating to a certain Lorentz-invariant
adaptation, Uide ansatz (3.3), of an otherwise three-
dimensional (Ciaussian) form factor in each of these
cases on lines suggested some time ago ' for a re-
lativistic adaptation of QPCM matrix elements.

In Sec. II we write down the complete matrix ele-
ment for a p +em trans—ition in terms of the instan-
taneous approximation to the BS amplitudes for qq
states as developed in Ref. 22 for a direct adaptation
to four-dimensional Feynman diagrams, and in-
tegrate over the timelike part of the relevant four-
momentum of integration to exhibit the resulting
structure in a three-dimensional form, together with
its explicit similarity to the usual QPCM matrix ele-
ments. Corresponding matrix elements for cop~,
cour, and vr yy couplings are also listed for compar-
ison. Numerical results are presented in Sec. III on
the basis of the ansatz (3.3), "* noted in the forego-
ing, for the Craussian form factors involved. The
p~2rm and direct electromagnetic co~ye widths
work out as 142.7 and 0.888 MeV, respectively, with
no adjustable parameters. The co~yvr amplitude
also agrees with its VMD counterpart deduced
from cusp~. The double VMD version of the
vr ~yy width (7.7 eV) likewise agrees with data (7.9

eV), but the m ~yy amplitude based on direct
photon coupling is only half the observed amplitude.
Theoretical reasons for this apparent anomaly are
discussed. Finally, in keeping with the illustrative
applicational scope of this paper, more comprehen-
sive applications including unequal-mass kinematics
(m I &m2), couplings of L-excited states, three-body
decays, etc., are relegated to a future communica-
It;ian.

I (q)=/I I D(q)P(q)/2mi,

D( q ) =2M(m~ + q ——,M ),
/=$0(q)=(mP )

/ exp( ——,q P ),
(2/I~) (2m) =M(AP +mq ),

I =y, (I' mesons),

(2.1)

(2.2)

(2.3)

(2A)

A, =1, I =iy e (Vmesons) .

In terms of these vertices, the four-dimensional BS
amplitude is expressible as

0(pl,p2) =i SI;(I2I )I (q)SF( P2) . —(2.5)

Consider first Figs. 1(a) and 1(b) where the indicated
four-momenta of the quarks may be expressed in
terms of total and relative four-momenta as'

1

PI,2= 2I+q I2I,2= 2~ +q

P j.,z
=

~
~ +9'

(2.6)

Further, the equalities

(2.7)

give rise to the connections

q' =q+ —,p", q"=q ——,I"
and the hadronic conservation is checked as

(2.8)

I' =P'+I'" . (2.9)

The color indices in Figs. 1(a) and 1(b), in an obvi-
ous notation, give rise to the overall factor

3
—I /2g ( )3

—I /2g (
I

)3
—I /2g (

ii
) 3—I /2

(2.10)

II. QPCM FOR MMM AND MM y COUPLINCJS

In a recent paper we have described the struc-
ture of the qqM vertex in the instantaneous approxi-
mation. We shall draw freely from the results of
Sec. II of Ref. 22, including notations, definitions
and phase conventions of these vertices, to derive
most of the results of this section. According to the
results of Ref. 22, the three-dimensional qqM vertex
function I"(q ) in the rn I ——m2 case is given by
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FIG. 1. Triangle diagrams for (a) p~m'n", (1}co~per, (c) co eyer, and—(d) m ~y]y2 matrix elements. For the four-
momentum label on the various quark lines, see text.

The isospin factor for both p~m m. and re~pm works out as (2'~ ).

pm. m coupling

The invariant matrix element for p +n.m. , Fig. 1—(a), is now

W(p rrrr)=(2rr) ( —, )' Tr f d prp (pi p[ )(rrrq ()' p)%' (pir'pz )(mr r)' pr )'pr(p& pz')( + m)'rp&)('
(2.11)

Using (2.5)—(2.8), (2.11) simplifies to

W(p rrrr)=(2rr)'( —, )'rrAQ ' J drq6 '[Tr(prrrr)][D()(prrrr)], (2.12)

[Tr(pqrqr)] =Tr(mq iyp', )(mq+i yp ]—')(mq+i y p2)i y E.
=4m q(mq +q 2Q ——, M~ )+—eQ(mq +q + —,M~ ) (2Q=P' I'", A 8=A.B—A—oBo),

(2.13)

b, =(mq +p'] )(mq +p[' )(mq +pz ),
(2mi) [DP(pen)]=D (q)P (q)D (q ')P (q ')D (q ")P (q "),

(2.14)

(2.15)

where the D and P functions for the indicated composite are given by (2.2) and (2.3), respectively. The crucial
step lies in doing the qo integration in (2.12) which, in view of the instantaneous approximation, involves q[]
only in the denominators and at most in the Tr factor (2.13). Now it greatly simplifies the algebra if the
equivalent of the qo integration is carried out in the null-plane language (without of course claiming to go
beyond the physical limits of the instantaneous approximation). In particular if p2 (not p] ) is chosen ' as
the integration variable in (2.12), with the correspondence —,dp2 -- - dqo, then a simple pole appears only in
the factor (mq +p2 ) '. Now if the value of p2 at this pole, viz. , (p2& +mq )/p2+, is substituted in the
remaining two denominators, the following simple results emerge:
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(m, '+p']') 'D~(q') 2p~+, (m, '+p]') 'D (q") 2@~'+,

where2'

(2.16)

»+= z~+ q+»+= zP+ q+ (2.17)

together with the connections (2.7) which hold for the (+ ) components in particular. Taking account of the
factor (2pz+} as a part of the overall residue arising out of the p2 propagator, and using the relation

p&+
——pz+, Eq. (2.7), the matrix element (2.12) reduces to

~(p rrrr)=( (2rr)r( —, )'rrA+„r f drqd r]r»D drr(2p'z+)[Tr(prrrr)] . (2.18)

Equation (2.18) reveals rather clearly the QPCM
structure of the matrix element with every relevant
factor appearing in the numerator. The main in-
gredients, viz. , the three-dimensional wave functions
of the three-hadrons involved, are already explicit.
The effects of the y matrices due to the BS struc-
tures of the vertices, as well as those arising out of
the propagators are collectively incorporated in the
trace factor. This is a precise substitute for the
simulation of such effects through certain piecemeal
assumptions (e.g., partial symmetry), followed by re-
lativistic boost prescriptions in a relativistic foririu-
lation of QPCM. '2 Finally, the factors (2pz+ ) and
Dz(q) in (2.18) have no obvious counterpart in
QPCM, nonrelativistic or relativistic, ' but must be
regarded as parts of an overall relativistic package

I

I

implied in a three-dimensional reduction of a stand-
ard BS-oriented Feynman amplitude. Nevertheless
the similarity to QPCM is striking enough to war-
rant the conclusion that the three-dimensional BS
foriqTulation not only gives a good theoretical sup-
port to QPCM but also provides certain nontrivial
kinematical factors to lend a field-theoretic pre-
cision to the otherwise intuitive QPCM concept.

~pm coupling

For copTr coupling, Fig. 1(b), a very similar
mechanism is operative, with identical color and
isospin factors. The BS matrix element, which is
directly adaptable from (2.12) with the replacements
][]~co, m. '~p, and m"—+m. , reduces to the form

a(r» prr)=(2rr) (T)'r A Ap f d q(r '[Tr(rrrprr)][Dd(err)],

where 5 is given by (2.14) and [DP] by an expression similar to (2.15), but

[Tr(cope. )]= 4m~@„„i„p&co P—i Q„.
Integration over dqo in a similar manner to pm. m and use of (2.16) gives

Pr(ro prr)=( r(2rr)r( —, )'rrA„AP f d q dr/~ d [Tr(a&Prr)](2P'r+)

(2.19)

(2.20)

(2.21)

which once again reveals a relativistic QPCM structure admitting of an identical interpretation to (2.18), except
for a simpler structure (q-independent) for the trace factor.

co~ym and m —+yy couplings

To illustrate the working of the BS fornialism for direct electromagnetic couplings, we have chosen two typi-
cal cases, viz. , co~yn. and m ~yy transitions corresponding to Figs. 1(c) and 1(d}, respectively. The color
factor in co~ye is now

3
—1/2ti ( )3

—1/2g ( 0)

while in the m ~yy case, it is

(2.22)

3 ' 5"(n )5"=3 (2.23)

Thus, as expected, the color factors for r2i~ynoand m ~y.y transitions are, respectively, 3' and 3 times the
color factor relevant for a purely hadronic coupling. (This is merely a check on the consistency of our use of
the &ronecker 5's for color wave functions. ) For the electromagnetic coupling of a quark we take
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~(q1yq ) = 2 eql1 PAP(7 3+ 3 )q

whence the entire charge factor for a to +y—n transition works out as e only, while for m ~y'y it is

(2.24)

2
—]/2 2t (

2
)2 (

]
)2] 26—]/2

The resultant matrix element, Fig. 1(c), for a]~year is now

M(re ye")=(2rr) A d e Tr f d q[(yer(eq' (pj,pj )(me —i Y pe)q ( &p, p)]r,

which reduces to the somewhat simpler form

w(er yrr )=(2e) 2 r( e f d q(2ei) 6o 22 r]r~ r]r [Tr(reyrr )]

(2.25)

(2.26)

(2.27)

(2.29)

where the trace factor is formally the same as (2.20), but with p&-~A&, and Ao is given by (2.14) with p I'~p].
The integration over qo in the null-plane language ' and use of (2.16) gives

~ (re yrr ) i'(2e=) A r(„e f d q() () [Tr(reyrr)](2pj+) . (2.28)

The equation for a]~year is simpler than the QPCM form (2.18) for its purely hadronic counterpart a]~pm
just to the extent expected, viz. , p mesons s qq wave function and the D function have together given place to
the charge factor e characterizing the electromagnetic coupling of the elementary photon. Finally we record
the matrix element for m ~yy, Fig. 1(d), in the form

~(~' yy)=6-'""Tr f d'q[q'. (pr,pr)y err'&e(q Q)y er+((~—2)1,

where g =k] —k2 and the second term amounts to a
reversal of the direction of the quark lines. Despite
its apparent simplicity, the integrand has two qo
poles, so that its structure is not amenable to the
null-plane variable integration technique described
prior to Eq. (2.16) and is best performed directly in
terms of the qo variable, taking account of all its
relevant poles. The calculation in this case is
straightforward but messy. The final result may be
conveniently given in terms of an effective, dimen-
sionless coupling constant G, defined by the La-
grangian

(2.30)

and noi signalized to the experimental value

G (expt)=3. 65 (2.31)

III. RESULTS AND DISCUSSIGN

We are now in a position to present the numerical
results for the different transitions considered in the
last section. The q integrations are all elementary,

to fit the observed ~ ~yy width of 7.9 eV. The re-
sult for G after integration over qo in (2.27) is
given by the formula

G Iqrrr=
r Mmed f drqd q'ree (ree ——, q )

(2.32)

and similarly for others. In all these cases a suitable
translation in the q variable, designed to bring the q
dependence of the Cxaussian wave functions to the
standard form is implied and its effect taken into ac-
count in all the other q-dependent factors including
2p2+, in each case. Further, for a hadronic (three-
meson coupling) transition M] ~M2+M3, the ma-
trix element would have the following multiplicative
Gaussian factor, arising out of the q translation:

+(P )—=exp ——„gP]'Po'P2 'P3 '
1,2, 3

L (3.2)

where P; (i =1,2, 3) is the inverse radius of the
meson M; of three-momentum P;, in accordance
with Eq. (2.3). This formula covers both p~nm. .
(real) and io~pm. (virtual) transitions. Now if the
coupling is calculated on this (three-dimensional)
basis the predicted strength comes out too small, as
measured, e.g., by a p~vrm width of a mere 42.8

since only Gaussian functions and certain (positive)
powers of the q variable are involved in each case.
The Zp'+ factor needs a little care since, unlike all
other factors it involves the qo variable whose
"pole" value for the appropriate case must be substi-
tuted. For example, for pm+ coupling, this factor
eventually simplifies to

Zp2+ =I + —I + —2q+ =ZQ3 —2q3+ Zcoq —M

(3.1)
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W(p~ arm ) =g~ (2p.Q), (3.5)

MeV. This shortcoming of the three-dimensional
BS forllialism seems to have a precise counterpart in
the nonrelativistic version of QPCM, as reflected in
the corresponding Gaussian follll factor in telllls of
the three-momenta of the hadrons concerned. " A
practical solution to this QPCM malady that was
suggested some time ago ' consists in a four-
dimensional Lorentz-invariant adaptation from the
three-dimensional QPCM counterpart of (3.2) to its
four-dimensional QPCM counterpart, via the re-
placements

(3.3)

As explained earlier, this extrapolation is not
meaningful except for modest values of M ((1
GeV }. Further, as a compensation for this effect
one needs a renoi-illalization with respect to a refer-
ence coupling, 825 say ppp, at an unphysical point.
In view of the unqualified success of this prescrip-
tion at the QPCM level we are inchned to adopt
the same point of view in the present case as well.
However, for the reference ppp coupling we now
choose the more symmetrical point ( —m&,—m~, —m~ } for each Pz, instead of the less
symmetrical QPCM choice ' ( —mz, —m&, 0)
based on a preferential treatment to the exchanged p
quantum. This renormalization amounts to a multi-
plication of (3.2) by the factor

Z =exp( ——„mz Pz ) =[exp(1.179)] ' (3 4)

after substitution of the four-momenta (3.3) for the
various three-momenta. Adopting this prescription,
the standard pmm coupling constant, which may be
identified through

An idea of their relative numerical values is ob-
tained through the comparison

g~ ——1.126g~, gz /4m =2.14 . (3.10)

This value of g~„corresponds to a pmnwid. th of
142.7 MeV, in reasonable accord with the observed
value of 158+5 MeV. On the other hand, the
parameter gz ( &g~ ), as discussed in Ref. 22 gives
the correct value of the p~e+e width at 6.43 keV
(6.54+0.5). This twin capacity to provide a basical-
ly correct pattern of values for both these funda-
mental parameters must be regarded as a welcome
feature of the proposed BS dynamics.

We state, without further explanation the analo-
gous result for g ~ defined27 by

W(co ~p1r ) =2m ~ g p Epi Pil co~'Pi„P

(3.11)

which may be expressed by a formula similar to
(3.6) obtained with the same ansatz (3.3) on an ex-
pression analogous to (3.2), and renoiinalized by the
same Z factor (3.4). The numerical value now
works out as

g„~——(1.011)gp -gp . (3.12)

As the first example of electromagnetic decays we
consider Eq. (2.28) for co~ye, whose matrix ele-
ment, among other things will now contain the
simpler Gaussian factor (involving only the photon
momentum k)

61/2m —5/2(p 2/ )3/4(m 2+p 2+ ~ 2)
P P ~ P & P

P 2+p 2)1/2
p

(3.9)

is expressible as

g~„=2(—, )'/ (2m. ) AP (7r I3p P ) / WpZF(P„; ),
(3.6)

Fr(k )=exp( —k Po /16P 13 )

as a substitute for (3.2), where
1 2 1

Po '= , P '+ ,P——
(3.13)

(3.14)

p.QW~= f d q exp( —q /P )

&( I —,[Tr(porn )]Dp(2p2+ )J, (3.7)

the last three factors in (3.7), all defined earlier, to
be understood to have been given the requisite q
translation, and

In this case the elaborate procedure (3.2)—(3.4) is no
longer necessary but may be replaced by the simpler
prescription

k - k„=0
so that (3.13) merely reduces to unity. The ampli-
tude (2.28) then works out

P'+ P'+ —P— —(3.8) w (to~a)=i '(2m ) eA. A [Tr(aryan )]

The expression (3.6) may be compared with the for-
mal expression for gz, the coupling strength for p
annihilation into the vacuum, given in this BS
model by 2

(3.15)

where the factor (Zp2+ ) represents the expectation
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value of that quantity (after q translation) with
respect to the PQ distribution. The numerical ef-
fect is best seen by writing (3.15) in the form (3.11)
with the replacement

(3.16)g.~~g.& =ef f=1 o»
which corresponds to a co~yvr width of 0.888
MeV, in almost exact agreement with experiment
(0.89+0.04).

It is of interest to ask if (and to what extent) our
forinalism checks with the VMD ansatz expressed
in the Schwinger language of electromagnetic sub-
stitution, viz. ,

—1 1

pp~egp A@7 cop~ 3 egp Ap (3.17)

A comparison of (3.16) obtained with direct photon
coupling, Fig. 1(c), with Schwinger's corresponding
expression for coy'. coupling (obtained from copra
via VMD), shows only a l%%ui difference. On the oth-
er hand, (3.12) shows that if we had tried to simulate
coym. coupling from Eq. (3.11), via the VMD substi-
tution (3.17), we would once again have obtained
only a 1% increase over Schwinger's coyn. ampli-
tude. We thus arrive at a rather pleasant VMD con-
sistency check on our formalism at least for the pro-
cess co~/77 .

However, for the vr ~yy amplitude we encounter
the following problem. A direct computation of the
integral (3.32) leads to the estimate

6 = 1.746 (3.18)

which is just about half the experimental value 3.65,
Eq. (2.31). On the other hand if, emboldened by the
above success of VMD for the ~~ye case, we had,
following Schwinger, attempted the double VMD
substitution (3.17) in the ~~pm coupling to obtain
the m. ~yy amplitude, the results (3.11) and (3.12)
would show that our m. —+yy amplitude would have
been only about 2% higher than Schwinger's VMD
value, and would therefore have led to an estimated
~ ~yy width of 7.7 eV to be compared with
Schwinger's 7.4 eV and the observed 7.9 eV.

We are thus faced with a twofold problem viz. , (a)
the m ~yy amplitude via direct photon coupling is

merely half of the observed value, while (b) the dou-
ble VMD, substitution in the n ~cop amphtude fol-
lowing Schwinger gives the observed strength, thus
exhibiting a factor of 2 discrepancy with the direct
photon coupling mechanism. An understanding of
problem (a) is facilitated by recognizing the role of
the ualence contribution to the yy decay of m as a
qq state, which by gauge invariance is expected to
be half the total decay amplitude for q ~0.3 Now,
in our BS formalism we have not considered any-
thing but the valence quarks, so the result (3.18)

which is just in accord with the above theoretical ex-
pectation must be interpreted as just the valence-
quark contribution. Such a low amplitude for the
valence-quark contribution to ~ ~yy decay via
direct photon coupling is a reflection of the severity
of the low-energy constraints on the pion*s wave
function.

On the other hand, problem (b) remains: why
should the double electmmagnetic substitution in
m p coupling yield the desired strength for
n. ~yy? A possible suggestion is that the Ualence
contributions to the co and p wave functions in the
m. pro vertex are a more reliable index of their total
contributions than is the case for the pion. And
since the contribution of the pion wave function to
the co~pm overlap integral is relatively small, the
low-energy constraint on its valence wave function is
much less effective in reducing the strength of the
~ p vertex than is the case with the m —+yy ampli-
tude via direct photon coupling where no other had-
ronic state is available to cushion the pionic attenua-
tion effect. Since no further reduction in strength is
caused by the double VMD substitution in ~ p, it
need not be surprising if the m —+yy amplitude
based on the empirical VMD mechanism (numeri-
cally tested in many situations) happens to provide
the correct answer by thus circumventing the prob-
lem of pionic attenuation.

We end this section with some comments on the
theoretical status of the instantaneous approxima-
tion, the key ingredient of the BS formalism'622
which underlies the structure of hadronic matrix ele-
ments given in Sec. II. The main points of depar-
ture of our approach to the instantaneous appmxi-
mation from the more conventional ones ' (charac-
terized by the standard reduction to ++ and ——
components' of the qq wave function) have been
discussed more fully in Refs. 16 and 22, as well as in
an unpublished report. Although these questions
strictly do not fall within the purview of the present
(applicationally oriented) paper, we repeat a few
salient points in defense of the structure of our ma-
trix elements Vis a Vis those -likely-to arise from
more orthodox instantaneous-approximation treat-
ments ' (which usually leave out the + —and —+
components).

The entire issue boils down to two related ques-
tlOIlS:

(a) Why should one want to depart from the
orthodox instantaneous-appmximation formalism'
at all, and how does one account for the difference
so produced?

(b) Is such a variation permissible within the ac-
ceptable limits of the instantaneous-approximation
definition'?

As to question (a) the main motivation for our al-
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ternative approach to the instantaneous approxima-
tion is structural simplicity of the qq BS equation
which arises out of a Gordon reduction of the y ma-
trices prior to the introduction of the instantaneous
approximation. ' The same step also results in a re-
markable degree of transparency in the structure of
the qMq vertex functions ' which thus becomes
directly amenable to the language of Feynman dia-
grams. The corresponding structures obtained from
the more orthodox instantaneous-approximation ap-
proach involving only the (++,——) c'omponents
are algebraically more complicated. The difference
is traceable to certain (+—,—+ ) components
which are absent in the orthodox instantaneous-
approximation treatment but seem to enter our for-
malism in definite proportions determined entirely
by the Gordon reduction procedure (which is other-
wise unambiguous in prescription). Now if the sole
purpose of the BS method were to handle qq systems
only, it would be hard to justify such a modification
on conventional instantaneous-approximation treat-
ment, despite its appeal of simplicity and trans-
parency. However, it has been argued elsewhere'
that the BS approach, to be physically meaningful,
should be applicable to bigger X-quark systems
(N ~ 2), such as demonstrated for qqq (Ref. 17) and
qqqq (Ref. 18) systems without excessive effort.
And the differential advantages of the Gordon-
reduction treatment over the (+) component reduc-
tion for each quark, become increasingly ap-
parent' ' as % increases beyond 2. As far as our
experience goes, the above statement is certainly true
for the harmonic kernel' ' and may well hold for
other shapes, too.

As to question (b) regarding the permissibility of
our version of the instantaneous approximation, the
(surreptitious) entry of certain (+—,—+) com-
ponents, albeit in definite proportions, through the
Gordon reduction discussed above, technically
amounts to the introduction of noninstantaneous ef-
fects. In this connection it is good to recall that
since the original proposal, ' the definition of the in-
stantaneous approximation itself has undergone
several vicissitudes, inevitably bringing in noninstan-
taneous effects in their wake. A detailed discussion
on the subject, including the precise mode of appear-
ance of noninstantaneous effects, has been given in
Fishbane and Namyslowski. ' The nature and ex-
tent of the noninstantaneous effects brought into our
formalism through the Gordon reduction seems to
be just of the same order as discussed by these au-
thors, ' and to that extent constitutes a defense of

the former, within the "acceptable" limits of the
definition of the instantaneous approximation.

Finally our alternative approach to the instantane-
ous approximation has proved of some benefit from
another angle, too, viz. , in extending the algebraic
correspondence between the instantaneous-
approximation language and the null-plane language
from the known case of scalar quarks ' to that of
spinor quarks. (This contrasts with the situation
with the conventional instantaneous-approximation
formalism where, from the very nature of the reduc-
tion procedure, considerable departures from such
similarity are expected. ) This similarity has already
been exploited in Sec. II in connection with the in-
tegration over the poles in the null-plane language.

To summarize, we have tried to provide a field-
theoretic rationale for QPCM using a three-
dimensional BS foririalism for qq states developed
recently. ' ' The central features of QPCM are all
reproduced, together with a couple of kinematical
factors appearing in the numerator of the resulting
overlap integral. Numerical evaluation has had to
be preceded by an ansatz for a Lorentz-invariant
adaptation of the Gaussian form factor characteriz-
ing the hadronic matrix elements, similar to one
which had been employed earlier at the phenomeno-
logical QPCM level ' for a successful description
of a number of hadronic and electromagnetic transi-
tions. Not only are the results for p~mm (142.7
MeV) and m~ym (888 keV) widths in excellent ac-
cord with experiment without adjustable parame-
ters, but the m —+ye. amplitude also checks with the
VMD hypothesis on co~pm to within 1%. For
the m. —+yy amplitude, too, our calculated 50%
value based on direct photon coupling, compared
with the full strength obtainable from cop@ coupling
via double electromagnetic substitution, ' harmo-
nizes rather well with theoretical expectations.
These illustrative results should hopefully pave the
way for a viable calculational program for many
more related processes, including strange-meson
couplings (involving unequal-mass kinematics), L
excited hadron decays, QPCM formulation of
baryonic decays, and so on. Some of these applica-
tions are under way.
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