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A detailed study is made of Q duality for the bb system and the hypothetical heavy tt system us-

ing several potentials which include the perturbative QCD results for short distances. It turns out
that the QCD corrections are essential in order that the sum rule holds. The Coulomb-type correc-
tion should not be neglected, and the gluonic correction to the leptonic width is also important.

I. INTR.ODUCTION

Sometime ago, Greco et al. ' and Sakurai introduced a
kind of duality for e+e annihilation into hadrons. This
concept, called Q duality, relates the parameters of
vector-meson resonances (p,co, . . . ) with the production
cross section of "parton" pairs.

With the advent of quantum chromodynamics (QCD),
which we believe to be the underlying dynamics for strong
interactions, it became possible to calculate the corrections
to the parton-model results. A large number of works
have appeared, a portion of which deal with heavy-flavor
production. Using the Q duality, one can deter-
mine ' "" the mass of the heavy quark and the strong
coupling constant from experimental data. The most suc-
cessful prediction' of Q duality would be that of the
charrnonium spectrum, which was obtained from the mo-
rnent sum rules for various currents.

With the accumulation of experimental data for heavy
quarkonia, we have become aware of the forces between
quarks and antiquarks, i.e., the quark-antiquark potential.
A number of phenomenological potentials' which
reproduce the data have been proposed, some of which
were inspired by QCD.

Ishikawa and Sakurai and Bell and Bertlmann' have
made a "test" of the Q duality for cc system using several
potentials and the parton-model cross section. Although
they have obtained reasonable agreement, the relativistic
correction to the nonrelativistic calculation is not small
for the ee system. The nonrelativistic description of the
quarkonium system becomes better for heavier quarks.

In this paper we make a detailed test of the Q duality
for a very heavy t quark of mass around 25 GeV (and also
b quark) using several potentials which include the pertur-
bative QCD results for short distances. In Sec. II, we dis-
cuss general properties of the potential and give three po-
tentials which show the perturbative QCD behavior at
short distances and reproduce the cc and bb spectra and

I

leptonic widths fairly well. In Sec. III, we introduce a
sum rule (Q duality) and discuss both sides of that rela-
tion. It is suggested that the Coulomb-type correction to
the perturbative calculation of the vacuum polarization is
important for very heavy quarks. In Sec. IV, we explicitly
check the sum rule using the potentials introduced in Sec.
II. Section V contains several concluding remarks. In an
appendix, we show the form of the potentials we use in de-
tail.

II. QUARK-ANTIQUARK POTENTIAL

The nonrelativistic description of a quark-antiquark
(QQ) system becomes better for heavier quarks because of
asymptotic freedom. We can obtain the spectra and wave
functions (therefore, leptonic widths of vector mesons,
etc.) by solving the Schrodinger equation if we know the
QQ potential V(r) and the quark mass.

A. General properties

In order to discuss the properties of the QQ potential, it
is convenient to consider it in three regions, i.e., at long,
short, and intermediate distances.

At long distances, the QQ potential is expected to grow
linearly, leading to confinement. This behavior is con-
sistent with the linear Regge trajectories of light rnesons.
Monte Carlo calculations in the lattice-regularized QCD
have confirmed ' this expectation.

At short distances, perturbative calculations of QCD
give reliable predictions for the QQ potential. Since the
effective coupling of QCD at short distances is rather
small, the one-gluon-exchange term dominates the poten-
tial and leads to Coulombic behavior at small r. This 1/r
potential is modified logarithmically by the running cou-
pling constant.

The two-loop calculation of the QQ potential in mass-
less QCD gives

4mcg c I bi »in(IJ'AMs'r')

b, r ln(1/~M, r )
1+ 2' +

bo ln(1/A —r ) b ln(1/A —r )
2 2 2 2 2 (2.1)

where cz ———', is a color factor, bo ——11——', Xf,
bl ——102——", Xf, c =—', ——', Ãf, yE ——0.5772- is
Euler's constant, Xf is the effective number of flavors,
and MS refers to the modified minimal-subtraction
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scheme. Calculations with massive quarks have not been
performed. In the following we take Nf ——4 for simplicity.

At present, the QQ potential at intermediate distances
cannot be calculated from QCD. Here experimental infor-
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mation from cc and bb spectroscopy is useful. A number
of potentials' are able to reproduce the spectra of the
ec and bb systems. A remarkable fact is that they all
agree'9 approximately at intermediate distances (0.1
fm&r(I fm) up to additive constants. (The effect of
adding a constant to the potential can be compensated to
some extent by changing the quark mass. ) The inverse
scattering construction of the potential supports this
agreement.

8. Choosing a potential

Among the proposed potentials, that of Buchmuller,
Grunberg, and Tye (BGT)' includes the short-distance
behavior of Eq. (2.1). This potential, however, implies a
fairly large AMs of about 500 MeV, which is related to the
Regge slope parameter (a'- I GeV ). It is not possible
to incorporate a smaller AMs in this scheme. Thus, we
have to connect the phenomenological potentials at inter-
mediate (and long) distances and the calculated short-
distance potential, Eq. (2.1).

In order to see the effects of changing the short-distance
part of the potential (i.e., AMs) and changing the
intermediate-distance part, we use the following three po-
tentials.

(1) "QCD + Richardson" potential with AMs
——200

MeV. This potential is constructed from the Richardson
potential' for r~0. 1 fm, Eq. (2.1) with AMs ——200 MeV
for r &0.03 fm, and logarithmic interpolation between 0.1

fm and -0.03 fm. This method of connection is the same
in spirit as that of Ref. 19 ("Buchmiiller-Tye potential"
with AMs ——200 MeV).

(2) "QCD+ Martin" potential with AMs ——200 MeV.
This potential is obtained by connecting smoothly the
Martin potential2o for r )0.1 fm and Eq. (2.1) with
AMs =200 MeV.

(3) The original BGT potential' with AMs ——509 MeV.
These three potentials are shown in Fig. 1.

The potentials (1) and (2) coincide at short distances,
while (1) and (3) almost coincide at intermediate distances.

3 I I

TABLE I. The calculated n.S'-1S mass difference in Mev for
the bb system (n =2,3,4).

544
871

1130

Potential
(2)

577
914

1154

(3)

554
889

1154

Experiment

559+3
891+4

1113+4

Thus, comparison of the results from (1) and (2) is useful
to study the uncertainty coming from intermediate (and
long) distances which includes the uncertainty arising
from the method of connection. The AMs dependence can
be obtained by comparing the results from (1) and (3).

C. Predictions for &b and tt systems

Since we have introduced two new QQ potentials besides
an old one, we should check whether they reproduce the
spectra and leptonic widths of the existing cc and bb sys-
tems. If they do not, they must be discarded. We have
calculated these quantities and found that they are in sa-
tisfactory agreement with the data.

For the cc system, the short-distance alterations from
the original Richardson or Martin potential have little ef-
fect for mass spectra, because even the J/1(t has a rather
large radius compared with the connecting point.

The calculated energy levels and leptonic widths relative
to the 1S state for the bb system is shown in Tables I and
II, together with the experimental data. The b-quark mass
used is 4.878 (4.837) GeV for the potentials 1 and 3 (2).
All three potentials give reasonable agreement with the
data

For the absolute values of the leptonic width, we com-
pare the value obtained from the Van Royen —Weisskopf
formula with that from the same formula with O(a, )
corrections. [For details, see Sec. III B.] The O(a, )

correction tends to improve the agreeme~t between the
calculated value and the data. The value of the corrected
leptonic width of the bb IS state is 1.00 (0.92, 1.07) keV
for the potential 1 (2, 3) while the experimental value is
1.15+0.13 keV.

We also how in Tables III and IV our predictions for
the energy evels and the leptonic widths for the tt system.
The mass of t quark is determined in such a way that the
1Smass is equal to 50 GeV.

III. THE Q DUALITY

A. Derivation of the sum rule

The total hadronic cross section in e+e annihilation is
related to the absorptive part of the hadronic vacuum po-

I I I I I
0.0 1 O. t

r (fm)

FICr. 1. The three QQ potentials. Solid curve:
QCD+ Richardson potential {1);dashed curve: QCD+ Martin
potential (2); and dash-dotted curve: BGT potential (3). Poten-
tials (1) and (2) coincide at short distances, and potentials (1) and
(3) almost coincide at intermediate distances.

(1)

0.44
0.32
0.26

Potential
(2)

0.49
0.33
0.25

(3)

0.44
0.32
0.26

Experiment

0.46+0.05
0.33+0.05
0.22+0.05

TABLE II. The leptonic width for the bb system normalized
to the 1Swidth.
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larization II(s). [In this paper we normalize ll(s) as
R (s)=ImII(s), where R (s) is the ratio of the total hadron-
ic cross section to the p+p cross section calculated in
@ED.] For large values of

~

s
~

compared with A2, per-
turbative calculation gives a reliable prediction for II(s) in
general. This fact leads to a sum rule for R (s).

In the following, we restrict ourselves to a single flavor
of quark, i.e., we consider cc production, bb production,
etc , separately. [Rigorously, this is legitimate up to
O(a, ) or in the approximation we will use later. ]

Consider an integral of II(s) over the contour C of Fig.
2. Since there are no singularities in the contour,
Cauchy's theorem tells us that

f II(s)ds=O. (3.l)

1S
2S
3S
4S
5S
6S
7S
8S
9S

3.0 keV
0.42
0.27
0.21
0.175
0.155
0.14
0.13
0.12

Potential
(2)

3.0 keV
0.47
0.32
0.24
0.19S
0.165
0.14
0.125
0.115

(3)

5.5 keV
0.31
0.19
0.14
0.115
0.100
0.091
0.084
0.079

TABLE IV. The predicted leptonic width (for 1S) and the ra-
tio to that of 1S (for 2S—9S) for the tt system. The mass of the
1Sis set to 50 GeV.

We separate this integral into two parts, an integral over
the large circle C' of radius s, and an integral over the pos-
itive real axis. Thus, the relation Q(s ) = f', R(s)ds,

1

(3.5a)

f R(s)ds = —' f,II(s) ds
M 2 C' (3 2) and

4

f R'~"'(s)ds =—f, II'~"'(s)ds .
Sp C' (3.3)

Nate that the contour should not enclose any singularity
for this relation to be valid. The value of so must be
chosen such that this requirement is satisfied, and is dif-
ferent from M~ in general.

Provided that the right-hand side of Eq. (3.3} is a good
approximation to the right-hand side of Eq. (3.2), we can
obtain a sum rule by equating the two,

f R(s)ds = f R'~"'(s)ds . (3.4a)
M 2

1
Sp

We rewrite this equation for notational simplicity as

holds, where M& is the mass of the lowest-lying vector
meson. The left-hand side of this equation implicitly in-
cludes the discrete sum over the resonant states.

If s is large enough (s »A ) and far from threshold, we
can obtain a good approximation to the right-hand side of
Eq. (3.2} from perturbation theory. We refer to the per-
turbative approximation of II(s} as II'~"'(s). A similar
argument as above leads ta

Q'~"'(s }= R'~"'(s)ds .
Sp

(3.5b)

B. Hadronic side of the sum rule

Since our aim is to check the consistency of the QQ po-
tentials and the finite-energy sum rule (FESR) [Eq. (3.4)],
we prefer heavier quarks for which relativistic and
higher-order corrections should be smaller. %'e deride to
use mainly a hypothetical t quark of charge 3 aild mass
around 25 GeV (which may be discovered in the next gen-
eration of experiments) and also the existing b quark.

By making use of the QQ potentials discussed in Sec. II,
we have solved the Schrodinger equation and obtained en-
ergy eigenvalues and wave functions of the vecto'r mesons.
(See Sec. IIC.) The leptonic width I (V~e+e ) can be
calculated from these quantities. In the narrow-width ap-
proximation, R (s) can be written as

The relation Eq. (3.4a) or Eq. (3.4b) represents a kind of
duality between a hadronic description (vector-meson reso-
nances plus hadronic continuum; left-hand side) and a
quark-gluonic description (perturbative QCD, right-hand
side} of e+e annihilation.

Q(s ) =Q'~"'(s ),
where

(3Ab)

TABLE III. The predicted nS-1S mass difference in MeV for
the tt system. The mass of the 1S is set to 50 GeV. The flavor
threshold lies between 7S and 9S depending on the potential.

2S
3S
4S
5S
6S
7S
8S
9S

625
927

1135
1301
1443
1569
1684
1791

Potential
(2)

565
885

1111
1288
1434
1558
1667
1763

(3)

723
1045
1263
1436
1583
1713
1831
1942

~pe%%
&

0

FIG. 2. The integration contour C in the complex s plane.
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R (s)= QM„I „5(s—M„~),
n

(3 6)

where M„(I „}is the mass (leptonic width) of the nth vec-
tor meson. The left-hand side of Eq. (3.4) may thus be ap-
proximated as

Q(s) = f,R (s)ds = g M„l „.
1

(3.7)

The leptonic width is given in the lowest order by the Van
Royen —Weisskopf formula, 26

z II „' '=4a eg (3.8)
M„

(3.9)

where e~ is the charge of the quark in units of e, R„(0) the
radial wave function at the origin (of the nth meson). The
0(a, ) correction to this formula has been calculated as

(()
1 ——o.,

It is easy to see that this correction factor is very large
for the cc system (-0.5) and is not small for the bb sys-
tem (-0.3). This is one reason that we study the tt system
of mass around 50 GeV. Another reason is that the non-
relativistic approximation is excellent for these heavy
quarkonia.

FIG. 3. Contributions to H(s). The solid line denotes the
quark, curly line the glu()n, dashed line the Coulomb part of the
gluon, wavy line the photon. (a) Lowest-order diagram. (b)
O(a, ) diagrams. (c) Diagrams which give O((a, /P) ) contribu-
tion.

2
(3.10a)

C. Quark-gluonic side of the sum rule

The right-hand side of the sum rule Eq. (3.4) can be cal-
culated in perturbation theory. In the zeroth order in a„
it represents the production of a free quark pair [see Fig.
3(a)]:

In this equation, the quark mass m (which is implicit in
P) is to be understood as the position of the pole in the
quark propagator. We call it the "pole mass" hereafter.
There enters another quark mass in the discussion, i.e., the
quark mass M used in solving the Schrodinger equation.
We call it the "constituent mass" from now on.

The order e, correction to the cross section has been
calculated ' only for massless quarks (i.e., for P= 1). In
the MS scheme,

n(c)(s) = '
R "'(s)ds = 3eq'sP ',

4m 2 8' '{s)
I ()

——3e(2 1+ +(1.99—0. 121Vf )

'I 1/2
4m= 1 ——

S

1/2
4m1—

s
(3.11)

f (P)=
2P

r

3+P rr 3
4 2 4m.

(3.13)

and cF———', is a color factor.

and m is the quark mass.
Next we consider the effect of the strong interactions in

the lowest order [0(a, )]. Relevant diagrams are shown
in Fig. 3(b). In this order we may use the interpolation
formula of Schwinger:

(3— ')R'"(s) =3eg - [I+ Fa,cf(p)], (3.12)
2

(3.14)

Typically this 0(o;, ) term contributes only less than 1%
to R and we might be tempted to conclude that the 0(a, 2)

correction can be neglected in the general case. In fact,
the form of R ' '(s) or R "'(s) has been used in most of the
previous studies of the cc and bb systems. Nevertheless, it
turns out that the 0((x, ) term cannot be neglected for
small P.

Inspection of Eqs. (3.11} and (3.12) indicates that at
small P with P(a„ the correction term of order a, dom-
inates the zeroth-order term. This is due to the 1/P singu-
larity in f(P). Generally, in the nth order in a„ the
strongest singularity comes from the ladder diagram of
the Coulomb type, Fig. 3(c), and is proportional to
(c(,/P)". These terms in fact have a dominant contribu-
tion to R((" ' at small P. Summing up these leading
(a, /P)" terms, we are led to '

3+P ~ 3f

cFa, +3m/(3)(cFa, ) m 5{s—4m ) . .3 2 2

4m

r

( ) ~ p(3 p2) I rlcFct~/P'
R ' (s) =3e~

2 1 —exp( —m.cFa, /)t3)
(3.15)



28 QUARK-ANTIQUARK POTENTIAL AND Q2 DUALITY

In this expression, all 0 (a, ) corrections and all
0{(a,/P)") corrections are both included. The last term
of this equation is the contribution of the artificial
Coulomb poles which have no direct correspondence to
the actual resonance. These poles should be considered as
technical objects. For a heavy quarkonium such as the tt
system we consider, it is easy to see that P is very small in
the resonance region and the Coulomb-type correction
turns out to be very important.

Finally, we should make a comment concerning the
strong coupling constant a, . Which a, should be used in
Eqs. (3.12) and (3.15) is a difficult question. In the follow-
ing, we decided to use a, (4m ) in the MS scheme with
Nf ——4. Rigorously speaking, we should have used a cou-
pling including the effect of the quark mass. The most
important reason for our choice is our inability to include
the quark-mass effect in the short-distance behavior of the
QQ potential. Consistency requires that the same approxi-
mation should be used in the perturbative approach as the
potential approach. We believe that this approximation
causes little error on the results.

IV. TESTING THE SUM RULE

In the previous section we have derived the sum rule,
Eq. (3.4). Now we are in a position to check the sum rule
explicitly.

300—

I I I I I I I I I I I

r
~J
J

1

r-'
I J

A. The tt system with the potential (I)

We begin with the tt system of mass around 50 GeV us-
ing the QCD+ Richardson potential (1). The value of the
constituent mass M is 25.47 GeV in this case. We take

the pole mass m as half of the mass of the 1S vector
meson, i.e., 25 GeV.

Several approximations to the left- and right-hand sides
of Eq. (3.4) are plotted in Fig. 4. For the left-hand side,
fI(s) of Eq. (3.7), both with and without 0(a, ) correction
to the leptonic width [Eqs. (3.9) and (3.8)j, are shown. For
the right-hand side, the three functions

T

II(0)(& )

n'~"'(s ) — II' "(s )

II"(s )

are plotted. These functions are obtained by integrating
R' '(s), R"'(s), and R "(s) in Eqs. (3.10a), (3.12), and
(3.15). The left-hand side of Eq. (3.4) with 0(a, ) correc-
tion to the width formula is in good agreement with the
right-hand side with Coulomb-type correction, 0"(s).
Other curves do not agree with each other. Thus, we may
conclude that the QCD correction is essential in order that
the sum rule holds. ' The Coulomb-type correction
should not be neglected, and the 0(a, ) correction to the
leptonic width is also important to obtain the agreement.
Another conclusion is that the difference between the pole
mass and the constituent mass is about 500 MeV.

B. The tt system: potential dependence

From now on we use the leptonic-width formula with
the 0(o., ) corrections and 0"'(s) only.

Dependence on the potential at intermediate distances

In Figs. 5, we show the two sides of the sum rule ob-
tained from potentials (1) and (2). Both of these potentials
show the QCD behavior with AMs= 200 MeV at short dis-
tances. Thus, we can check the uncertainty arising from

300 I I I I I I I

200-I

100-

s (GeV)

IJ

I

I--"" I I I I I I I I I I

50 51 52

200-

4)
(9

0
50

IIpr )
I

I

I I I I I I I I I I I

51 52

a (GeV)
FIG. 4. Q(s) and O'I "'(s) for the tt system using the poten-

tial (l). Solid (dashed) step-line is Q(s) with (without) the O(a, )

correction to the width formula. Solid (dashed, dotted) curve is

Q"'(s) (0'"(s) 0' '(s))

FIG. 5. Q(s) and Q"'(s) for the tt system. O(a, ) correction
to the width formula is included. Solid [dashed] step-line is for
the potential (1}[(2)]. Solid curve is 0'"(s) and common to the
two potentials.
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the form of the potential at intermediate distances. Re-
sults from the two potentials agree with each other fairly
well. In the case of potential (2), we can obtain better
agreement by reducing m by 100 MeV. Thus, we can con-
clude that changing the intermediate potential does not
cause large uncertainty in the results.

A~g dependence

10—

I I I I I I I I I

Curves for Q(s) derived from the potentials (1) and (3),
as well as Q'"(s) for AMs

——200 MeV and 500 MeV are
shown in Fig. 6. Since these two potentials almost agree
at intermediate distances, we can extract the AMs depen-
dence from this comparison. The agreement for
AMs=500 MeV is not as good as that or AMs=200 MeV.
We should use m-M~/2 —150 MeV in this case. This
corresponds to M —m-700 MeV, which is larger than
500 MeV from AMs

——200 MeV. Thus, the larger value of
AMs leads to a larger difference between the pole mass and
the constituent mass.

C. The bb system

Curves for Q(s) from the three potentials and corre-
sponding Q"(s) are plotted in Figs. 7 and 8. Again the
pole mass is taken as m =M&/2. Better agreement is ob-
tained for AMs ——200 MeV if we decrease m by —100
MeV. Since the difference between M& and 2M is smaller
(binding energy is smaller) for the bb system, the differ-
ence M —m is in the range of 150—250 MeV. Although
this difference is smaller than that for the tt system, the
ratio r = (M —m)/M is larger:

I I I I I I I I I I I

10 11

s (GeV)

FIG. 7. Q(s) and Q"(s ) for the bb system. Notations are the
same as in Fig. S. Dotted curve shows 0'"(s ) with adjusted pole
mass m for potential (1).

0.03—0.05 (bb system),

0.01—0.015 (tt system) .
This is consistent with the naive expectation that various
corrections are smaller for heavier quarks.

V. CGNCLUDING REMARKS

We can draw the following conclusions about the bb
and tt systems from studies of the Q duality.

(i) If we use the leptonic widths without O(a, ) correc-
tions [Eq. (3.8)] on the left-hand side and Q' '(s) without
O(a, ) corrections [Eq. (3.10b)] on the right-hand side of

300-

0
200-

I
I

)
/I,.

. '
I /J //

I I I I I
/

/ t

/
/
r-- 4-

I

//100-. '

r /

0 I

50
I I I I I I I I I

52

s (GeV) 0 I I I I I I I I I I I

10 11
FIG. 6. Q(s) and Q"(s) for the tt system. O(a, ) correction

to the width formula is included. Solid [dashed] lines are for the
potential (l) [(3)]. Dotted curve gives 0'"(s) with adjusted pole
mass m for AMs

——SOO MeV.

s (GeV)

FIG. 8. Q(s) and 0'"(s) for the bb system. Notations are the
same as in Fig. 6.
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FESR, Q duality in the form of FESR cannot be satis-
fied.

(ii) If, however, we include corrections to the leptonic
widths and Coulomb-type corrections to the perturbative
calculation, we can obtain a reasonable agreement by tak-
ing the quark pole mass around a half of the 1S vector
mesons.

(iii) We would also like to point out that the above re-
sults are fairly insensitive to the choice of the potential so
far as the potential reproduces the correct mass spectra
and leptonic widths.
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APPENDIX

In this appendix, we show the detailed form of the po-
tentials (1) and (2).

Potential (l): QCD+ Richardson potential. This poten-
tial is constructed by connecting the Richardson poten-
tial' Vz (r) and the two-loop QCD potential
Vr1co(r,A~& 20——0 MeV), Eq. (2.1), with logarithmic inter-
polation:

V&(r), r ~r2,
V(r)= -0.78241nr —0.5717, r~ &r &r2,

VocD(r, A~~ =200 MeV), r & r t,
where r is in GeV ', r&

——0.1428 GeV ', r2 ——0.5 GeV
Potential (2): QCD+Martin potential This p.otential is

obtained by connecting the Martin potential and the
two-loop QCD potential. A constant is added to the Mar-
tin potential in order to connect the above two smoothly:

—7.392+6.870r '* r & ro,
V(r)= '

VqcD(~, A—
s ——200 MeV), r & ro,

where ro ——0.3665 GeV ' and r is in GeV
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