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We present a detailed analysis of the previously reported anomalous energy dependence of the fun-
damental K -X parameters hm =mt —ms, rs,

~
i)+ ~, and tang+ . Such variations with energy

can arise from the interaction of the kaons with an external field or medium. A phenomenological
formalism is introduced to describe such energy-dependent influences on the K -E system. Using
this formalism we demonstrate that effects of the type suggested by the data cannot be ascribed to
an interaction of the kaons with an electromagnetic, hypercharge, or gravitational field, or to the
scattering of the kaons from stray charges or cosmological neutrinos. The data are, however, com-
patible with an interaction which is even under charge conjugation, and models of such an interac-
tion are discussed. We also consider the possibility that such effects may arise from a fundamental
violation of Lorentz invariance. All of the mechanisms which appear capable of describing the data
also suggest that similar effects could arise in neutrino oscillations, and some of the consequences of
such a possibility are outlined.

I. INTRODUCTION

In a recent series of papers' we have reported evi-
dence suggesting that several of the fundamental parame-
ters of the K -X system may have an anomalous energy
dependence. The data, which were obtained from a series
of regeneration experiments at Fermilab, specifically
indicate that the values of b,m=mL —ms rs ~'g+
and tang+ as determined in the K -g rest frame de-
pend on the velocity of this frame with respect to the labo-
ratory. If we let x denote the value of any of these four
parameters in the proper frame of the kaons, then the
anomalous behavior is manifested through nonzero values
for the slope parameters b„' ' defined by

x =xo(1+b„y ), y=Ettlm, IiI =1,2 . (1.1)

The object of the present paper is to study the b„'

theoretically with the aim of formulating a detailed model
of the slope parameters.

An energy dependence of the neutral-kaon parameters
in the kaon rest frame, such as that represented by Eq.
(1.1), could (but need not necessarily) arise from the in-
teraction of the K -I( system with an external field or
medium. (%'e will henceforth use the term "field" generi-
cally to denote any external influence on the K -K sys-

—0

tern, such as an electromagnetic, hypercharge, or gravita-
tional field, the neutrino sea, or any other hypothetical
medium permeating space. ) Previous work along these
lines has been aimed at setting limits on the effective cou-
plings of various fields to the K -K system using the
available low-energy data. Good was the first to note
that if the gravitational field has a component which is

odd under charge conjugation (C), then the long-lived neu-
tral kaon would decay rapidly into 2m. From the known
limits on this decay mode, he was able to infer a limit on
the strength of such a coupling to kaons. Following the
actual observation of this (CP-violating) mode, the idea of
a C-odd field coupling to kaons was revived, this time in
the form of a long-range hypercharge interaction between
the kaons and our galaxy. It was shown that the coupling
constant for this interaction could be chosen to account
for the experimental value of

~
i)+ ~, while at the same

time remaining consistent with the limits implied' by the
Eotvos-Dicke-Braginskii experiments. " However, a C-
odd interaction mediated by a field with spin J leads to the
prediction that

~
t)+ ~

ccy, from which J &0 could be
ruled out even by the early low-energy data. ' The
remaining possibility, a C-odd J=0 field, ' ' predicts the
wrong value for P+ (at least in some models) and hence
may also be ruled out. ' A more detailed analysis of the
effects of various cosmological fields on the jC -K system
was subsequently given by Nachtmann, ' who considered
the influence of particular choices of scalar, vector, and
tensor fields on Am as well as on g+ . As can be seen
from his Table III, however, none of the cases Nachtmann
considers describes the data of Refs. 1—3. For example,
for his scalar, vector, and tensor fields

~ g+ ~

is always
directly proportional to y, where J=0, 1, or 2, respec-
tively. This contrasts with the behavior found in Refs.
1—3 which is described by Eq. (1.1). Nonetheless,
Nachtmann's analysis is important both for its methodolo-
gy and for the limits it sets on couplings of various C-odd
fields to neutral kaons. These limits can, however, be sig-
nificantly improved using the new Fermilab data, ' as
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we proceed to discuss.
For later purposes we will need the specific numerical

values of the slope parameters b„' ', and hence we begin in
Sec. II by reviewing the data of beefs. 1—3. Section III
develops the formalism for describing an energy depen-
dence of the neutral-kaon parameters. We assume that
these effects can be accounted for by a set of complex y-
dependent functions u, (a =O,x,y,z) which, when added
to the internal Hamiltonian for the E -EC system, make
&ttt, (I L,

—I s ), and g+ y-dependent [see Eqs. (3.22) and
(3.35)]. If a single u, gives the dominant contribution to
the observed y dependence of the kaon parameters, then
its real and imaginary parts can be fixed by using two of
the four slope parameters b~ ', b~ ', b'„', and b~ '. lt
then follows that each u, leads to two nontrivial relations
among the four slope parameters, and these are given in
Eqs. (3.54), (3.60), and (3.62) for u„, uz, and u„respective-
ly. It should be emphasized that this treatment, in con-
trast to Nachtmann's, ' is purely phenomenological in that
it makes no assumptions concerning the origins of the u, .
Section III contains, in addition, a discussion of the y
dependence of the kaon parameters in the high-energy re-
gime, where the effects of the u, would be "large" in con-
trast to the present energy range where they are "small. "

The slope relations derived in Sec. III are used in Sec.
IV to demonstrate that several specific models of the u,
do not provide a natural description of effects of the type
suggested by the data of Refs. 1—3. These include the hy-
potheses that the observed y-dependent effects arise from
an external electromagnetic or hypercharge field, or from
the scattering of the kaons from stray charges or cosmo-
logical neutrinos. (Gravitational fields are considered
separately as we discuss below. )

Section V discusses several theoretical models of the u,
which may be compatible with the experimental data.
Consideration is given to the possibility that the u, ori-
ginate from some interaction which would also manifest
itself elsewhere, such as in neutrino oscillations. The
phenomenology of neutrino oscillations in the presence of
such an interaction is discussed briefly.

In Appendix A, we review the kinematics of the regen-

eration process. Finally, in Append&», we pese»t a de-

tailed discussion of the behavior of the X -K system in a
gravitational field. As we have noted previously in Ref. 2,
care must be taken in describing the observable effects of a
gravitational field, which affects not only the K -K sys-
tem, but also the clocks and measuring rods that are used
in studying it. We demonstrate that the experimental re-
sults of Refs. 1—3 cannot be explained in terms of any
known gravitational effect. When combined with the re-
sults of Sec. IV, this leads to the conclusion that the exper-
imental results, if correct, cannot be naturally explained in
terms of any known interaction.

II. REVIE%' OF THE DATA
We review in this section the salient features of the data

presented in Refs. 1—3. From a theoretical point of view,
the quantities of direct interest are the slope parameters
b~ ', bP', b„' ', and b~

' (N =1,2), which give the energy
variation of Am, I I —I"s,

~
r)+ i, and tang+, respec-

tively. As described in Refs. 1 and 3, we have extracted
the slope parameters from the data under several different
assumptions and these results are reproduced in TaMe I.
For later purposes the following observations will be help-
fu1.

(1) We begin by emphasizing that what we have deter-
mined experimentally is br' (= bs), and—not br, be-
cause the individual widths I I s appear in I (2.11) and not
their difference. Even though I z ~~I L, b~ cannot be in-
ferred from b ~~ without additional experimental or
theoretical input, as we discuss in Sec. III. On the other
hand, it is b~, and not b~~ which is simply related to the
remaining slope parameters b~, b&, and b~. To determine
bz, the energy dependence of I L, must be measured, and a
discussion of ways to do this is given in Ref. 3. We note
in passing that the approximation b~~= —b,~ which we
use repeatedly can be checked by actually fitting the data
for I ~ ——A/g~. The agreement between the result so ob-
tained and the approximate expression bz.z=- —b,z is suf-
ficiently good for our purposes.

(2) The single most important experimental result is the
sign of b~, which is negatl, ve. This observation by itself is

Parameter

536/488
604/492
573/492

522/484 0.482 +0.014
526/488 0.534+0.002
548/488 0.532+0.002

0.557+0.036
0.535+0.002
0.534+0.002

TABLE I. Summary of the data from Ref. 3. Results shown are for method A of Ref. 3. (1) Internal fit. (2) External fit, with
low-energy values at E~ =-5 GeV: hm = (0.5349+0.0022) X 10' fi sec ', rs = (0.8923+0.0022) X 10 ' sec,

~ q+ ~

= (2.274
+0.022)X10 ', tang+ ——0.986+0.041. (3) As in (2) above, except

i g+ ~

=(1.95+0.03)X10

Fits of the form x =xo(l+b„' '7/") Energy-independent fit
Xp 10b„' ' X /do p 10 Q„"' g /dof xp g2/dof

—8.48 k2. 89 521/484 0.620+0.066 —18.2+6.05
—7.43 k 1.48 533/488 0.535+0.002 —9.07+2.03
—6.30+ 1.46 550/488 0.535+0.002 —8.49+2.04

(1) 0.880+0.015
(2) 0.892+0.002
(3) 0.892+0.002

+ 1.77+0.90 521/484 0.859+0.029
+ 1.27+0.38 533/488 0.892+0.002
+ 0.99+0.38 550/488 0.892+0.002

~ 4.35+2.58
+ 1.47+0.56
+ jk.27*0.57

522/484 0.905+0.007
526/488 0.895+0.002
548/488 0.893+0.002

536/488
604/492
573/492

10'
i g+ i

(1) 2.14 +0.04
(2) 2.23 +0.02
(3) 2.07 +0.02

—2.01+0,86 521/484 2.21 +0.07
—3.60+0.52 533/488 2.26 +0.02
—0.2020.62 550/488 2.03 +0.03

—4.80+2. 15 522/484 2.09 +0.02
—6.26+0.84 526/488 2.14 +0.01
+ 1.78+1.14 548/488 2.07 +0.01

536/488
604/492
573/492

tan((+ (1) 1.276+0.499 —33.7 + 12.3 521/484 2.071 2 1.840 —99.5 2 33.3 522/484 0.709+0.102
(2) 0.954+0.048 —21.5 +7.0 533/488 0.966+0.052 —26.3 + 10. 1 526/488 1.009+0.036
(3) 1.033+0.052 —22.3 +6.7 550/488 1.009+0.054 —30.1 + 10.0 548/488 1.081+0.040

536/488
604/492
573/492
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sufficient to rule out a number of possible sources for the
observed effects„ in particular an electromagnetic field, hy-
percharge field, or stray charges, as we discuss below.

(3) In Ref. 3, we also examined mz for a possible energy
variation and found none. As we discuss in Sec. III, the
individual masses mL z can have a different energy varia-
tion from that of Am=mL —mq. Hence it is perfectly
consistent to have the slope parameter b&~ for mz zero,
while b~, b q, bz, and b~ are nonzero. However, mz is
determined in a manner that is fundamentally different
from that used for the other parameters. It is thus possi-
ble that biz is in fact comparable to b~, but nonetheless
appears to be zero when analyzed as we have. This has
important consequences for the construction of models of
the b's, as we discuss elsewhere.

A,
+-=—'(d +Z)+ —,

' t4p'q' —(d —d )']' '
2

—:—,
' I —++im—

and the corresponding eigenvectors 4—+ are

+
+ a

b+— A,
+——id q2

We choose the phases of
~

K ) and
~

K 0) such that

CP ~K'&= —~K'),

(3.4a)

(3.4b)

(3.5)

III. DESCRIPTION OF THE K ESYS-TEM
IN AN EXTERNAL FIELD

B%'(t)

Bt
=~Ho% (3.1)

where Hp is a 2&2 matrix. (We take A=c =1 in this sec-
tion. ) For various purposes it is convenient to express iHp
in a number of equivalent forms:

%'e present in this section a systematic description of
the K -E system in an arbitrary external field. Our ob-
jective is to provide a general framework for understand-
ing the experimental results of Refs. 1—3 in terms of
which specific theoretical models can later be formulated.
It should be reemphasized at the outset that the term field
will be used generically to denote any external influence on
the E -I( system, such as an electromagnetic or gravita-
tional field, the neutrino sea, or any other hypothetical
medium permeating space. We assume that in the absence
of such a field the proper-time evolution of the K -K
wave function %(t) is given by

in which case the CP eigenfunctions
~
K~ ) and

~ K~&) are
given by

(CP =+1)
(3.6)

(CP =—1)

If CP is not conserved (but CPT is), then the eigenfunc-
tions in (3.6}are replaced by

'P = IKs&=(IP I'+ Iq I'} '"(P IK'& —qIK'&»
(3.'7)

+'= IKi & =(
I p I

'+
I q I

') '"(p
I
K'&+q IK'&} .

The states 4—evolve in time according to

qg
+

( r ) (
x t

)@—+ (
—
()) (

I' t /2 —im— —t
)y +

( ())—
(3.8)

where I + = I L and I =I ~ are the widths of KL and
E~, respectively, and m —+ are the corresponding masses. It
follows that

Ho=I +iM
=h p1+h„o„+hyo.y+h, o.,

(3.2a)

(3.2b)

=2pq= —,(I I. —I s)+i(ml —ms )

1= —,(I r, I s)+i h—m
ld p

2 (3.2c)
ld

Here I =I t and M =M~ are 2&2 matrices, the o's are
the usual Pauli matrices, and hp, h„,. . .,d, d, p, and q
are complex numbers. In Table II, we summarize the re-
strictions imposed by charge conjugation (C), parity (P),
and time reversal (T)'6 on the matrix elements of iHO us-
ing any of the forms (3.2a}—(3.2c}. The eigenvalues i(,

+—of
iHp are given by

= ——,
' r~+s am

To describe the effects of an external field, we write

iHp ——I +iM —+iH =I +iM+iF
F=Qp1+QxCTx +~yoy+~zCJz

(3.9)

(3.10)

The u's are complex numbers which are functions of
y=E&/m =(1—P )

'~ and of position, in contrast to the
ii's in Eq. (3.2) which are constants. We can decompose

TABLE II. Restrictions imposed by discrete space-time symmetries on the matrix elements of 100 in
Eq. (3.2).

Form of iHO

(3.2a)

(3.2b)

(3.2c)

CP

M12 ——M 12
——M21 ——M 21

I 12 I 12 I 21 I 21

M11 M22~ I 11 I 22

hy
——h, =0

M12 M 12 M21 M21
I 12=I 12=I 21=~21

hy
——0

CPT

M11 ——M22
I 11=I 22

h, =0
d=Z
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the u, (a =x,y, z) into their real and imaginary parts,

ua =Pa+'0a {3.11a)

(3.11b)

(3.11c)

' and g,' ' (N =0, 1,2, . . .) are now real functions, which
can be directly related to the experimentally determined
slope parameters b~, b~, bz, and b~ as we discuss below.
Although g~

' and g,
' can, in principle, depend on x, the

present experiments are insensitive to Vg,' ' and V'g,'

and hence the g's and g's can be treated as if they were in-
dependent of position. (This point is discussed in greater
detail in Appendix B.) However, in order to fully describe
the u, it will be necessary in the future to determine V'u, .
Such measurements could also distinguish between the in-
trinsic contributions to H from d, d, p, and q, and from
the external (but velocity-independent) contributions from
g' ' and g,

' '. It should also be noted that in some models

g, ' and g,
' ' can themselves be proportional to P=U/c,

but since P-=I in the high-energy regeneration experi-
ments we are considering, we can take g, ' and g,

' to be
constants. From a theoretical point of view, however, it
may be potentially important to be able to distinguish be-
tween a dependence of u, on y or P y, for example.

It will be useful in the ensuing discussion to have in
mind a specific example of one of the u's. Suppose there
existed a long-range field which coupled to the hyper-
charge F, whose source was our own galaxy. Since E and
E have opposite values of F, their coupling to this field
would produce an energy difference which would manifest
itself as an apparent breakdown of CP conservation. '

I.et Ap denote the static hypercharge potential of a E due
I

to its interaction with the galaxy,

Yg~o=f
Rg

(3.12)

where FG and RG are the hypercharge and effective radius
of the galaxy, and f is an appropriate coupling constant.
If 3p is assumed to be the fourth component of a four-
vector Az, then the potential seen by a kaon moving with
velocity P is Aoy. Since such a field produces equal and
opposite energy shifts for E and E, its effects are
represented by a contribution to Fof the form

u, =spy

g,
' '=30, g,

' '=0 for N&1

=0, for all N

(3.13)

d +up+u~
—lp + u& + l uy

—lp +u~ —le
a+up —uz

—
lpga

2

Vu
(3.14)

The eigenvalues A, „— of iH can be obtained immediately
from Eq. (3.3) by simply replacing d, d, p, and q by the
corresponding u-dependent parameters d„, d„, p„, and
q„, respectively. From Eq. (3.9), we then find

It will be shown below that the observed energy depen-
dence of hm and g+ cannot in fact be accounted for by
such an interaction.

Returning to Eq. (3.10), we see that in the presence of
external interactions iH has the form

X„+—X„—= —,
' (r~ —r~)„+I'(am )„

=2pqI1+(pq) [I'u„(p +q ) uy(p q—) (u„—+uy —+u, )]I' (3.15)

When the right-hand side of Eq. (3.15) is separated into its
real and imaginary parts, the dependence of (I I —I s)„
and (Am)„on the u, can be inferred. In principle, Eq.
(3.15) thus generates an exact, but complicated, expression
for the y dependence of the experimentally determined
quantities (I L

—I s)„and (4m)„once the dependence of
the u, on y is specified. The complete expression for

will be used below when we discuss the behavior
of the E -E system at very high energies. However,
given the limited statistics and lower energies of the avail-
able data, the best we can hope to do at the present time is
to recast Eq. (3.15) in the same form as that used in Refs.
1—3 to parametrize (Am )„and (I I —I s)„,namely,

br are experimentally very small, hm and I I. —I s can be
identified with the low-energy (y= 10) Particle Data
Group values of these parameters. (This becomes an exact
statement in models where b~ ' and b~ ' are themselves
proportional to P.)

Similar remarks apply to the y dependence of
Il+ ——A(XL ~m. +Ir )/3 (ICs~m+Ir ) which is. deter-
mined by the analog of Eq. (3.4),

+

(3.17)
b~ kg —ld~ QI

As we demonstrate below, Eq. (3.17) leads to the relations

(am)„=(am)(1+b,'"'y ), N =1,2,
(r —r~)„=(rL —rs)(1+bp'y ), N =1,2

(3.16a)

(3.16b)

t ~+ I.= I ~+ t
(I+b„'"'r'), N = 1,2,

(tang+ )„=(tang~ )(1+be 'y ), N =1,2

(3.18a)

(3.18b)

Here Am and I sL, are the values for the EL, —Es mass
difference and EsL decay rates that would obtain in a
world in which the u~ were zero, and b~ ', br ' are func-
tions of g,' ' and g,

' ' as we discuss below. Since ba and

where again bz
' and bing' are functions of g,' ' and g~

~
Il+

~
„and

~ Il+ ~

are interpreted in exactly the same
way as were {b,m)„and hm, and similarly for (tang+ )„
aIld tang+
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2pq=bm(i —I s/26m ) =6m(i —1.05)

=b,m(i —1) (3.19)

To proceed, we introduce a number of simplifications
into Eqs. (3.15}and (3.17).

(1) CPT will be presumed to hold for the intrinsic Ham-
iltonian Ho so that d =d. Note, however, that d„~d„ if
u, &0.

(2) We assume that at the energies of the current experi-
ments

I u, I
(a =O,x,y, z) is small compared to lp I

or
I q I, but not necessarily compared to e:—1 —q/p. If, for

example, we examine the experimental results for Am in
Sec. II, we observe that a typical value of the momentum-
dependent factor b'a 'y is 0.2 at p» ——70 GeV/c.
Since b~'y arises from the terms in square brackets in
Eq. (3.15), which typically are of the form u„/p, or
u„ /p q, etc., it follows that such terms must be small
(barring accidental cancellations). Equation (3.15) can
then be expanded in powers of u, /p, . . ., etc.

(3) Since the u-dependent terms are in fact small, we can
approximate the denominators which arise in the expan-
sion of Eq. (3.15) as follows. From Eq. (3.9),

Using q =p (1—e), we then have

2p 2=—bm (i —1)(1+e)

2q =Am(i —1)(1—e)

p2 q—2=2p e= hm(i —1 )e

p +q =2p (1 e—)=b,—m(i —1)

(p' —q')'=& (&)=o,
(p2+q2)2 (2p2)2( 1 2e)

=[Am(i —1)] = —2i(b, m)

(p2+q2}2

4p q

(p'+q')(p' —q') =2E
2p

Combining Eqs. (3.15) and (3.20), we find

(3.20a)

(3.20b)

(3.20c)

(3.20d)

(3.20e)

(3.20fl

(3.20g)

(3.20h)

—,'(I I —I g)„+i( im})„-=[—,'(l L
—I g)+ibm] 1+ (1 i)+— e(1+i}— 2 [uy +u, 2ieu—„uy]

b,m hm (Qm }2

(3.21)

We have retained in Eq. (3.21) all contributions of order u„u, , 0 F., 9 Qb and u, ube, where u, and ub denote any of the
terms uo, u„, u~, or u, . There are several reasons for keeping the (presumably) small higher-order terms in Eq. (3.21).

(a) To start with we see that the leading contribution from u, is in fact proportional to u, , for reasons detailed below,
and hence consistency demands that we retain u~ and u~e which could in principle be comparably large. The reason
why there is no contribution linear in u, is that u, cr, is odd under C, which means that it can contribute to the (complex)
mass difference only in second (or higher) orders.

(b} The only term in Eq. (3.21) which is (nominally) of leading order in small quantities is that proportional to u„. If
we assume that this term has a simple y dependence such as y with X = 1, or 2, then Eq. (3.21) can be used to relate g„'

and g„'
' to the observed slope parameters ba and br as we discuss shortly. Once g„'

' and g„'
' are determined, however,

the slopes of
I ri+ I

and tang+ are also determined. As we point out below, it is not clear at the present time whether
the experimental results of Sec. II are in fact consistent with u„giving the dominant contribution to the various slope pa-
rameters. If they are not, then other (necessarily higher-order) terms must be included in Eq. (3.21), which is part of the
reason why such terms have been retained. Among these eu„u~ is (nominally) third order in small quantities, but since
this is the only such term it can be included with little additional effort.

We proceed to separate Eq. (3.21) into its real and imaginary parts in order to recast it in the form of Eqs. (3.16). Us-
ing Eq. (3.11a), we have

2s. +l 2I&I(ky —0y)(I L,
—I g )„=(I r. —I s ) 1+

km

[(—k, '+0, '+2k, 0,}+(—k.'+0.'+2k.k. ) —2~2
I

~
I (4.4 —0.4 }]

(b,m )2

2$„—l 2
I
e

I
(g' +gy )

(bm)„=(bm) 1+
Am

ky +0y 24yky}+( 0 +0 2k 0*} 2l 2
I

&
I (40y+ky0 }1

(Am )
(3.22b)

(1+i)
2

(3.23}

In going from Eq. (3 21) to Eq. (3 22}, we take
2am y(r, —r, ) =——1, and

I

as we explain below. %'e will return to Eqs. (3.22) shortly
after the analogous expressions for

I 2)+ I

and tang+
are derived.

Turning next to 2)+ (and 2}00), we introduce the follow-
ing notation
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A(E ~rr+m )=c', A(E ~m+r. r )=c'
A(E ~n n )=d', A(E ~m m )=d'

= —(1+2@")

(3.24)

must be taken in retaining various terms which are nomi-
nally higher order in the small parameters u, and e. The
reason for this can be seen by noting that the momentum
dependence of

~ g+ r
in Eq. (3.18a),

I n+ —I.= I n+ I
+ I n+ r

I „'"'r, (3.28)

Hence, in the absence of external fields, we have

A (EI ~m'+m ) pc'+qc '

A (Es~m'+m } pc' qc '—

1+(1 —e)(e' —1)
1 —(1 —e)(e' —1)

—= ~ (&+e }

and similarly,

~~=-,'(~—2~") . (3.26)

r
=(2.274+0.022) X 10

——(44.6+ 1.2)

r 7loo i
=(2.33+0.08)X 10

$00——( S4+5)'

(3.27)

Equation (3.27) suggests that i)+ -=goo and hence that
e'= e"=-0, an assumption which we will henceforth make
in the u-dependent terms. From Eqs. (3.25) and (3.26), it
then follows that q+ ——goo ——e/2, in the absence of exter-
nal fields. e thus has the same phase (=45') as rl+
which leads immediately to Eq. (3.23).

In the presence of external fields p, q, d, and d are re-
placed by p„, q„, d„, and d„, respectively. We continue to
assume that

r
u

r /rp r
&1, etc. , but now greater care

If we choose the phase of E' so that the stationary
I=0 K ~2m amplitude is real, ' then e' =e". The
current experimental values for q+ and goo at low ener-
gies are'

+
Qg

b
+

fl
{3.29)

where a„/b„is given —
by E—qs. (3.14) and (3.17). Invoking

the approximations in (I)—(7) above we find after some
algebra

arises from a term of the form rg+ ru, =- re/2ru,
which is thus nominally of second order. It follows that
we must retain at least some second-order terms in the ex-
pression for q+ . However, not all such terms can be re-
tained since the resulting expression would be too cumber-
some to be of practical use. In order for (g+ )„ to con-
tain enough structure to describe the current data, but not
too much to render it useless, we will invoke the following
additional approximations

(4) All terms which are higher than second order are
dropped.

(5}All terms of order e, e', or ee' are dropped.
(6) All terms of the form u, are also dropped. The jus-

tification for this assumption is that each such term is
smaller than the corresponding one linear in u, by a factor
of order

r
u,

r
/Am & 1, and leads to no new physics if in-

cluded. However, terms of the form u, us (a&b) will be
retained.

(7) %e set u, (1+a)=u„ for essentially the same reasons
as in (6) above. Although these approximations do not
constitute a formal expansion of (g+ )„ in small quanti-
ties, they do generate an expression for (g+ }„which is
sufficiently accurate for our present purposes.

Returning to Eq. (3.4), the eigenfunctions in the pres-
ence of an external field are

(u» +iud )
1 — (1—i} + 1+E-ke

u~ e(1—s)+ uy (1+t) 2u+ uy+
Am (Qm)~

{3.30)

Using Eq. (3.30), the eigenfunctions 4'„—can be written in the form

e+= rE, )„=cv+(p+ rE'&+ rE'&),
e„-= rE, )„=—x-(&- rE'&+ rE')},
&+-=(1+ fi

-+I') '"
and hence,

(q+ )„= X+{p+c'+e ')

(p c'+c ')

u~ uy + E u {u~ + l uy )

{Am)

To the required accuracy we can write

Equation (3.32) can be simplified by use of the approximations in (1)—{7)above. We find

~+, —u„c(1—I ) —uy {1+))+u (1—g)
(g )„=-———,(~+~')+ — — +2 Arn

I.

(3.32)

{3.33)
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++ u~—= 1 —Re (1—i)
6m (3.34)

and hence,

(i)~ ) 2(e+e)~ [ u e(1 i) uy(1~i)~u (1 i)]~ u uy~iu u iu u ~ uyu*26m (3.35)

where the asterisk indicates complex conjugation. In a
similar fashion we have for goo,

(ii ~ )„=i}~ ~ (constant)eu„/2

—=i)+ [1+(constant)u„] (3.39}

(i)oo)„=—,
' (e—2c*')+ [ . ]26m

1+ —. ..[ (3.36)

where the expressions in square brackets in Eq. (3.36) are
identical to the corresponding ones in (3.35). To recapitu-
late, Eqs. (3.35) and (3.36) contain all terms of the form e,
E', u, u, e, and u, ub. All terms of third and higher order
in small quantities have been dropped, as have the
second-order terms proportional to e, e', e", ee', ee",
and u, . Equation (3.35) can now be separated into its real
and imaginary parts to obtain expressions for

~
ri+

and (tang+ )„as was done for (I'L, —I q)„and (b,m)„.
However, since the resulting expressions in the general
case are cumbersome, we will quote the results for

~ i)+ ~
„and (tang+ )„only for the special cases that we

consider below.
We note in passing that the linear contribution to

(ri+ )„ from u„appears with a coefficient e, whereas the
contributions linear in u„and u, do not. This observation,
which has important phenomenological consequences, can
be understood by examining the behavior of the terms pro-
portional to u„, u„, and u, under charge conjugation. In
the conventions of Eq. (3.5), C is given by

0 1
ox 1 0 (3.37)

a„+-p„(p'~ iu„)'"--"+=+ "=+b„q„(q +—iu„)'~
(3.38}

We see from Eq. (3.38) that if p =q, so that there is no
intrinsic CP violation, then a„—/b„—=+1 and the eigenvec-
tors %'„—+ are just Xz and XI, independent of the form
of u„. However, when p &q, a„—/b„— will depend on u„
and hence will be y-dependent in general. It follows that a
u„-dependent term is manifest only when there is a pre-
existing (or intrinsic) CP violation, and hence that the con-
tribution to (g+ )„ from u„must be of the form

from which it follows that uo1 and u„o.„are even under
C, whereas uyoy and u, o., are odd. Such C-odd terms
contribute differently to K and K and thus lead directly
to processes which manifest CP violation. By contrast, the
term proportional to u„cannot by itself lead to CP viola-
tion, but it can impart a momentum-dependence to a
preexisting CP-violating term which would otherwise be
constant. In the presence of the coupling u„o„,Eq. (3.17)
becomes

(1—lx+ I'}
2

Ree
I
1+x+

I

' (3.40)

where x+ ——A (K 0~m 1+v)/3 (Ko~m. 1+v) measures
the relative magnitudes of the EQ=+ES semileptonic
amplitudes. Even though data for the Kp3 decay modes
were collected in Ref. 4, as we have already noted in I, the
cuts imposed in analyzing these data were such as to pre-
clude a determination of 6. ' Nonetheless, a measurement
of 5 at high energy can (and should) be carried out in the
future, as we discuss in I. If we take the current experi-
mental limits" on x ~,

Rex+ ———0.009+0.020

Imx ~ ——0.004+0.026
(3.41)

to indicate that x+ ——0, then the dependence of the u, on

y can be determined directly from a measurement of
5=5(y). (Even though

~
x+

~

could in principle be com-
parable to

~
u,

~

/hm, retaining x+ merely serves to need-
lessly complicate the analysis of the y dependence of 5.
From a quantitative point of view the effect of x+ on the
slope of 5 is entirely negligible, hence x+ will hereafter be
set equal to zero. ) From Eq. (3.31) we find immediately
that 5 5„,

Jp+ I'—1

I
p'

I

'+1 (3.42)

where p+ is given by Eq. (3.30). Making the same approx-

in agreement with Eq. (3.35). Moreover, Eqs. (3.35) and
(3.39) can be recast in the form of Eqs. (3.18) with u„~y,
and could thus provide a phenomenological description of
the data of Sec. II. In summary, then, the C-odd terms
uy oy and u, o., lead to "large" y-dependent contributions
to (ri+ )„whereas the C-even term u„o„ leads to a
"small" y-dependent contribution. For later purposes it is
worth noting that for (Am)„and (I I —I z)„, the roles of
the "large" and "small" terms are interchanged, as we see
from Eqs. (3.22). We will return to quantify "large" and
"small" more precisely below.

Another CP-violating parameter which is accessible ex-
perimentally, in addition to g+ and goo, is Re@ which
can be extracted from the charge asymmetry 5 in the de-
cays KL ~m—+1*v(l =e or p). In the absence of external
fields (and assuming CPT), we have

I (Kl ~ir 1+v) —I (KL ~m. +I v)6=
I (KI ~m I+v)~1(KI ~n.+I v)



502 ARGNSON, BOCK, CHENG, AND FISCHBACH 28

imations as in (1)—(7) above we find

5„=-Re@+Re(p+)——,
' Re(p+)

P+ —p+ ( 1+g)
(3.43)

where (bm )„ is given by Eqs. (3.15) and (3.22),
m„+ = (mL )» and m„=(ms)„. Combining Eq. (3.47)
with Eq. (3.22b&, and noting that ms ——Red —Am/2, we
find

It is understood that when writing out the explicit form of
(p+) only the terms allowed by approximations (1)—(7)
are retained. For later purposes we exhibit the expression
for 5„ in the approximation when only the terms linear in
the u, are retained: +O(u, ) (3.48a)

2g.—2g. +~2
I
~

I g, +~21~
~ g,

ms& =-ms'1

5„—=Rem — ( v 2
~

e
~

g'„+gy
—

gy
—g, —g, )

1

(3.44)

Sm 240+25' ~2I&I4y —v2I&Igy
(mL ) —mL ' 1+

2m Am

(3.46)

to b~, b~, b„, and b~.
The remaining parameters whose y dependence can be

determined are mLs and I Ls. From Eqs. (3.3), {3.14),
and (3.15) we have

(m +-)„=—,
' ImIi(d„+d„)

+[4p„q„—(d„—d ) ]'y
I

=Red+/&+ —,
' {hm )„

We will return to Eqs. (3.43) and (3.44) below where we re-
late the slope parameters bs and b, of 5„and (Re@)„,

5„=5(1+b,'"'y"), (3.45)

(Re@)„=Res(1+b,' 'y )

+O(u, ) (3A8b)

where m =-ms=-mL. The expressions in square brackets
(apart from go) determine the y dependence of (Am )„, as
we see from Eq. (3.22b). Hence, unless go is much larger
than g, or g, (for a =x,y,z), the slopes of (ms)„and
(mL )„will be smaller than that of (Am)„by a factor of
order Am/m =7.07&10 ' . We hasten to add that in
some models go/g„ is in fact of order m /hm so that the
slope parameters for ms and Am are comparable. As not-
ed in Sec. II, the apparent absence of any energy depen-
dence in ms cannot at present be taken as evidence against
such a model due to the different procedures used to study
ms and Am. Proceeding in the same way we find for
{IL,s).

(I s)u ——I's 1+ —No+0 + (Ky —gy)b, m "
2

J+,[(—4, '+0, '+2k, 0 )+{—k.'+0.'+24.0.) —2~21&
l (4k —0 0 ))2(hm )

(~L)u =~L 1
g 00+0 + (ky Py)

1 Is /ef
Smr "

2

(3.49a)

2(b,m )
, —'-[( —g'„'+g„'+2/', g, )+(—g.'+g. '+2k. g. ) —2~2

I I (@k, 0.0,)1— (3.49b)

where we have used the approximation I s—-26m. We
note immediately that the slope of I s is of order u, /Am
in contrast to ms where it is of order u, /m. This means
that the slope of (1"s)„would be expected o priori to be
comparable to that of b,m,

~ ri+ ~, and tang+ . Note,
however, that 1 s L depend on go, which hm,

~ g+ ~, and
tang+ do not. It follows that if we wish to eliminate
this dependence on $0, so as to relate I L s to the other pa-
rameters, we must deal with the combination (1 L —I s)„,
as in Eq. (3.22a). As we have already noted in Sec. II, we
cannot extract (I I )„ from the present analysis, and hence
bp can be inferred from b~s only if we make some addi-
tional assumption about go. Finally, we note that the
slope of (I I )„ is nominally of order (I s/I L ) X (u, /hm ),
and hence could (but need not) be substantially larger than
that of (I s)„.

Equations (3.22), (3.35), {3A3), (3.48), and (3A9) are the

principal phenomenological results of this section. We
now demonstrate how these results can be used to relate
the physically measurable slope parameters b~, b~, b&, b~,
and bs, to one another in various cases of interest. (Since
ms and I s depend on uo, their slopes cannot be related to
those of the other variables without invoking additional
theoretical assumptions, as we have already noted. ) If we
assume that the experimental results of Sec. II arise from
the existence of a single nonvanishing u, which is propor-
tional to y, then the measured slopes are determined by
the two unknown parameters g,' ' and g,' '. Since four in-
dependent slope parameters can be determined (b~, br,
bz, and b~), it follows that there exist in such a case two
nontrivial predictions which can then be used to test
whether a single u can, in fact, account for the data.
From a theoretical point of view, this is the most interest-
ing possibility to consider, both on grounds of simplicity
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and also because each u, corresponds to an interaction
with well-defined charge conjugation. Moreover, several
specific models can be cast in such a form including the
previously described hypercharge field whose effects are
characterized by Eq. {3.13).

Consider, for example, the case of a pure u„coupling.
Setting u~ =u, =0 in Eqs. (3.22), (3.35), and (3.44), we find

(3.50a)

(N) 1 (N) 2"=~2 "=~2
(N)

bq —— , bp ——x2 .
2

Equations (3.S4a) and (3.54b) then assume the form

1xi = (x) —x2),v'2

1
x2 ——— (x(+x2) .

(3.55a)

(3.55b)

(3.56a)

(3.56b)

(3.50b)

(ri+ )„=-—— u„e{1 —i)
1

26m
(3.50c)

2lel4-
hm

(3.50d)

where we have set e'=0 in Eq (3.5.0c). The expression for
(ri+ )„can now be decomposed into its real and imag-
inary parts which then give

(g. +g„)
I ~+- I.= I n+ (3.51a)

(tang~ )„=(tang+ ) 1+
hm

(3.51b)

If we write

4 =k.'"'y', ~.=0.'"'y", (3.52)

then the various slope parameters are given by

2~(N)»(N)
b(N)

hm ' 5m

(~)
—{kx +0» }

2(g()v) g(w))

2g(N)
(N) bxb. = ' =-b.

hm

(e)„=2(i)+ )„=2
I i)+ I

e + (3.57}(3.53a)

any change in (Ree)„ induced by the u, is determined by
the corresponding changes induced in

I i)+ I
„and

(P+ )„. This can be quantified by differentiating Eq.
(3.S7) with respect to y: Using the relation

(3.53b)
d(tang+ )/dy =sec ((}+ dP+ /dy

(3 53c) we find

An interaction which is pure u„ is thus defined by a point
in the xI(

—xz plane which is obtained by specifying b'a '

and b~, or equivalently x~ and x2. The same theory
could also be defined by specifying b'„' and b~

' which
generates a point in the x ~-x2 plane. The content of Eqs.
(3.S6) is that the x', -x2 coordinate system is obtained from
the x~-x2 system by a clockwise rotation through 45. It
follows that if the interaction is pure u„, the experimental
points in the x&-x2 and x &-xz planes should coincide. We
will call a representation of b~ ', b~ ', bz ', and b~

' a
"simultaneous slope plot" (SSP} for obvious reasons. The
SSP for a pure u„ theory will be discussed in Sec. IV, us-
ing the data of Sec. II. As we will show in the ensuing
discussion, the slope relations in Eqs. (3.54a) and (3.54b)
are unique to a pure u„coupling, and hence serve to dis-
inguish it from a pure Qy oi puie Qz coupling

The remaining slope relation [Eq. (3.54c)] is, by con-
trast, the same for all couplings, and hence merely serves
as a consistency check on the experimental data. This can
be seen by noting that since we have assumed throughout
this section that

Combining Eqs. (3.53), we find for a pure u„coupling
d(Ree)„d(tang+ )„=Ree —sin(P+ )„cos(P+ )„

b(N) b(N) b(N)

b (N) ) (b ()v) +b ()v)
)

b(N) b(N) 1 b(N)

(3.54a)

(3.54b)

d ln
I v) ~+
d

(3.58)

From Eqs. (3.18) and (3.46) we then find, to lowest order

(3 54c} in various small quantities,

Note that Eqs. (3.54) are independent of X: The relation-
ships among the measured slope parameters are thus in-
dependent of how the y dependence is parametrized, pro-
vided that g„and g„vary in the same way with ¹ This is
useful to know because there is at present no compelling
reason why the K -K parameters must vary either with y
or with y, as we have assumed for simplicity in Sec. II.

Equations (3.54a) and (3.54b) have a simple geometric
interpretation which we will exploit in Sec. IV to analyze
the experimental data. Define a set of variables x ~, x2, x

~

and x2 as follows:

i ()v) b()v) b(N) 2(y ) i ()v)—sin

b(N) & b(N) (3.59}

in agreement with Eq. (3.54c). Using Eqs. (3.35) and
(3.44}, the interested reader can verify Eq. (3.S9) explicitly
for the case of a pure uy or pure u, coupling, by proceed-
ing in analogy with the pure u„case considered above.

We turn next to the pure uy case. If the terms linear uy
dominate in Eqs. (3.22), then the analogs of Eqs. (3.54a)
and (3.54b) become



b(&) 1 (b(+) +b(&) )I

b(N) (b(N) b(N)) (3.60b)

However, since the linear contributions are suppressed by
a factor of

I
e

I
-=4 X 10, it remains an open (experimen-

tal) question as to whether they are actually larger than
the quadratic contributions. In fact, an analysis of the ex-
act expression for ){,„+—A,„ in Eq. (3.15) suggests that for
the u„case the quadratic terms do indeed give the dom-
inant contributions to (hm)„and (I L,

—I s )„, as we dis-
cuss below. If we thus drop the terms linear in u~, the
pure uz case becomes effectively the same as the pure u,
case to which we now turn.

The case of pure u, coupling must be treated differently
from pure u„because there is no contribution to k+ —A.„
linear in u„as we have previously noted. This means that
the analogs of the relations in Eqs. (3.54) depend on how
each of the slopes is assumed to vary with X as we now
show. Let us assume that (b,m)» (I L

—Is)» I g+
and (tang+ )„vary with y as y, y, y, and y
respectively, with coefficients b~ ', b~ ', b„' ', and b~
From Eqs. (3.22) and (3.35) we then find

[ (b(N) )2/N ( (b(N ) )2/N'
4

(3.6Oa)

b(N)b(N')g+N') b(M')Q' (3 61 )

2

~
(b(N) )2/N ( (b(N') )2+N

+b (N)b (N') yv +N'] b (~)~ (3 61b)

For a pure u, coupling to lead to a consistent description
of the various slope parameters, we must set
2X =2%'=M =M', which gives

b(2N) I
&

I )(b(N))2 ( (b(N))2 b(N)b(N)) (3 62 )
2

b(2N) —
I

&
I I. (b(N) )2 ( (b(N) )2+b(N)b(N))

(3.62b)

The simplest nontrivial application of Eqs. (3.62), which
corresponds to X =1, will be analyzed in detail in Sec. IV.
For present Ilurposes we simply note that for a pure u,
coupling b& or b~

' will be larger than b~ ' or b~ '
by

a factor of order 10~, due to the coefficient
I

E
I

in Eqs.
(3.62). This is what was meant previously by the observa-
tion that a term proportional to u„(u, ) produces a "small"
("large" ) y-dependent contribution to (2)+ )„: For a u

coupling b z
' and b P' will be comparable to b P' and b r,

whereas for a pure u, coupling theory they will be —10
larger. This provides a clear experimental distinction be-
tween the C-even u„coupling and the C-odd u, and u~
coupling s.

Up to this point we have examined the K -K pararne-
ters in the energy regime where

I
u, I

/Am &1. (As we
have already noted,

I u, I
/b, m —=0.2 at a typical energy of

70 GeV. ) We observe, however, that as y increases a re-
gime will be reached for which

I u, I
/hm ~ 1. In this re-

girne the eigenfunctions 4„—and the eigenvalues k„—in Eq.

(3.15) are determined by the characteristics of the external
field, rather than by the internal dynamics of the X -E
system. For values of y sufficiently large that p and q
are negligible compared to

I u, I, we find

X+ —X„2i(u„'+F2+u, ') '" . (3.63)

Hence, if a single u, gives the dominant contribution at
high energy, then

A,
+ —A,„=2iu, =2i (g, +if, ), a =x,y, z

(hm)„=2/, —2$,'

—,'(I —I )„=—2$, ——2$,' 'y

and the eigenfunctions 4'„—become

(3.64a)

(3.64b)

(3.64c)

r

1

I+) )= g I i Ilt2)= ~ 1, pllre uv'2 v'2
J

(3.65a)

1

IE )=
I.

0
II(.'&= 1, pure u, .

(3.65b)

(3.65c)

It follows that if the external coupling is pure u„, then CP
conservation is restored at high energy, and the eigenfunc-
tions become the familiar CP eigenstates

I
I( ( ) and

I
EC2).

By contrast, if the coupling is pure u„ then the eigenstates
are IK ) and IK") which have well defined hyper-
charge. However, should the external coupling become
pure u~ at high energy, then the eigenstates are

I
I( 2 ) and

I
K4) which have neither well defined CP nor well de-

fined hypercharge. Since neither of these states is forbid-
den by CP from decaying into 2~, we expect that their
lifetimes (rl and r4) should be given by

(3.66)

We conclude this discussion with an analysis of the in-
termediate energy regime where

I u,
I

/Am = 1. In this re-
gime the dependence of (am)„and (r, —I-, )„on y is
given by the exact expression in Eq. (3.15), which is in
general some complicated function. If we continue to as-
sume that a single u, gives the dominant contribution to
A,

+ —A,„, then the behavior of (Am)„and (I I —I )„at
any energy is determined by the two parameters g', ' and

' (where Mand %may or may not be the same). Hence
given sufficiently good data at lower energies, g' ' and

' could be extracted from a simultaneous fit to (hm)„
and (I L —I z)„, and these results used to extrapolate to
higher energies.

Likewise g,' ' and g,
' ' could also be extracted from a fit

to
I 7)+ I

„and (tan())+ )„. This is in fact what we have
done since, as noted previously, we have no results for
(I L —I z)„. Instead of formally fitting to the data for

I 2)+ I
„and (tan())+ )„, we have simply deduced by trial

and error the values of g, and g, which, when inserted
into the complete expr'ession for (q+ )„,

—%+( + —1)
)

% (p 1) (3.67)
(p —1)



28 ENERGY DEPENDENCE OF THE FUNDAMENTAL. . . . II. 50S

reproduce the experimental data for 35&E» &105 GeV.
p- and N +—are defined in Eqs. (3.30) and (3.31), respec-
tively, and we have set c'/c'= —1 {i.e., e'=0) in Eq.
(3.32). The resulting values of g, and g, (for each of the
cases a =x,y,z) can then be inserted into the exact expres-
sion for A,

+ —A,„ in Eq. (3.15) to deduce the high-energy
behavior of (b,m)„and (I I —I z)„. For later purposes it
is convenient to use Eq. (3.15) to express (b,m)„and
( I l. —I s }„in the form

A,
+ —A,„=ib m (P„+iQ„)'/2

o~
O

IO

0—

or &(I"L-I"s~y z

= —,(I"I —I g)„+i(bm)„,

(b,m)„=b,m (P„+Q„}'/~cos—
2 '

(3.68a)

(3.68b)

O=arcta (nQ„/P„) .

(3.68c)

(3.68d)

The exact expressions for P„and Q„ for each of the cases
a =x,y, z are given in Table III, and our results are
presented in Tables IV and V, and in Figs. 1—3. The
columns labeled

~
i)+

~
„,(tan()I)+ )„,and (bm)„give the

experimental values of the corresponding variables in the
energy range E~ & 105 GeV, obtained using the slope pa-
rameters from the external fits (lines 2 in Table I). The
fits to (b,m)„ for the u„, u», and u, cases (using the pa-
rameters in Table III} are denoted by (b,m)„, (b,m)», and
(b,m)„respectively, and similarly for the other variables.
The sahent features which emerge from these results can
be summarized as follows.

(a} For the u„case the fits to (hm)„and
~
21+

~ „ for
E» & 105 GeV are reasonably good, but (tan()I)+ )„ is not
well reproduced above Ez ——75 GeV. This is a conse-
quence of the fact that the slope parameter b~

' for
(tang+ )„ is sufficiently large that the terms in
(tang+ )„which are bilinear or quadratic in Ie„and g„
give a noticeable contribution for Ez & 105 GeV. In par-
ticular, since b~ 'y: (b~ 'y ):1 —at 105 GeV—, the simple
parametrization of the data used in Refs. 1—3 and Table I,
although convenient from an experimental point of view,
does not accurately represent the expected y dependence.

(b) For the u» and u, cases the fits to
~ 21+

~
„are both

quite good, but (hm}„ is predicted to be a constant for
E~ & 105 GeV, in disagreement with the data. Additional-
ly, the fit to (tang+ )„suffers from the same problem as
in the u„case. In the next section, we will analyze u„and
u, predictions for (hm)„ in greater detail, where we will
elaborate on the conclusion drawn from Table IV that the
data for (Am)„cannot be accounted for by either a u» or

200 400 600
P„(GeV/c)

I |
800 IOOO

u, coupling.
(c) We return now to the u„coupling which both the

preceding discussion and the following analysis in Sec. IV
suggest could account for all the present data. We see
from Table IV and Fig. 1 that for the u„case (b,m)„goes
through zero at Ez=-186 GeV and then changes sign as
the energy is increased. This is an extremely interesting
effect, particularly since it occurs in an energy regime
which is readily accessible at Fermilab. To understand
how this comes about we note from Eq. (3.68b) that
(bm)„2 [and hence (b,m)„j vanishes when

cos —= —,(1+cosO)20
2

(p 2+Q 2)1/2+p

(p 2+Q 2)(/2 (3.69)

We see from Table III that for the indicated values of g( '

and g„' ', P„ is always negative, and hence cos 6)/2 van-
ishes when Q„=O. Using the specific expression for Q„ in
the u„case, and taking g„=g„'y, we find that Q„van-
ishes when y=374, which corresponds to EE ——186 GeV.
The vanishing of the Kr. -Kq mass difference as y (and
hence the field strength) increases, is thus analogous to the

FIG. 1. Plot of (Am)„and —
2 (I L —I q)„ in Eq. (3.68) as a

function of p~ for the u„, u~, and u, cases. The input values of
the various parameters are given in Table III, and we have taken

~
e~ =4.S48)&10 in u„. As can be seen from Table IV, the u»

and u, cases are indistinguishable. Note that (hm)„vanishes at
E~ ——186 GeV. See text and Table IV for further details.

TABLE III. Explicit form of A,„—A, „ in Eq. (3.68). For each of u„, u~, and u„ the entries give the complete expressions for I'„
and Q„, as well as the numerical values of the parameters f,' 'and g,' 'for (2=x,y, z. We have taken

~

e
~

=4.548X10 in u».

g(N) g(N)

Q Q.
Am Am

uy

2+ 8---
(hm )2

X X, X

(Qm )2

&m (~m )'

p(2)
= —3 58~10-'

hm
(()

=+3.64X10 '
Am
g()) g(1)

Am Am

=+7.18&&10-'
5m

(&)

=+4.82X 10-'
bm
g(1) g())

hm hm
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0.535
0.535
0.535
0.53S
0.535
0.535
0.535
0.535
0.535
O.S35
0.535
0.535
0.535
0.535
0.535
0.535
0.535
0.535
0.535
Q.535
0.535
0.535

0.535
0.535
0.535
0.535
0.535
0.535
0.535
0.535
0.535
0.535
0.535
0.535
0.535
0.535
0.535
0.535
0.535
0.535
0.535
0.535
0.535
0.53S

0.53S
0.535
0.535
0.535
0.535
0.53S
0.535
0.535
0.535
0.535
0.535
0.535
0.535
0.535
0.535
0.535
0.535
O.S35
0.535
0.535
0.53S
0.535

TABLE IV. Dependence of 6m and —
2 (I ~ —I q) on E~ for the case of a pure coupling (a =x, y, or

z). The column labeled (Am)„gives the data for Am in the range 35 &E~ & 105 GeV obtained from
lines 2 of Table I. The remaining columns give the predictions for Am, =Am(u, ) and —

2 (I I —I q),
in units of 10' %sec ' obtained from Eqs. (3.68), using the parameters given in Table III.

(Ge+) (~~) (~~) (~~)y (~m) 2 (I I I g)~ 2 (I L I s)y 2 (I-L I s)

0.535 0.536 0.535
0.515 0.573 0.535
O.S02 0.598 0.535
0.486 0.629 0.535
0.467 0.666 0.535
0.444 0.709 0.535
0.419 0.759 0.535
0.390 0.815 0.535
0.358 0.877 0.535

1.232 0.535
1.775 0.535
2.472 0.535
3.324 0.535
4.331 0.535
5.493 0.535
6.811 0.535
8.283 O.S35

11.69 0.535
15.72 0.535
20.37 0.535
25.64 0.535
31.53 0.535

crossing of the e and P levels in n =2 hydrogen when the
external field reaches 553 G.

Before leaving the discussion of (Am)„, we note that the
preceding analysis of the u, case does not apply to the case
of an external hypercharge or electromagnetic field, even

though both are examples of a u, coupling. The reason
for this is that an arbitrary u, coupling is described by two
independent parameters g,

' and g,
' ', which can be chosen

by fitting to the data for b~ and bz. By contrast, the hy-
percharge interaction in Eq. (3.13) is described by a single

TABLE V. Dependence of
I g+ I

and tang+ on E» for the case of a pure coupling (a=x, y, orz).
The columns labeled

I g+ I
„and (tang+ )„give the data for

I r)+ I
and tang+ in the range

35&E~&105 GeV obtained from lines 2 of Table I. The remaining columns give the predictions for

I q+ I
„(in units of 10 ) and (tang+ )„obtained from Eq. (3.67), using the parameters given in Table

III.

E» (GeV)

5

35
45
55
65
75
85
95

105
150
200
250
300
350
400
450
500
600
700
800
900

1000

2.23
2.19
2.16
2.13
2.09
2.05
1.99
1.94
1.87

In+

2.27
2.23
2.20
2.16
2.11
2.05
1.98
1.90
1.81
1.38
0.97
0.69
0.50
0.38
0.30
0.24
0.19
0.14
0.10
0.08
0.06
0.05

I n+ I»-
2.25
2.11
2.06
2.03
1.99
1.96
1.93
1.90
1.87
1.82
1.85
1.97
2.18
2.44
2.75
3.08
3.44
4.19
4.98
5.79
6.61
7.44

2.25
2.11
2.06
2.03
1.99
1.96
1.93
1.90
1.87
1.82
1.85
1.97
2.18
2.44
2.75
3.08
3.44
4.19
4.98
5.79
6.61
7.44

(tang+ )„

0.95
0.85
0.79
0.70
0.60
0.49
0.35
0.21
0.04

(tan((+ )„

1.00
0.90
0.84
0.78
0.71
0.63
0.56
0.49
0.42
0.15

—0.05
—0.17
—0.26
—0.31
—0.35
—0.38
—0.40
—0.43
—0.45
—0.46
—0.47
—0.47

(tang+ )y (tang~ ),

0.97
0.79
0.74
0.68
0.63
0.57
0.52
0.46
0.41
0.18

—0.05
—0.28
—0.49
—0.68
—0.87
—1.05
—1.22
—1.54
—1.83
—2.10
—2.36
—2.59
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l

O

0 200
I

400 600
P (GeV/c)

lOGO

FIG. 2. Plot of
~
r)+

~ „ from Eq. (3.67) as a function of p».
The values of g,

' ' and g,' ' for a =x, y, and z are given in Table
III.

parameter Ao, which means that in this case b~ and b~
are constrained to be related to each other in a particular
way [see Eq. (4.1) below]. For this reason the effect of a
hypercharge or electromagnetic field should be studied
separately. Combining Eqs. (3.13) and (3.15), we find im-
mediately

(&m), '= [(~m)'+4/Io'y']' '+2/I oY (3.70a)

I.O

0.6

0.2

[ —,
' (1 L —I s}„]2=[(b,m) +4Ao y ]'/ —2Ao y . (3.70b)

We see that (hm)„[and hence (hm)„] is a monotonically
increasing function of y, which contrasts with both the
data and with the results for the general u, case shown in
Fig. 1. We will return to this point in Sec. IV.

Thus far we have avoided discussing the energy depen-
dence of specific decay modes of EI or Ks because these
introduce additional slope parameters which are not
directly related to those we have already considered.
However, should future experiments confirm that I s is

~L,S Q~L, S
J

(3.71}

The energy dependence of I L s is parametrized by writing

(I s).=I's[1+bPS'V}y"l (3.72}

and similarly for (1JL)„. If we combine Eqs. (3.71) and
(3.72} with the corresponding expressions for (1 L s)„,

(r, )„=r,(I+b(rL'y ), (3.73a}

(I.s)„=I s(I+b(PS'y"),

we find immediately

b' '=QBgb'„'(j),

@=I~s/'I s

(3.73b)

and similarly for b~z'. For I s the branching ratios Bs+
and Bs for decay into n.+m and m m, respectively, are

Bs+ ——0.6861+0.0024,

Bs ——0.3139+0.0024

and hence using Eq. (3.74),

b Ps' -0 69b Ps'(+——.)+0.31b Ps'(00) .

(3.75)

(3.76)

In Sec. IV, we will demonstrate that the sign of b~',
among other things, suggests that the observed energy
dependence arises from a C-even field. If this is the case,
then

energy-dependent, it would follow that at least some of its
partial decay modes must also be energy dependent, and
hence some consideration should be given to individual
modes as well. In fact, as we have already noted in I, the
data from which b& is extracted really measure the energy
dependence of I (KL ~m.+n )/I (KL ~npv). Moreover,
experiment E-617 at Fermilab, which is currently in pro-
gress, will be capable in principle of measuring the energy
dependence of this and other ratios, as well as that of vari-
ous individual decay modes. It is thus interesting to study
the energy dependence of some specific decay modes, and
to compare these to the results we have found for the oth-
er E -E parameters.

Let I L, s denote the decay rate for El. s~j, where

j =m+m, m-pv, . . . , so that

-0.2
b(N)( + ) b(N)(00) (3.77)

i -0.6

-l.O brs =brs(+ —)--=brs(00),{N) {N) {N) (3.78)

neglecting effects due to the m
+——~ mass difference.

From Eqs. (3.76) and (3.77}we then have

-l.8

200 800400 600
p (GeV/c)

(Is-).=
~

X (p &~+~ ~a„—~K-&-
+&~+~ IH. IK'&) ~'X(PS),

(3.79)

FICx. 3. Plot of (tang+ )„ from Eq. (3.67) as a function of
p». The values of g,' ' and s,' ' for a=x, y, and z are given in
Table III.

so that the experimental result for b~z' actually measures
the energy dependence of 1 (Ks ~rr+rr ) and
I"{&s~m m ) as well.

We now wish to relate b~q'(+ —) to various theoretical
parameters such as the u„just as we did for b~, b~, b„,

lOOG
and b~ when we related them to u„ in Eq. (3.54). Using
Eq. (3.31), we have immediately,
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2

I » —— (m —4m )'~
16m.

(3.81)

where p and X are defined in Eqs. (3.30) and (3.31),
and where (PS) denotes the appropriate phase-space factor.
This can be specified more precisely by writing the effec-
tive K ~~+a. coupling in the form

W(x) =c'mK (x)P(x)P (x)+H.c. , (3.80)

where m is the K mass, P(x) is the rr field operator, and
c' is the constant appearing in Eq. (3.24). The K decay
rate I z would then be

where (m —4m )'~ is the phase-space factor. From
Eqs. (3.79) and (3.81}, we see that an external field can
give rise to an energy dependence of I"z in three distinct
ways: (i) It can change p and hence the relative admix-
tures of K and X in X~. This is the effect that gives rise
to the energy dependence of hm and (I I —I s). (ii) It can
induce an energy dependence in the weak matrix element
(rr+n

~
H~

~

K ) by changing c' to c„' and similarly c ' to
c „'. (iii} The external field can also make m and m ener-
gy dependent: m~m„and m ~(m )„. Taking all of
these effects into account, we find, after some algebra (and
assuming as before that c '/c'= —1),

(I +
) = I + [I——

~

a
~

——Re(a ) + —Re(e'a )+Re(ea )]+ — + — ~ 3 — 2 ~ —2

(m —4m )'~
L

a =p +(I+E) .

(3.82a)

(3.82b)

m„=m (1+b„' 'y ),

(m )„=m (1+b„''y ),
(3.83)

We note that there is no term in Eq. (3.82) linear in a
and hence there is no contribution to I z from terms of
order u„, u~, u„or u„e. If we again anticipate the results
of Sec. IV and set u„=u, =0, we see that the leading con-
tribution arising from a is O(u„e ), which is far too
small to account for the observed value of b~q. This is an
important result in unraveling the origin of the observed
energy dependence: It indicates that the external field
changes not only p and q (which we learn from the ener-

gy variation of b,m), but also at least one of the other pa-
rameters c', m, or m . It may be possible to go further
and disentangle the energy variation of c' from that of m
and m if, as is suggested by some models, all masses have
a common y dependence,

+(ir+rr ~H ~K')) ~'X(PS)

a+:—I I+ - jI+2Re

[m„4(m )—„]'~
(m —4m )'~ (3.86)

I ~z =I (Kl ~npv)

We have retained only the leading contribution from a+,
but for the pure u„case this is now of order u„/hm and
hence is a priori comparable to the other contributions. If
we divide Eq. (3.86) by Eq. (3.82), the factors containing
c„', m„, and (m )„all cancel, and the remaining contribu-
tions from a+— reproduce the result of Eq. (3.35) for
(i)+ )„with e'=0.

We conclude by considering the energy dependence of
A@3

characterized by a universal slope parameter b& '. Using
energy conservation, y for the m and K are related by =I (KL ~m. +p v)+I (XL ~m p+v) . (3.87)

[m„—4(m )„]'~
j. —

(m —4m )'~

' 1/2
m

[b (2) ]~y4 .
2

'lr

Combining Eqs. (3.83) and (3.84), we find

(3.84)

As has already been noted, the present results for rl+
actually determine the energy dependence of I L+ /I ~~ .
Hence by combining Eq. (3.86) with the analogous result
for I ~L, we can see to what extent the energy dependence
of this ratio actually reproduces that of

~ i)+
~

. Al-
though I ~l appears in the denominator of the expression
for 6 in Eq. (3.40), we must be careful not to simply take
over Eq. (3.42) in which various common factors have
been canceled from the numerator and denominator. As-
suming CPT and the hg =BS rule (i.e., x+ ——0), the
KL ~~pv amplitudes are

(3.85)

We note that in such a picture there is no contribution to
the phase-space y dependence which is of order b' 'y .
Hence by measuring the y dependence of I (Ks~vr ~ )

at sufficiently small values of y such that b& 'y « 1, one
can isolate the y dependence of c„' for which the term pro-
portional to y should be the leading contribution.

Proceeding in an analogous way for EL~a.+m, the
analogs of Eqs. (3.79) and (3.82) are

3 (KI +m l+v) =X+p+f+, —

A(KL ~m+1 v)= X+f+ . —(3.88)

N+ and p+ are as given in Eqs. (3.30) and (3.31) and f+ is
a form factor defined by

(rr (p )
~
J»(0)

~

K'(p» ) )l

=«E E»I") '"[(p»+p. )»f'++(p» p»d—
{3.89)
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We have assumed for simplicity that f /f+ «1, which
is consistent with both SU(3) and experiment. Using Eq.
(3.88), we find

I i'=-
I f+ I

'
I

&+
I
'l l+

I s
+

I
'I &«~s)

=
I f I'x(&s),

where (PS) denotes the appropriate phase-space factor.
We see that I ~L is completely independent of p+ and
hence of the u, . It follows that if I ~L is found to be ener-

gy dependent, then this will be an indication (as in the case
of I s+ ) that either f+ and/or the phase-space factor are
energy dependent. Should it turn out, however, that I ~z is
a constant, then the observed energy dependence of
I L /I ~L comes entirely from the numerator. Using Eq.
(3.86) we then see that the slope of I"L+ is given by
( —2)(g„+g„)/km, which is exactly the result expected
for

I g+ I
. The consistency of our results can then be

checked by noting that since

I +- r~'
I n+ I.'=-—„3 (3.91)

I ~' „1~+
it must follow that (I s )„-=constant to 0 (u, ). That
this is indeed the case has already been noted in the dis-
cussion following Eq. (3.82), where we observed that there
was no term linear in a in that equation.

We conclude with a discussion of the limitations of the
present analysis.

(a) The formalism developed in this section does not ap-
ply to the case of an external gravitational field, which has
been treated separately in Appendix B. The reason for
this is that a conventional gravitational field affects not
only the K -E system itself but also the clocks and
measuring rods that are used in studying it. Hence, care
must be taken in describing the observable effects of an
external gravitational field, as we discuss in detail in Ap-
pendix B.

(b) We have assumed throughout that the effects of
external (nongravitational) fields can be described by the
field matrix F in Eq. (3.10). This is certainly the case for
(I L

—I s)„and (Am)„which are simply the real and ima-
ginary parts of the eigenvalue difference 1,„—A,„ in Eq.
(3.15). However, as we see from Eq. (3.25), an external
field can in principle affect g+ not only by changing p
and q to p„and q„, respectively, but also by modifying c'
and c ' as well. This means that in the presence of a field
Eq. (3.25) should be replaced by

where e„' accounts for the effects of the field on c' and c '.
Since the experimental data on g+ and goo suggest that
e' =e"=-0, as we have already noted, we have set
e'„=e„"=0 as well on the presumption that a small modifi-
cation of an already small contribution to g+ can be
neglected. This assumption can, of course, be tested by
studying q+ /goo as a function of energy. If the real
and/or imaginary parts of this ratio are seen to vary with
energy, this would be an indication that e'„or e„" or both
could not be neglected. In fact, an experiment is already
in progress (E-617 at Fermilab) which will measure the en-
ergy dependence of

I il+ I
/

I i)00 I
.

(c) If we return to the expression for the m+m rate

I+ (t) in Eq. I(2.11), we see that b,m and rq enter in
several places: There are, of course, the explicit contribu-
tions exhibited in I (2.11), but there are also the implicit
contributions to p from a(L /As) as we can see from Eq.
I(2.8). Since the latter correspond to the values of these
parameters inside the target, it is in principle possible that
these could differ from the corresponding values in free
space. Such a difference could arise, for example, if ihe
X -E system were totally or partially "shielded" from
the external field by the target. To take such a contingen-
cy into account we should in principle allow (hm)„ to be a
different function inside and outside the target. We have
not done so, and hence have neglected the possibility of
shielding, for the following reasons. (1) From a practical
point of view it would be impossible to realistically carry
out such an analysis given the data available to us. (2) For
the carbon and lead targets, which are short compared to
hydrogen, a(L /Az) is given to lowest order by the length
L of the target, and is thus independent of 4m and I ~
anyway. Thus, shielding is not a consideration for the
carbon data which give the dominant contribution to w~

and more than half of the contribution to b, m. (3) An
external field whose coupling to K -K is proportional to
o.„would be even under charge conjugation, and hence
could not be shielded in any case. Even a field which was
odd under C could be shielded only if it coupled to ordi-
nary matter (electrons, protons, and neutrons) and to the
K -E parameters Am and I q with comparable strengths.

The question of whether the external interaction is
shielded in matter can be addressed experimentally by
comparing the energy dependence of the K parameters in
vacuum and in a material medium. One approach would
be to exploit the dependence of the regeneration amplitude
p on Am and rz [see Eqs. I(2.7) and I(2.8)]. A direct
comparison of the 2m rates behind thick and thin regen-
erators of the same material as a function of energy would
isolate the energy dependence of a(L/Az), which depends
on the mass difference and K& lifetime inside the regenera-
tor. The "double-beam" technique used in Ref. 5 should
allow a relatively systematic error-free comparison of the
2m rates behind side-by-side regenerators of different
lengths.

IV. PHENOMENOLGCsICAL ANALYSIS
GF THE EXPERIMENTAL RESULTS

The purpose of this section is to compare the experi-
mental results of Sec. II for the slope parameters b~, b~z,
bz, and b~ to the corresponding theoretical expressions de-
rived in Sec. III. We will show that effects of the type
suggested by the data cannot be naturally accounted for by
the interaction of the K -K system with an external elec-
tromagnetic or hypercharge field. Furthermore, it will be
demonstrated more generally that such effects cannot be
attributed to any C-odd field which transforms as either
u~ or u, . By contrast, a pure u„coupling, which is even
under C, may be able to account for such effects as we dis-
cuss in more detail below. Such a coupling cannot, how-
ever, be due to an external gravitational field for the
reasons elaborated upon in Appendix B. We will finally
demonstrate that, in the standard SU(2) XU(1) model, an
energy dependence of hm and q+ cannot be due to the
scattering of K and E from the cosmological neutrino
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sea which is presumed to permeate space. Having thus
eliminated some of the more obvious explanations for
these effects, we will thus be led to consider the possibility
that they arise from a new interaction. The properties of
this interaction will be described phenomenologically in
this section, and a specific example of such an interaction
will be discussed briefly in Sec. V.

Consider first the case of an external hypercharge field,
which is characterized by Eqs. (3.12) and (3.13). Such a
coupling depends on a single real parameter g,"'=AD, and
hence leads to several nontrivial relations among the four
observable slope parameters b~, b~, bz, and b~. We
proceed to show that the predictions of such a coupling
disagree with the suggestions of the data. Returning to
Eqs. (3.22), we find

(hm)„=(b, m) 1+ yAm

g(1)
(I L —I s}.=(II.—I s} I — — y'

Am

(4.1)

(4.2)

%'e note immediately that for such a coupling
b~a ' ——{g","/4m) is necessarily positive, whereas ha~~' is ex-
perimentally observed to be negative. One can verify that
bz' is positive for a hypercharge field, by noting from
Eqs. (3.13)—(3.15) that as y increases the effective mass
difference between I( and IC (and hence between KL and
ICs) also increases. [As we have noted in Sec. III, (hm)„
is a monotonically increasing function of y at all energies
for a hypercharge field. ]

Secondly, using Eq. (3.35) and setting e'=0, (ri+ )„ is
given by

26m

from which it follows that
(i)

„(i) v8 4z

/ef bm

Combining Eqs. (4.4) and (4.1), we find

~b(2)
~

lei' ~b(»~2
8

(4 3)

(4.4)

(4.5)

Using lines 2 of Table I, and taking
~

e'
~

=2
~
i)+

~

=(4.548+0.044) X 10, the right-hand
side of Eq. (4.5) is numerically equal to (1.8 1.4) X 10
whereas the left-hand side is equal to (7.43+1.48) X 10
Alternatively, if we fix

~
ba '

~
using Table I, then

~

b~'
is predicted on the basis of Eq. (4.5) to be 1.70+0.17,
which is substantially larger than the value (2.6+1.0)
X10 that is experimentally observed. (We note in pass-
ing that our results would be essentially unchanged had we
used the internal fit values from lines 1 of Table I, rather
than the external values. ) This comparison quantifies our
previous remarks to the effect that the u, (and similarly
uy ) coupling gives rise to a large contribution to g +
The same calculation for the u„case leads to a small value
of b~, one which is more compatible with experiment, as
we discuss below. Gf course, any relation among the slope
parameters involving b~ must come within -3—5 stand-
ard deviations of agreeing with experiment, since at this
level b~ is consistent with zero. Hence, when we speak of

b'„' [Eq. (3.62)]=—(3.1+1.5)X10

1,'" [Eq. (3.62)]=—(0.3+1.5) X 10-"
(4.6a)

(4.6b)

We note from Eq. (4.6b) that b~ ' is substantially smaller
than the experimental value given in Table I, for any
choice of parameters iri the u, case. Hence, even if the
couplings in Eqs. (3.12) and (3.13) are generalized to allow
g,"'&0, the extra freedom so obtained is not sufficient to
avoid the difficulty that arises from Eq. (4.6b). We em-
phasize again that for a general u, coupling b~ and bz are
independent parameters, whereas for an external hyper-
charge field they are both related to g,'" and hence to each
other. It follows that a hypercharge field should not be
viewed as simply a special case of an arbitrary u, cou-
plirig, but should be treated separately as we have done.
Finally, we note that if we set e=G in Eq. (4.3), then we
recover the model of Bell and Perring, and of Bernstein,
Cabibbo, and Lee in which q+ arises entirely &orn an
external hypercharge field. From Eq. (4.3}, such a model
can be ruled out immediately on the grounds that (a)
P+ =- —45' (rather than +45') and is moreover a con-
stant as a function of energy, and (b)

~
i)+

~

is directly
proportional to u, and hence to y, contrary to the results
of experiment.

The preceding analysis can also be used to demonstrate
that the observed energy dependence of hm and q+ can-
not be due to an interaction of the K -K system with
stray electromagnetic fields or charges. Since the elec-
tromagnetic interaction is odd under C, it follows that its
coupling to K -E must be of the form u, o„just as for a
hypercharge field. This can also be seen by noting from
the Gell-Mann —Nishijima relation that the electric charge
is the same as the hypercharge, up to an additive constant
+ —, for E and EC, respectively. Moreover, since I( and
K are electrically neutral, it follows that the E K y and
EC E y vertices vanish at q =0, where q is the four-
momenturD of the photon. Consequently, the only elec-
tromagnetic contribution to u, at q =0 arises from a con-
tact (i.e., 5-function) interaction of a kaon with an elec-
tromagnetic charge. However, even if stray charges were
present in the otherwise empty space between the regen-
erator and detector, the density of such charges that would
be required to produce any detectable effect in the present
experiments is unphysically large. %'e thus conclude
that an energy dependence of hm and g+ of the type
suggested by the data cannot be attributed to electromag-
netic effects, both on the basis of an analysis of the general
u, case and also a consequence of the electromagnetic
properties of K and K .

the compatibility of a given prediction with experiment,
we intend to compare the relative orders of magnitude of
predicted and measured quantities, and not to suggest that
a particular coupling (such as u, } is actually ruled out by
the data. From this point of view one can say that, at the
very least, an external hypercharge field does not provide a
natural explanation for the effects of the type that have
been suggested by the data.

%e can generalize this conclusion to an arbitrary u,
coupling by using the slope relations in Eqs. (3.62), taking
%=1. Inserting into Eq. (3.62) the values for b~" and
bz

' from Table I (again using the results in lines 2), we
find
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%'e turn next to the uy case, which for all practical pur-
poses is identical to u, : As we have seen in Sec. III, the
terms linear in g» and g» make a negligible contribution
to (b m)„and (I L,

—I's)„at currently available energies.
If these terms are then dropped the resulting expressions
for (hm)g, (IL, —ls)„, ~il~ ~„, and (tang+ )„ in the
u» and u, cases are effectively the same (up to some signs),
as can be seen from Eqs. (3.22) and (3.35). Hence, we can
immediately take over the preceding analysis of the gen-
eral u, case to demonstrate that the relative magnitudes of
b~ ', b„'", and b~" cannot be naturally accommodated by a
pure uy coupling either. It must be emphasized, however,
that even though pure uy or pure u, does not work, a com-
bination of u» and u, (both of which are C-odd) will work,
since then four parameters are available to fit to the four
measurable slope parameters.

'We arrive finally at the pure u„case which, as we shall
see, is the most natural choice to describe the present data.
The characteristic feature of a u coupling is the predic-
tion that b' ' and bz

' are comparable in magnitude to
b(aÃ) and b(r ), as can be seen from Eqs. (3.54). This pre-
diction is compared with the data in Fig. 4, where a
"simultaneous slope plot" (SSP) for the u„case is exhibit-
ed [see Eqs. (3.55) and (3.56)]. The darkened region de-
lineates the overlap of the values of b~ ', bz ', and b~

' ob-
tained using the method 8 results from I, which give the
most conservative version of our results. For a u„ theory
to describe effects of the type suggested by the data in Sec.
II, the band corresponding to b~ must pass through this
region. Since we have at present no data on the energy
dependence of I L, and hence on I L —1"z, we cannot infer
b~ from the results of I. Using the SSP one can read off
the allowed values of the slope parameters, and these can
then be immediately translated into limits on the external
couplings g„'

' and g„'
' by using Eqs. (3.53). When analyz-

ing the SSP in Fig. 4, one should bear in mind that there is

(4.8)

which is suggested by the superweak theory, holds quite
well experimentally at low energies. It is then interesting
to ask whether Eq. (4.8) holds at high energies as well,
given the present data. For this to be the case we must
have

2(hm )„
(tang+ )„= —(li —Is). '

where

(4.9a)

a potential built-in uncertainty of + 10% in Eqs.
(3.54)—(3.56) which define the SSP. This arises from the
fact that in deriving these relations we have consistently
used 26m c /fiI ~ ——AI ~/25m c =1, whereas in reality
2b, m c /fail s ——0.9546(46) and fiI s/2b, m c
= 1.0476(50).

It is useful to quantify the suggestion of the SSP in Fig.
4 that an interaction term of the form u„o.„could account
for the present data. This is expressed in the SSP by the
fact that the vertical band correspondin to b'a' passes
through the intersection of the b~

' and bz
' bands, leading

to the shaded region sho~n. The same conclusion can be
drawn by eliminating bP' in Eqs. (3.54a) and (3.54b)
which leads to

g(N) +g(X) 1 y(N) 0 (4.7)

Numerically the left-hand side of Eq. (4.7) is equal to
(6.4+6.9)X 10 if we take N =2 and use the internal-fit
results (Table I, lines 1), and is (0.3+3.8) X 10 using the
external fit, lines 2. The agreement between Eq. (4.7) and
the data suggests that if a single interaction term can ac-
count for the present results it is u„o.„,but confirmation
of this result must await a determination of b~.

Using Eq. (3.54), we can derive another interesting re-
sult for the various K -K parameters. It is well known
that the relation

(tang+ )„=tang+ (1+6&"'y"),

(bm)„=6m(i+by '7/ ),
(I L,

—I s)„=(I'L—I s)(1+bp'y ) .

(4.9b)

(4.9c)

(4.9d)

Combining Eqs. (4.9a)—(4.9d), and assuming that
b„' 'y « 1 for x =P, I,b„we find

y(&) g(N) b(&)I (4.10)

FIG. 4. Simultaneous slope plot for the u„o.„case. Note that
the scales on the different axes are in the ratio
b' 'b' ':b' 'O' '=@2

V. 2:2:1. The darkened region delineates

the overlap of the values of b~', bz', and b~', and the dashed

lines illustrate the overlap of this region with a hypothetical bz.

band assuming Br ——bz-~. See text for further details.

which is just Eq. (3.54a). Hence the condition that the su-
perweak relation in Eq. (4.8) hold at high energies is just
that the energy dependence of these quantities originate
from a term u„o.„,which as we have seen is the coupling
favored by the data. [Although we have assumed for sim-
plicity that b„' 'y « 1 in deriving (4.10), this assumption
is unnecessary if we use the exact expressions for the vari-
ous parameters given in Eqs. (3.15) and (3.32)].

Should it turn out when b~ is measured that u„ is not in
fact compatible with the data, then we will have shown
that no coupling transforming as a single u, can account
for an energy dependence of Am and g+ such as the
data suggest. The next possibilities to consider are com-
binations of two of the u„namely, u and uy, u„and u„
or Qy and u, . As we have already noted, such couplings
would be described by four real parameters, whose values
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could always be chosen to reproduce the experimental re-
sults for the four slope parameters b~, b~, bz, and b&.
Two general possibilities thus suggest themselves. (a) A
combination of u„and u, would be odd under C and hence
could arise from a C-odd field which interacts in some
complicated manner with the E Ksy-stem. (b) By con-
trast, a combination of u„and uz or u„and u, would not
correspond to a coupling with well-defined C. Such an in-
teraction might arise, for example, from an external long-
range field whose quanta themselves carried a quantum
number such as hypercharge. Note that whichever of the
two options (a) or (b) is realized, at least one member of
each pair will be odd under C. Having thus detected an
energy-dependent influence on the E -E system which
has a C-odd component, we might be led to inquire wheth-
er there is an associated component which does not depend
on energy. Such a field (whatever it was) could be respon-
sible for all or part of th.e "intrinsic" contribution to g+
a possibility which may be worth reconsidering, ' '
should the analysis of future experiments point in this
direction.

We conclude this section with a brief discussion of kaon
scattering from the "neutrino sea." If we suppose that
space is filled with a sea of neutrinos, ' which may be
relics of the early stages of our universe, then regeneration
of Ez from EL can also occur in "free" space via the in-
teractions

X'+v~X'+ v,
K +v—+K +v.

(4.11a)

(4.11b)

We will denote the corresponding forward-scattering am-
plitudes by f (0) and f"(0), respectively, where v generi-
cally represents any of the species v„v&, v, v„. . . , .
The weak neutral-current interactions in (4.11a) and
(4.lib) can be mediated by Z exchange and, since only
the C-odd polar-vector current of the kaons can contribute
[f"(0)—f (0)] will in general be nonzero for elastic
scattering from the neutrino sea. It turns out, however,
that in the standard SU(2)XU(1) model f"(0) and f"(0)
separately vanish. This can be seen by noting that the
conventional assignments for the u, d, s,c quarks are

T

~uR~ CR~ dRs SR
g L Se

de ——d cosOC+s sin8&,

s~ ———d sinOc+s cosOc,

(4.12)

where R and L denote the right- and left-handed com-
ponents, respectively, and Hc is the Cabibbo angle. It fol-
lows that the Z K K and Z E X couplings, which in
the forward direction are proportional to the weak
"charges" Qi of IC and K,

Q3 ——Q3+Q3, (4.13)

are exactly zero for X =ds and K =ds. However, this
will not be the case for models with unconventional cou-
plings, such as one in which cR and sR are assigned to
doublets (along with some unspecified higher mass
quarks), rather than to individual singlets. However,
even in such a model the regeneration parameter p in Eq.
I(2.7) is many orders of magnitude too small to produce

effects of the type suggested by the data, provided that the
neutrino number density X is not unexpectedly large.

The principal conclusions of this section are that effects
of the type suggested by the data cannot be accounted for
by an external hypercharge or electromagnetic field, or by
scattering from stray charges or cosmological neutrinos.
It is worth emphasizing that these conclusions, as well as
the argument of Appendix 8 which rules out gravity as an
explanation for these effects, do not depend on the as-
sumption that we are in a regime where

~
u,

~

/Am is
small. Recall from Eq. (3.70a) that for a hypercharge or
electromagnetic interaction (b,m )„ is a monotonically in-
creasing function of energy at all energies, contrary to
what is seen in the data. The neutrino sea can be ruled out
simply because there are too few neutrinos to produce a
detectable effect. Taken together these conclusions al-
ready suggest that the observed effects arise from a new
interaction. The assumption that

~
u,

~

/hm is small is,
however, necessary in order to argue that the only u, cap-
able of describing the present results is u, which leads
directly to Eq. (4.7). Using this result we will focus in the
next section on specific models which give rise to an in-
teraction term u o. .

Tote added. It is worth emphasizing that the limits
which derive from the present results on the nonexistence
of certain cosmological fields are far more stringent than
those obtainable by any other current methods. For exam-
ple, the Eotvos-Dicke-Braginskii experiments imply a
limit on the coupling strength f of the hypercharge field
in Eq. (3.12) given by [using the results of Roll er al. (Ref.
11)]

2 (6X10, 95% C.L. ,
Gmp

(4.14)

where 6 is the Newtonian gravitational constant, and mz
is the proton mass. By way of comparison we note from
Eqs. (3.35) and (3.12) that for the hypercharge case 3o and
b'„" are related by

Ap 2+
b(2) (4.15)

/e/ (Am) RG

1

/e/ (bm)

where we have assumed that Ap is of galactic origin.
Since bz ' is necessarily positive for a hypercharge field {as
we have previously noted), whereas experimentally
b„' '= —(2.01+0.86)X10 from Table I, it follows that
at the 3o. {99.7%) confidence level, our result for bz ' ex-
cludes the value b,'& ') +0.57)&10 . This limit when
combined with Eq. (4.15) then implies (using the galactic
mass and radius quoted in Sec. V below)

(1X10 ', 99.7% C.L. ,
6m~

(4.16)

which is more stringent than the limit obtained from the
Eotvos-Dicke-Hraginskii experiments. Future experiments
presently being contemplated at the Fermilab Tevatron
should improve on the present limit by at least an order of
magnitude. This analysis also suggests that the sensitivity
of the Fermilab experiments is such that any mechanism
which could account for the observed energy dependences
of the EC -K parameters could very well not manifest it-
self in other current experiments.
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V. MODELS OF THE u,

We examine in this section some models of the u, in an
attempt to see whether effects of the type suggested by the
experimental data of Sec. II can be understood in a simple
way. Since a detailed discussion of the experimental and
theoretical constraints on such models will be presented
elsewhere, we will confine our attention here to some ex-
amples which suggest new experiments, such as those con-
sidered in I. Of particular interest is the possibility that
the u, originate from some interaction which would also
manifest itself elsewhere, such as in neutrino oscillations,
for which there are some experimental suggestions at the
present time. ' Should this turn out to be the case, then
failure to take account of the possible effects of such an
interaction might lead to inconsistencies in interpreting
the data, as we discuss shortly.

We have shown in Sec. IV that the only pure u, cou-
pling capable of accounting in a natural way for the exper-
imental results of Sec. II is u„, which is even under charge
conjugation. One possibility is that a term proportional to
u„arises from an interaction of the K -K system with a
mass-energy distribution, with this interaction being medi-
ated by a C-even tensor (or scalar-tensor) field. This possi-
bility becomes all the more attractive if we assume that
the source of this field is an already known "charge".
Since the only known "charges" that a macroscopic object
carries with which it can couple to K and X are mass-
energy and hypercharge, it follows that, having eliminated
hypercharge in Sec. IV, we are again led to mass-energy as
the source of the unknown field. This field cannot, how-
ever, be a metric gravitational field, in particular the field
of general relativity, for the reasons discussed in Appendix
B. If the source of this field is indeed mass-energy, the
implication would be that it couples not only to A and
E but to all particles and fields, including neutrinos. The
same conclusion would also follow if the "field" were
some material medium permeating space. In this view the
effects of this field are manifest in the E -K system only
because they enter in the combination u, /hm, where b,m
is a small quantity. If this is the case, then such effects
may also show up in neutrino oscillations where compar-
ably small mass scales could exist. Before returning to
discuss models of the external interaction, we comment
briefly on the phenomenology of neutrino oscillations in
the presence of such an interaction.

Following Ref. 31, we will assume that for a two-
neutrino system Am &2

——m2 —m
&

=-1 eV . If we also as-
sume that mi 2 are each of order 1 eV, we see that for all
relevant experiments yj 2 ——Ei 2/m i 2 (where Ei 2 are the
energies of neutrino species 1 and 2, respectively) are
much higher than in the present kaon experiinents. For
example, yi 2 ——10, 10, 10, and 10" for a neutrino with
an energy of 1 MeV, 10 MeV, 1 GeV, and 100 GeV,
respectively. These values compare to y=260 for the
highest-energy kaons in Refs. 4—6. The net effect of the

I

new interaction, which is proportional to the analogs of
'y !hm and g,' 'y /b, rn, could nonetheless be small if

g,
' and g,

' ' are suppressed for some dynamical reason.
However, the possibility that y~ 2 are large points up some
potential differences between a system of oscillating neu-
trinos and the K -K system. Since mi 2 and hmi2 could
be comparable for neutrinos, in contrast to kaons where
bm/m =—7.1&10 ', it may happen that mi 2 as well as
hm~q will appear to vary with energy. From Eqs. (3.48)
we see that this depends not only on m

~ 2 and their differ-
ence, but also on the analogs of go, g„, . . . , etc. A second
potential difference between these systems is the possibili-
ty that at current neutrino energies

~
Am~2

~
may be in

creasing with increasing energy, rather than decreasing as
is the case for kaons at present energies. This is suggested
by Fig. 1 which indicates that for kaons

~

4m
~

increases
for y&374. Should m) 2 and/or Ami2 depend on energy,
then failure to take this into account might lead to the
conclusion that the value of Am&2 obtained, say, in a
high-energy experiment at Fermilab would be different
from that obtained in a low-energy reactor or beam-dump
experiment. Clearly neutrino experiments designed to
look for such effects would be of great interest. A discus-
sion of such experiments, and an analysis of neutrino os-
cillations in the presence of external fields, will be present-
ed elsewhere.

Let us return to pursue the possibility that the energy-
dependence of hm, ~z, and g+ originates from a field,
hereafter called the U field, which couples to mass-energy
but which is nonetheless different from gravity. To ac-
count for such a y dependence it is natural to suppose that
U is a tensor field. If the quanta of this field were mass-
less, we would be led inexorably to general relativity,
which we have already shown cannot account for the ef-
fects observed (see Appendix 8). This suggests that the
U-field quanta have a nonzero rest mass m„, from which
several important consequences follow. (1) The interac-
tion mediated by the U field would have a finite range. (2)
Given the w'eakness of the coupling of the U field to kaons
(and presumably to other matter as well), the U quanta
could conceivably be present in our galaxy (and elsewhere
in our universe) in large numbers, and yet go undetected
by conventional means. If this were the case, the U quan-
ta could be partially responsible for the "missing mass" of
the universe.

The preceding discussion suggests a number of possible
mechanisms for generating the U field. For example,
starting with the expression in Eq. (820}, we deliberately
construct a nonuniversal (and hence nongravitational} in-
teractiorl by allowing yppN to be different for KL, and Kz..
1 ppN~gL or gs with gL +gg. To implement the require-
ment that the U field have a finite range, we assume that
the only contributions to @(r) come from matter within
our galaxy. Starting from Eq. (820) and setting EL, =Es-
for KL and Kq in regeneration (see Appendix A), the
KI -Kz phase difference is given by

e

phase difference= —I[pl (1+gLC&)—ps(1+ps@) jdz'

—= ——J hm 1 —(gL —gs ) @p2y
Am
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where use has been made of Eqs. (A12). In the limit

gL =ps —1 ppN Eq. (5.1) goes over into the standard re-
sults given in Eq. (834). However, when g'L, &gs, Am be-
comes y-dependent,

b.m Am 1 —(gl. —gs) — 413 y

up+ p (d+d) —T(d]]+d22)
l 1m 0 ( L +~S ) + ( ii 11 + ii 22 )
4

2 (P +g )+lQ» (d22 dll )

=am(I+b,"'y') . (5.2)

l lbm ——(I I —I s)2 2

We notice immediately that in such a model b~ ' itself de-
pends on P, a possibility which we anticipated in Sec. III.
This is of little practical consequence in the present case,
since P y =y —1, which means that Am will appear to be
varying linearly when plotted against either P y or y .
However, Py and y could be distinguished, at least in prin-
ciple. Since (gI. —gs) represents an off-diagonal (AS=2)
contribution from u„, it is reasonable to suppose that

,—4 I
—

I
~m ~m I, in which ease

where we have set P =1. 4 is now the gravitational po-
tential due to the galaxy. We take our galaxy to be a
homogeneous two-dimensional disc with a mass
1.4&10» Mo and a diameter of 25 kpc=7. 7&10 cm,
with the Sun located at a distance of 10 kpc from the
galactic center. Numerical evaluation of @ then gives (as-
suming that A/m„c && galactic radius)

I
ba'

I
=-+=-0.9X10

in surprisingly good agreement with the experimental
value Iba'

I
=(7.4+1.5)X10 . Inclusion of the contri-

butions from the local group of galaxies raises the result in
Eq. (5.4) to about 1X10 . It is, of course, difficult at
this point to understand why so crude an estimate of b~'
should come anywhere near the observed value. If this is
not entirely due to coincidence, it may indicate that the
origin of the observed effects is a small breakdown of
universality in the gravitational interaction, which perhaps
manifests itself only at the quantum level.

One can extend the preceding model to understand
qualitatively the relation between b~ and b~. Suppose we
examine the effects of the U field in a basis given by the
CI' eigenfunctions E& and Ez. In analogy to Nacht-
mann, ' we take Ki 2 to be initially degenerate, and treat
the weak interaction and the U field as perturbations. The
analog of iH in Eq. (3.10) can be written in the form

di2
EH~l (5.5)

21 22

where d)),di2, . . . , are complex numbers. In terms of
the unperturbed mass mo of K ~ 2, d ~ ~ 22 can be written as

d„=m ——,(km+~ I )+u „,
122 ——mo+ —,'(b, m —iI r )+u22,

where u» and u22 represent the effects of the U field in
the E i-Ez basis. When transformed back into the E -E
basis, the Hamiltonian in Eq. (5.5) gives the following con-
tributions to the various parameters in Eq. (3.14):

+ (u22 —u»)

il + (d —d ) = (d12+d21 )

(5.7)

Hence, if u» and u22 are real, which means that K[ 2 act
simply as if they had different masses in the presence of
the U field (even though they were initially degenerate),
then there arises a contribution to u„of the form

1

Q» =
2 (922 —il 11),

which is real. From Eqs. (3.11) and (3.53) this means that
bp ——0 but b~&0. Conversely, in order for b~ to be dif-
ferent from zero the U field must affect the lifetimes of
E~ 2 as well as their masses. In such a model once b~ and
b~ are determined, bz and b~ can then be obtained by us-
liig Eqs. (3.54).

Although the foregoing discussion suggests that a
nonuniversal gravitational interaction (with gL&gs) could
account for the observed energy dependence of the E -E
parameters, we know of no specific theory which would in
fact give gl ~ps. This is a major limitation of such a pic-
ture, since in the absence of a detailed theory we are un-
able to use the kaon data to study other phenomena such
as neutrino oscillations. For this reason we have
focused' ' on a Lagrangian model based on a massive
tensor field Uz„which appears capable not only of ex-
plaining the present data, but also of making predictions
for other processes as well. Since a detailed description of
this model will be presented elsewhere, we will limit the
present discussion to a brief summary of its salient
features. As is well known, a tensor field Uz„whose
quanta have a nonzero mass m„gives rise to s theory
lacking the general coordinate invariance of general rela-
tivity (GR). Hence an external U field behaves in much
the same way as any other external field, and motion with
respect to this field is detectable just as it would be for an
external electromagnetic fidd. In the limit m„~0, gen-
eral coordinate invariance is restored, but the resulting
theory is not GR, but rather a theory characterized by the
exchange of both scalar and tensor massless gravitons.
For this reason, the phenomenological consequences of
such a theory are quite different from those of GR: For
example, the deflection of light by the Sun (or radar time
delay) is predicted to be —,

' of the GR value, while the pre-
cession of the perihelion of Mercury is —', of that predicted
by GR. Since the current experimental data, particularly
for the radar time delay, strongly support GR it follows
that gravitational forces cannot arise exclusively from a
massive tensor field U&, irrespective of how small m„ is.
In the weak-field limit, however, the data are consistent
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with a two-tensor theory in which the usual metric tensor

g„ is replaced by f„,
f~„=cos O„go~+sin H„Up„, (5.9)

where 0„ is a mixing angle. It can be shown ' that the
data for radar time delay imply that sin 8„&8&10
and hence that the coupling of U& to matter must be
much weaker than that of gravity. Even so, such a two-
tensor theory faces other formidable challenges, most not-
ably from the Hughes-Drever experiments, as we discuss
in greater detail in Ref. 36. At present it appears that
such a model can be made consistent with all available
data on a variety of systems, but additional experiments
are clearly needed. If this model does indeed prove to be
viable, then it could have important implications for the
study of neutrino oscillations as well, since U&„couples
universally to the energy momentum tensor T„.

The preceding picture of the U field is based on the as-
sumption that the dominant contribution to I' in Eq. (3.10)
comes from u„. Should the data, particularly the magm-
tude and sign of b&, indicate that this is not the case, we
would then be forced to consider models involving com-
binations of two or more of the u, . As we have noted in
Sec. IV, one interesting possibility is that the U field mani-
fests itself as some combination of u~ and u, both of
which are odd under C. The four parameters g» ', g» ',

', and g', ' could then be phenomenologically chosen to
fit the four slope parameters b~, b~, b„, and b~. Howev-
er, there would still remain the question of whether the
fitted values of g» ', . . . , could be obtained from a con-
sistent dynamical model. The same remarks apply, of
course, to other combinations of the u„such as u~ and u~
and u, .

Thus far we have considered models in which the U
field is an external influence on the E -E system, either
in the form of a field in the usual sense or an external
medium such as the neutrino sea. There remains the pos-
sibility that the u, represent instead the effects of a break-
down in the usual Wigner-Weisskopf description of the
K -K system due, for example, to a small nonlinear term
in the Schrodinger equation. A particularly attractive
choice for such a term is I» ln

~

4 ~, wh—ere I» is a con-
stant, and limits on b have been set by recent experi-
ments. ' It is not clear at present whether such a term
could, in fact, account for the effects of the type reported
in Refs. 1—3. However, if this did turn out to be the case,
it would again be natural to look for similar effects in neu-
trino oscillations.

We conclude this section with a discussion of what is
perhaps the most direct (if least popular) interpretation of
the present data, namely, that they represent a fundamen-
tal breakdown of Lorentz invariance. Taken on their face
value, the data imply that observers comoving with El
and K~ can discern how fast they are traveling with
respect to ostensibly empty space, simply by measuring
hm or g+ . In attributing such effects to the presence of
an external field or medium, we are arguing in effect that
the laws of physics are Lorentz invariant, but that space is
not really empty. There is, however, an alternative view
which is that the fundamental laws of physics themselves
violate Lorentz invariance at some level. Such a possibili-
ty has been discussed, prior to the present work, by a num-
ber of authors, and has been the subject of renewed in-

E =k+m (5.10)

would get modified to
~4

g2 k +m2
M

(5.11)

where M ' is determined by the lattice spacing. In such a
model the EI -Kg mass difference hm would appear to be
energy dependent,

~2
Am ~b.m 1+ y, @=Ex/m

k
M

(5.12)

with a coefficient b~' ——k /M which was itself energy
dependent. Fitting Eq. (5.12) to the data of Refs. 1—3, we
find M =3 & 10 GeV, which means that at cosmic-ray en-
ergies other anomalies could appear.

Given the crudeness of all existing models of LNI ef-
fects, it is difficult to tell whether any such model is
relevant to the effects described in Refs. 1—3. Clearly
any complete theory of LNI effects must be able to ac-
count for the data not only on ~~, but also for 4m and

g+ . If such a theory can in fact be constructed, the
question would arise as to whether its predictions would
differ from those of a model based on an external field
U& . Although this is a difficult question to answer at
present, one possible approach would be to study experi-
ments in which the kaons traveled in the vertical direction,
which would thus be sensitive to the Earth's contribution
to the gradient of U& . If the Earth is the source of all or
part of the anomalous energy dependence of Refs. 1—3,
then such experiments should reveal effects which depend
in a well-defined way on cosa, where a is the azimuthal
angle. A detailed analysis of such experiments is currently
in progress, and will be presented elsewhere.

VI. CONCLUSIONS

We have developed in this paper a general theoretical
framework for describing energy-dependent effects in the
proper frame of the K -K system. This framework al-

terest in the context of unified gauge theories. Ellis
et aI. , and also Zee, have considered possible violations
of Lorentz invariance in proton decay which take place on
a scale ad,„-1/M~, where M~ is the mass of the su-
perheavy gauge boson expected in grand unified theories.
In such a model one expects Lorentz-noninvariant (LNI)
effects only on distance scales of order 10 cm. It is
thus difficult to understand what relevance, if any, such a
model would have for the present kaon data. On the other
hand, Nielsen and Picek have recently considered the
possibility of LNI effects arising on a scale of
10 ' cm-1/M~, which could in principle lead to effects
of the type suggested by the data of Refs. 1—3.

In the preceding discussion of LNI effects in proton de-
cay the starting point is typically an assumed noncausal
behavior of the X-boson propagator. Still another way to
introduce LNI effects is to take seriously recent work on
lattice gauge theories to the extent of supposing that
space-time is really a lattice. In such a case the usual re-

lation between the energy E( k) and the moinentum k of a
free particle,
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lows us to analyze the E -E system not only at relatively
low energies, where

~
u,

~

/4m & 1, but also at very high
energies (~ u,

~

/b, m &&1), where the properties of the
kaons are determined primarily by the external influence
which gives rise to the u, . We emphasize that this treat-
ment is purely phenomenological in that it makes no as-
sumption concerning the origin of the u, in Eq. (3.10).

Using this formalism we demonstrated in Sec. IV that
effects of the type suggested by the data of Refs. 1—3 (see
Sec. II) cannot be ascribed to an external electromagnetic
or hypercharge field, or to the scattering of kaons from
stray charges or cosmological neutrinos. When taken to-
gether with the analysis of Appendix B, which indicates
that such effects cannot arise from gravitational interac-
tions either, we are led to conclude that the anomalous en-
ergy dependence of the E; -K parameters may be the sig-
nature of a new interaction. As we have emphasized in
Sec. IV, this conclusion does not depend on the approxi-
mation

~
u,

~

/b, m & 1. However, if this approximation is
invoked, we can proceed further and demonstrate that a
term of the form u„o„ in Eq. (3.10) can account for the
present data, but u~o.z or uzo.z cannot. Since u„a„ is even
under C and CI', this suggests that the origin of the
anomalous energy dependence of the neutral-kaon parame-
ters may be a C-even external field or medium.

In Sec. V, we considered some specific models of a u„o.„
interaction, including a C-even massive tensor field Uz .
We also discussed the possibility that such effects may
arise from an interaction which is intrinsically Lorentz-
noninvariant. As we noted, it may be possible to distin-
guish between effects due to a LNI interaction and those
due to an external tensor field by experiments which mea-
sure Vg, (x) and Vg, (x). It is clear, however, that if the
data of Refs. 1—3 are correct, then the source of these ef-
fects will represent a new and hitherto unexplored realm
of physics.

ACKNOW I.EDG MENTS

We are deeply indebted to our many colleagues who
contributed to this work in various ways. We are particu-
larly grateful to Professor Bruce Winstein for many valu-
able suggestions. Two of the authors (H.Y.C. and E.F.)
wish to thank Professor Chen Ning Yang for the hospital-
ity of the Institute for Theoretical Physics at Stony Brook
where this work was begun. This work was supported in
part by the U.S. Department. of Energy.

the preceding discussion it follows that in the laboratory
frame the matrix element for KL +T~Es+T contains
the factor

i( pL —p&) x /R —i(EL —E&)t!A
e e (Al)

for motion in the z direction. Along the classical trajecto-

z=vt= t,c p (A2)

as discussed in Appendix 8 below. Combining Eqs. I (A3)
and (A2) above allows the oscillatory factor in Eq. (Al) to
be written as

ei diaz/A e —i hm c2t/~ (A3)

which then leads immediately to the expression in Eq.
I (2.11) in the kaon rest frame.

For later purposes it is instructive to rederive Eq. (A3)
in another way. Starting with the free-particle wave func-
tion for EL we again use (A3) to write

IPI x/A' tpLz/A —iEL&/A —imLc &/AyL
e =e =e

and similarly for Es. Using Eq. (A12b), we see that the
matrix element for Kl +T~Es+ T contains the factor

—2i hm c2t/exp[ i (c t/—fi)(mL /yL ms/ys—)]=e

in apparent contradiction with Eq. (A3). The discrepancy
between Eqs. (A3) and (A5) can be resolved by noting that
Eq. (A4), and its analog for Ks, builds in the fact that
uL ——t." pL /E&us =~ ps' It follows that during the
time t that a Es travels the distance D between the regen-
erator and the detector, the EI will travel a distance of
only (uL /vs)D ~D, as shown in Fig. 5. Hence, the accu-
mulated Kl -Ks phase difference (hfdf) between the regen-
erator and detector obtained by using Eq. (A5),2™t, (A6)

Ay

gives only part of the resu1t. There is an additional contri-
bution hfdf, shown by the dashed line in Fig. 5, which is

APPENDIX A: KINEMATICS FOR ECI -Xg
INTERFERENCE

In the absence of external fields, interference effects in

Es regeneration arise from the difference between the
free-particle wave functions exp[(i/A')PL .x] and
exp[(i/fi)Ps x] describing Er and ICs, respectively. It is
this difference which gives rise to the osciHatory factor
proportional to cos(hm c i/fi) in Eq. I(2.11), as is well
known. In the presence of external fields the osciHatory
factor becomes more complicated, particularly in the case
of various phenomenological theories that we want to con-
sider. It is thus worthwhile to reexamine the seemingly
trivial derivation of the oscillatory factor from the point
of view of generalizing it to the external field case. From

Ks

vt =D

R E6EN ERATO R DETECTOR

FIG. 5. Phase correction in EL-Kz interference. During a
time interval, t, the {faster) K~ travels a distance D, whereas the
{slower) KL travels a distance uLI; &D. The phase correction for
KL is ipLM/fi, where M={u~—uL)t as indicated by the dashed
line.



ENERGY DEPENDENCE OF THE FUNDAMENTAL. . . . II.

gi.ven by

b,g2 ———P M= —P(us —Ul. )r=+—lkmC
Ay

ly interesting is P(3770)~D+D, where y= 1.011.
We conclude by citing some kinematic relations for re-

(A7) generation which follow from Eq. I (A3) and EL —-Es.

e++e ~P(1020)~KI +Ks . (A9)

If the p is produced at rest in the laboratory, then conser-
vation of three-momentum requires that pL

——ps. It then
follows that EI &Es owing to the KI -Ks mass difference.
Processes whose kinematics complement those of regen-
eration may provide an important tool in studyin the
velocity dependence of the parameters of the Ko-K sys-
tem. This can be seen by noting that in the presence of an
external gravitational field, for example, the free-particle
wave function in Eq. (A4} generalizes to

exp (i/fi) fg„Pgdx"

=exp (i/A} fg„„(mr dx "/dr)dx, (A10)

as we show in Eq. (827). It follows that in the presence of
a static gravitational field, the matrix element for
KL +T~Ks+ T contains the factor

exp (i/i') fg;, (PL P,')dxj—
+ (i/A') fgoo(Pg Ps)dx—

which is the generalization of (Al). We thus see that ex-
periments in which either the generalized momenta I'I s
or the generalized energies PL s are unequal would allow
for a separate determination of g;J and goo, respectively.
Similar remarks hold for the space and time componerits
of other possible long-range fields which couple to KL and
Ks.

We will present elsewhere. a detailed analysis of the in-
fluence of long-range fields on interference phenomena in
Q~KL, +Ks We note t.hat since p=0.217 and y=1.024
for KL and Ks in P decay, the kaons are sufficiently rela-
tivistic for velocity-dependent effects to be studied in a
high-statistics experiment. Although g/J~KL +Ks
would produce kaons which were even more relativistic
(y=3. 1), this mode is highly suppressed and in fact has
not yet been seen. Another Inode which may be potential-

where again use has been made of Eq. I(A3). The total
phase difference b,P is then given by

~4=~4i+~42=
A'y

(AS)

in complete agreement with Eq. (A3). Thus, when it is
convenient for some purpose to start with the covariant
wave function in Eq. (A3), or with its analog in the pres-
ence of an external field as in Appendix 8, then a phase
correction must be made as in Eq. (A7). Although the net
effect of this correction in the free-particle case is to sim-

ply replace ml s/yL, s in the covariant expression (A4) by
Am /y, the effect in other cases is more complicated.

Thus far we have considered the kinematics which
govern interference effects in the regeneration process for
which EI.——Es but pL, &ps It is interesting to note that
interference effects can also be studied in another class of
processes where just the opposite conditions prevail, name-

ly, El.&Es but pl =ps Consider for example

ml yL —msys =0,
ms 25m

yL ys y

(A12a)

(A12b)

PL, '4. Ps'—ks=(kl. Cs)—P' —(kL, +Is), «12c)
mP

FL, pL, 'kl. Esp—s'ks = — p'r'(gs—4)
y

Am
(k. +Ps}

mL

yL ys
(1+P'),

y
(A13b)

pl. 4. ps ks= (k.—Cs)p —— — (kl. +ks»hm p

2 2

EL,pr'4Es ps'k. s =
,
— r'(kl. —4 }

y

(A13d)

hm
(gL, +ps)

(A13e)

APPENDIX 8: THE E -X SYSTEM
IN A GRAVITATIONAL FIELD

We present in this appendix a detailed description of the
behavior of the K -K system in a gravitational field. The
main purpose of this discussion is to establish that, in all
known theories of gravity, no observable effects (of the
type described in Sec. II) arise from the motion of the
K -K system with respect to a static gravitational field.
The primary reason for this is that the experiments under
consideration are insensitive to the gradient of ihe gravita-
tional potential, and hence may be considered as "local"
experiments for present purposes. After a general descrip-
tion of metric and nonmetric theories of gravity, and their
implications for the present experiments, we derive the
wave function for a kaon in a weak static spherically sym-
metric (SSS) gravitational field. This discussion serves
both to illustrate the more general arguments, and to set
the stage for a subsequent description of nonlocal experi-

(A12d)

Pi, s UL, s/c }L,s (1 Pg, s )

z (pL +ps )~ 1 =
2 ( YL +1s ), and gl. s are two arbitrary

constants which may or may not be the same for KL and
Ks. Equations (A12) are useful in analyzing the effects of
gravity and other external interactions on the K -E sys-
tem. The analogs of Eqs. (A12) for the case pL, ——ps, but
EL&Es are

Am
mL yI —msys =

y
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ments, ones in which gravity-induced interference effects
in the K -E system could in principle be studied.

We have seen that the data of Refs. 1—3 suggest that
~ g+ ~, P+, and b, =26,m c rs/A' are all energy depen-

dent. In anticipation of the ensuing discussion it should
be noted that all of these parameters are dimensionless
nongravitational quantities. We also note that the gravita-
tional potential with which the K -K system interacts in
the regeneration experiments may be taken to be a con-
stant. This is clearly the case for the contributions from
distant (e.g. , galactic) sources, whose effects can be linear-
ly added in the weak-field limit. The largest contribution
to the gradient of the potential presumably comes from
the Earth, but since the kaons travel essentially horizontal-
ly in these experiments, they again see only a constant po-
tential. " It follows that these experiments are local in the
sense that they do not probe the variation of the gravita-
tional potential in the vicinity of the apparatus. The sug-
gestion of the regeneration experiments is that they have
detected an apparent velocity dependence of several di-
mensionless nongravitational parameters by means of a lo-
cal measurement. The question is then whether such an
effect can arise from a gravitational field. To proceed, we
consider some of the results of the Caltech group
which has analyzed theories of gravity in a rather general
framework. We caution the reader at the outset that these
authors consider primarily classical (i.e., nonquantum)
theories of gravity, and hence the applicability of their
analysis to the X -E system remains somewhat of an
open question. Central to their discussion are several ver-
sions of the equivalence principle, including the weak
equivalence principle (WEP) and the Einstein equivalence
principle (EEP). The WEP is what Misner, Thorne, and
Wheeler refer to as "uniqueness of free fall, " and what
some other authors term "equality of passive and inertial
masses. " The EEP subsumes the WEP and adds the re-
quirement that "the outcome of any local, nongravita-
tional test experiment is independent of where and when
in the Universe it is performed, and independent of the
velocity of the (freely falling) apparatus. " Thorne, Lee,
and Lightman note that one consequence of the EEP is
that "dimensionless ratios of nongravitational physical
constants must be independent of location, time, and velo-
city." It follows from the previous discussion that gravi-
tational theories which embody the EEP cannot lead to
the observed energy (or velocity) dependence of

~ q+
P+, or b, . Moreover, Schiff ' 6 has conjectured that
"any complete and self-consistent gravitation theory that
obeys WEP must also, unavoidably, obey EEP." If
Schiff's conjecture is correct, then no self-consistent
theory of gravity which embodies the WEP could lead to a
velocity dependence of

~
7)+ ~, P+, or b, . It can be

shown ' that Schiff's conjecture is equivalent to the
statement that any complete and self-consistent theory of
gravity, which is relativistic and which embodies the
WEP, is necessarily a metric theory. Most of the familiar
theories of gravity, including general relativity and the
Brans-Dicke-Jordan theory, are in fact metric theories.
This simply means that they are characterized by a metric
tensor g& whose geodesics are the trajectories of freely
falling test bodies. In addition, the nongravitational laws
of physics in such theories assume their special relativistic
forms in local freely falling frames. From the preceding

discussion, it then follows that the observed velocity
dependence of

~ g+ ~, P+, and 6 cannot be accounted
for in the framework of any metric theory of gravity.

There are, however, nonmetric theories of gravity as
well. These are usually formulated in terms of some fun-
damental Lagrangian as is the case, for example, for the
theory of Belinfante and Swihart. If Schiff's conjecture
is correct, then all such theories are either equivalent to
metric theories or else are inconsistent with the WEP.
Indeed, an analysis by Lee and Lightrnan of a class of
nonmetric theories, including that of Belinfante and
Swihart, indicates that all of these are inconsistent with
the current experimental limits for the Eotvos-Dicke-
Braginskii (EDB) experiments, " and hence with the WEP.
The class of theories for which their analysis is applicable
are those in which the equations of motion of a charged
particle in a SSS gravitational field can be derived from
the Lagrangian

I =IW dt = —I [mc ( T HP )'—
+ (e /c) P' A]dt . (Bl)

Here T and H are arbitrary functions of the coordinates,
A is the electromagnetic vector potential, and P'= v'/c is
the coordinate velocity (to be distinguished from the mea-
sured velocity defined below. ) In addition, Maxwell's
equations for this class of theories must assume the same
form as in metric theories [see Eq. (84) below]. Such
theories are thus characterized by four arbitrary functions
of the coordinates (T,H, e, and p) and hence this descrip-
tion of gravitational effects is known as the THep formal-
ism. All metric theories fall into this class, as we discuss
in more detail below, and these are distinguished from
nonmetric theories by the fact that the former obey the
"metric meshing law, "

e =p = (H/T)'i

while the latter do not. To the extent to which nonmetric
theories agree with the EDB experiments they also tend to
simulate metric theories. Further discussion of these
points can be found in Refs. 49—53, which also deal with
the limitations of the TH op formalism. A similar
analysis for a gravitational theory with torsion has been
given by Ni. We note in passing that although we have
not considered gravity theories with torsion ' in any detail,
the predictions of such theories tend to coincide with
those of general relativity in situations such as ours, where
the source and test particle have no spin. (We here neglect
the spin of the Earth. )

To summarize the preceding arguments, there is no
known viable complete and self-consistent relativistic
theory of gravity which violates the EEP, and hence
which could account for a velocity dependence of

~ rl+
P+, or b, . We stress that this conclusion derives from
the analysis of a (necessarily) restricted class of theories, in
which only gravitational and electromagnetic effects are
considered, and at that only in a semiclassical manner.
We have not considered supergravity theories, nor more
general types of nonmetric theories. An example of the
latter would be one which was a metric theory with
respect to electromagnetism, but not with respect to the
weak interactions, a possibility which has been suggested
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I'"I.~z+F v~-I. +I'~I -v —o . (83b)

In Eqs. (83), F&"(x) is the electromagnetic field-strength
tensor, J" is the source current, and the semicolon denotes
covariant differentiation. It is relatively straightforward
to show that Eqs. (83) can be recast in the form

V.(eE) =p, V X(8/p) = J+8(eE)/c dt, (84a)

by Haugan and Will. Given the central role of the weak
interactions in the E -K system, and the fact that the
EDB experiments are relatively insensitive to the presence
of these interactions in nuclei, such a possibility may
well be worth exploring if the experimental results of Refs.
1—3 are confirmed.

We turn next to a detailed examination of the wave
function of a kaon in a SSS metric gravitational field.
This will serve both to elaborate on the general arguments
given above, and to develop the forma1ism needed for
describing the nonlocal gravitational experiments referred
to previously. To understand why there are no obseruable
effects arising from the motion of a kaon with respect to a
gravitational field, we focus on the difference between the
coordinate velocity u' and the measured velocity u that an
experimentalist would see in the laboratory. This differ-
ence is best illustrated by considering the propagation of
light rays in a gravitational field where Maxwell's equa-
tions assume the form

(83a)

dl cdl dj
( g—~}'"dt

r

toity
Coo

(89a)

(89b)

( D„D"—+a. )4(x,t)=0, (811)

where tr=mc/fi and D„ is the covariant derivative. [In
the presence of a matter distribution Eq. (811}would con-
tain an additional term proportional to the scalar curva-
ture. ] If we express D„ in terms of the ordinary deriva-
tives B„=B/Bx"and 8'=g""3 then Eq. (811)becomes

Physically, the quantities v, dl, and dtt ——( g~)—' dt are
those that an experimentalist would find in the laboratory
if he measured velocities, lengths, and time intervals by
using light signals which are defined to travel at the speed
c=2.99. )&10' cm/sec. We now focus on hm and
show that, when the EL and K~ wave functions in a gravi-
tational field are expressed in terms of these measured
quantities, hm is independent of the measured y,

y=[1 n—(dz/dx ) ] '~ =[1—(v/c)2] '~z . (810)

It then follows that the origin of any velocity dependence
of hm cannot be a coupling of the K -K system to an
external metric gravitational field.

In the presence of gravity, the wave function %(x,t } for
a scalar particle of mass m in a matter-free region of space
is determined by

V-B=O, V &E+BB/c Bt =0, (84b)

ds =f(r)(dx +dy +dz )+goo(r)c dt

( 2+ 2+ 2)1/2

in which case n =(ep)'~, where

~=p=n =[ f(r)/g~(r)]'" . —

(85)

It is instructive to verify Eq. (86) by rewriting Eq. (85) for
light in the form

O=ds =dx +dy +dz —[ goo(r)/f(r)]c—dt

(B7)

where e=e(x) and p =p(x) can be expressed in terms of
the components of the metric tensor g&„(x). For a SSS
geometry g„„(x) is specified in isotropic coordinates by
writing

—a„ae— a„v g (uq)+~'e=o,
g

(812)

where g =g (x)= —detg&„(x). For a particle traveling in a
weak SSS metric gravitational field, gz„(x) is given in
terms of the functions f(r) and goo(r) in Eq. (BS) by

f(r)=I +2r ppN~' —goo(")=1—@

«1, g„=c =(g,O) .GM 2 BW

rc' ' " ex&

(813)

Here 6 is the Newtonian gravitational constant,
6=6.6720(41)X10 cm gm 'sec, M is the mass of
the source (which is located at r=0), and the constant
1 ppN is a parametrized-post-Newtonian (PPN) parameter5'
which distinguishes among different metric theories of
gravity. Combining Eqs. (812) and (813), the differential
equation for 4 becomes

A light ray can thus be viewed as propagating in a Min-
kowskian space-time, but with a local index of refraction
given by Eq. (86). In this picture the gravitational deflec-
tion of light arises from the uariation of n(r) from point
to point along the light path, which then leads to the re-
fraction of the light ray in accordance with Snell's law.
For a ray traveling, say, in the z direction we have

c = [ f(r)/goo(r) J' (dz/d—t)= nv', (B8)

which relates the measured (or physical) velocity
c =2.997 924 58 ( 1.2) )& 10' cm/sec to the coordi nate uelo-

city u'=dz/dt. We can define the measured velocity u

more generally by writing

—( 1 —2l ppN@)V q + ( 1 +2N)
c Bt

+(1—1'ppN) +Ic 0 =0 ~

g. V+
C2

(814)

where we have neglected terms 0(@ ) and higher. In
cases of practical interest, the gravitational potential @ is
not only small but is also slowly varying compared to the
de Broglie wavelength of the particles in question. Hence,
if we take the particles to be moving initially in the z
direction, we can solve Eq. (814) in the WKB approxima-
tion by writing



520 ARGNSON, BOCK, CHENG, AND FISCHBACH 28

@( t ) g iS(z) /fi —iEt /A

S(z) =So(z)+fiS, (z)+
(815)

(A4). For motion in the z direction we have

c dr = —g33dz —goo(dx ) = go—oc dt 1+ P'
goo

where A is an overall normalization constant. Combining
Eqs. (814) and (815), and equating coefficients of A and
A', we find

A ~ —(1+2@)E /c +(1—2yppN@)(So)

+m c =0, (816a)

fi'~ (1—2yppN@)(2S1S11 iS—O )

+i(1—y»N)S'g. /c'=o, (»6b)

= —gooc dt (1—n P' ) .

Hence, the phase of the oscillatory factor in Eq. (821) is
given by ™f dt( )1/2( 1 zpiz)1/2

where So ——BSo/Bz, etc. Solving Eqs. (816) for So(z) and
S1(z), we find for %(z, t) —= ( —i/A') f Wdt . (823)

111(z,t) =Ako '/ (z)exp[(1/2)(1 —yppN)C&]

z
&(exp i f ko(z')dz' (i/A)E—t

(817)

Equation (823) is both simple and exact, and we will re-
turn to it in the ensuing discussion. We note in passing
that W can be rewritten in the form

( 1 +2+)E /c —m c
o z

1 —2yppN~'

Equation (817) can be simplified by noting that the total
(conserved) energy E in the presence of a gravitational
field is given by

mc'( —g~) '"
zizz

=
(1 nP' )—

~=mc'l g~ g3—3P']—'", (824)

P (~/T) ( g33/goo) (825)

which is identical to Eq. (86) with g33 ——-f(r). To establish
the equivalence of Eqs. (820) and (821) we write

which is identical to the first term in Eq. (Bl) if we ident''-
fy T= —goo and H =g33 The metric meshing law in Eq.
(82) then reads

—=E'(1 —N) . (818)
g~„dx ~dx

d'7 =
d'T C d7

oscillatory factor

(826)

&ko = +p'( I+yppN+) =+p'(g 33)'"
(E 2y 2 2 2)1/2

( 1 n 2pI2) 1/2

(819)
=—exp (i/A') f g„,(m dx" /d~)dx

=exp (i/h') f g&„P&dx"

Combining Eqs. (817) to (819), we can write the oscillato-
ry factor in %(z, t ) in the form

Combining Eq. (827) with the expression for dr in Eq.
(823), we find

oscillatory factor
2 1 dz dx——Plc d7 = —— g )pl dz+g pyg33 d Qo

=exp (ill) f p'( I+yppN@)dz' (i/A)Et—

(820)

for a particle moving in the +z direction. We will return
to Eq. (820) below.

The wave function q1(z, t) in Eq. (817) has the charac-
teristic form of a WK8 eigenfunction, namely, a product
of an oscillatory factor and a slowly varying amplitude
function. It is instructive to note that the oscillatory fac-
tor in Eqs. (817) and (820), which is what governs the
various interference effects that we are considering, can be
written in the following simple and useful form

oscillatory factor=exp ( —i/A')mc f dr

c dr = —ds = —g»dx"dx

In the absence of gravitational fields, f dr=t/y in the
laboratory frame, in which case the expression in Eq.
(821) reduces to the usual free-particle result given in Eq.

( )1/2 mc dt

( 1 n zpiz) 1/2

mv n dz

n Zpiz)1/2

(828)

in agreement with Eqs. (817)—(820). This verifies Eq.
(821) and thus establishes the equivalence of (820) and
(821). We note that the expression in (823) builds in the
information that the particle is moving along the classical
trajectory dz=v'dt, whereas (828) does not. It follows
that when the EL —Es phase difference is calculated using
(823), account must be taken of the fact that vl &vs by
applying the phase correction described in Appendix A.

For a particle moving in a weak field (N &~1), the exact
expressions in (820) or (823) can be simplified by making
use of Eq. (813). We have
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( —goo)' =1—4, n = 1+—2(1+yppN)C',

V(r) = —mc l (1+p' 1'pp N)4( )r
T

(I+@ XppN) ~

GM E'
(831)

where use has been made of Eq. (818). Since this expres-
sion is already O(G), the coordinates can be taken to be
approximately Minkowskian (to leading order) and the
primes can be dropped in Eq. (831). For photons, or other
relativistic particles with P-=1, Eq. (831) gives an effec-
tive potential which is (1+yppN) times the "Newtonian"
result for a photon with an effective mass Etc . Since
gppN= 1 in general relativity, this leads to the well known
prediction that a photon is deflected by twice the
Newtonian value, in excellent agreement with experi-
ment.

We are now in a position to demonstrate explicitly that
the observed dependence of Am on y cannot be a metric
gravitational effect. Returning to the expression for the
oscillatory phase in Eq. (823), and using Eqs. (89) and
(810), we have

imc imc f dtL,

y
where dtt dt( —goo)' is the——measured time interval in
the isotropic coordinate system, which coincides with the
laboratory frame. %'e have argued previously that since
the kaons travel essentially horizontally in the regenera-
tion experiments discussed in Refs. 1—3, 4 [and hence

(832)

( —goo)'"(1 —n'P')'"=(16')[1 —1 (1+O'XPPN)@]

and hence,

oscillatory factor
T

=-p ' ' f "[1—r'(—1+0'XppN)q]
y

Equation (830) can be used to formulate another descrip-
tion of the gravitational deflection of light. We note that
the second term in (830) corresponds to an effective po-
tential V(r) given by

y=y(4)] are approximately constant as a function of po-
sition. It follows that the factor 1/y in Eq (.832) can be
removed from under the integral in which case Eq. (832)
reduces to the usual free-particle result of Eq. (A4). (Re-
call that the time interval dt's in the kaon rest frame is
given by dttt dtt l——y.)

We can summarize the. preceding discussion as follows.
Under the conditions of the regeneration experiments the
gravitational potential experienced by the kaons is for
practical purposes a constant. As is well known, such a
constant can always be absorbed by redefining the coordi-
nates in such a way as to make the metric Minkowskian
over the dimensions of the apparatus. It follows that the
phase of the oscillatory factor becomes

(833)

in the kaon rest frame, and hence all reference to the velo-
city of the kaon with respect to the gravitational field
disappears. Since the oscillatory phase in (833) is identi-
cal in form to that for a free particle, we can take over the
kinematic analysis given in Appendix A to obtain the
phase difference between EI and Kz,

i Am c't~
phase difference=— (834)

[Note that it is misleading to try to obtain (834) from
(833) by simply using the fact that d7 is an invariant,
without taking account of the fact that vL& s.v] We see
from (834) that the phase difference between I(.L and Xs
in the regeneration experiments is determined by a
velocity-independent mass difference hm, even in the pres-
ence of a metric gravitational field. It must be em-
phasized however, that if appropriate interference experi-
ments were carried out on kaons traveling in the vertical
direction, then velocity-dependent. gravitational effects
could in principle be seen. For such experiments the vari-
ation in y between the regenerator and detector cannot be
ignored, and hence y cannot be removed from under the
integral sign. In addition the kinematic correction
described in Appendix A becomes more complicated. A
detailed discussion of I(L-Kz interference experiments in
the vertical direction will be presented elsewhere.

~S. H. Aronson, G. J. Bock, H. Y. Cheng, and E. Fischbach,
Phys. Rev. Lett. 48, 1306 (1982).

E. Fischbach, H. Y. Cheng, S. H. Aronson, and G. J. Bock,
Phys. Lett. 116B,73 (1982).

S. H. Aronson, G. J. Bock, H. Y. Cheng, and E. Fischbach,
preceding paper, Phys. Rev. D 28, 476 (1983),hereafter called
I. Our notation and conventions are the same as in I, and we
will denote Eq. (1.1) of this reference by I (1.1), etc.

4J. Roehrig, A. Gsponer, W. R. Molzon, E. I. Rosenberg, V. L.
Telegdi, B. D. Winstein, H. G. E. Kobrak, R. E. Pitt, R. A.
Swanson, S. H. Aronson, and G. J. Bock, Phys. Rev. Lett. 38,
116 (1977); 39, 674(E) (1977);J. Roehrig, Ph.D. thesis Univer-
sity of Chicago, 1977 (unpublished).

~W. R. Molzon, J. Hoffnagle, J. Roehrig, V. L. Telegdi, B.Win-
stein, S. H. Aronson, G. J. Bock, D. Hedin, G. B. Thompson,

and A. Gsponer, Phys. Rev. Lett. 41, 1213 (1978); W. R.
Molzon, Ph.D. thesis, University of Chicago, 1979 (unpublish-
ed).

G. J. Bock, S. H. Aronson, K. Freudenreich, A. Gsponer, W.
R. Molzon, J. Roehrig, V. L. Telegdi, B. Winstein, H. G. Ko-
brak, R. E. Pitt, and R. A. Swanson, Phys. Rev. Lett. 42, 350
(1979).

7M. L. Good, Phys. Rev. 121, 311 (1961). See also W. Thirring,
in Essays in Physics, edited by G. K. T. Conn and G. N.
Fowler (Academic, New York, 1972), Vol. 4, p. 125.

J. H. Christenson, J. W. Cronin, V. L. Fitch, and R. Turlay,
Phys. Rev. Lett. 13, 138 (1964).

J. Bernstein, N. Cabibbo, and T. D. Lee, Phys. Lett. 12, 146
(1964); J. S. Bell and J. K. Perring, Phys. Rev. Lett. 13, 348
(1964).



ARONSON, BOCK, CHENG, AND FISCHBACH

T. D. Lee and C. N. Yang, Phys. Rev. 98, 1501 (1955).
'R. v. Eotvos, D. Pekar, and E. Fekete, Ann. Phys. (Leipzig)

68, 11 {1922);P. G. Roll, R. Krotkov, and R. H. Dicke, Ann.
Phys. (N.Y.) 26, 442 (1964); V. B. Braginskii and V. I. Panov,
Zh. Eksp. Teor. Fiz. 61, 873 (1971) [Sov. Phys. —JETP 34,
463 (1972)].
T. D. Lee and C. S. Wu, Annu. Rev. Nucl. Sci. 16, 511 (1966).
F. Gursey and A. Pais (unpublished).
T. D. Lee and L. Wolfenstein, Phys. Rev. 138, B1490 (1965).

~ ~Q. Nachtmann, in Particle Physics, edited by P. Urban
(Springer, Berlin, 1969) [Acta. Phys. Austriaca Suppl. 6, 485
(1969)].

~6For a derivation of these results, see D. Bailin, 8'eak Interac-
tions (Sussex University Press, Sussex, 1977), p. 368.
J. Bernstein, Elementary Particles and Their Currents (Free-
man, San Franciso, 1968), p. 310. We have corrected some
misprints in Eqs. (15.248) and (15.249) of this reference.
T. T. Wu and C. N. Yang, Phys. Rev. Lett. 13, 380 (1964).
Particle Data Group (M. Roos et al.), Phys. Lett. 111B, 1

(1982); Particle Data Group (R. L. Kelly et al.}, Rev. Mod.
Phys. 52, S1 (1980); Particle Data Group (C. Bricman et al. ),
Phys. Lett. 75B, 1 (1978).

2oR. E. Marshak, Riazuddin, and C. P. Ryan, Theory of Weak
Interactions i n Particle Physics (Wiley-Interscience, New
York, 1969), p. 480. Qur x+ corresponds to their X, and their
6 1s 2 ours.

J. Roehrig, private communication.
We thank Bruce Winstein for helpful discussions on this point.

23See, for example, R. W. Dunford, R. R. Lewis, and W. L. Wil-
liams, Phys. Rev. A 18, 2421 (1978).

4G. Feinberg, Phys. Rev. 109, 1381 (1958); Ya. B. Zel'dovich,
Zh. Eksp. Teor. Fiz. 36, 1381 (1959) [Sov. Phys. —JETP 9,
984 (1959)].
In lead, with an electron density of =3&10 /cm, regenera-
tion from the atomic electrons constitutes only 3% of the total
regeneration amplitude at 65 GeV/c. Since [f(0)—f (0))/k is
independent of both energy and momentum transfer for this
contribution, the energy dependence of Am and g+ could not
in any case be ascribed to the scattering from stray charges.
A detailed discussion of regeneration from electrons is given
in Ref. 5.

26L. Wolfenstein, Phys. Rev. Lett. 13, 562 (1964).
7We thank J. W. Cronin for first raising this question.
S. Weinberg, Phys. Rev. 128, 1457 (1962); Gravitation and
Cosmology (Wiley, New York, 1972), Chap. 15.

2 R. Qpher, Astron. Astrophys. 37, 135 (1974); L. Stodolsky,
Phys. Rev. Lett. . 34, 110 (1975); R. R. Lewis, Phys. Rev. D
21, 663 (1980); J. Schneider, in Cosmology and Particles,
proceedings of the Moriond Astrophysical Meeting, 1981,
edited by J. Audouze, P. Crane, T. Gaisser, D. Hegyi, and J.
Tran Thanh Van (Editions Frontieres, Dreux, 1981).
For an analysis of experimentally allowed quark assignments,
see B. Kayser in Recent Developments in High Energy Physics,
proceedings of Qrbis Scientiae 1980, Coral Gables, Florida,
edited by A. Perlmutter and L. Scott (Plenum, New York,
1980), p. 257. We thank Dr. Kayser for very helpful discus-
sions on this point.
D. Silverman and A. Soni, Phys. Rev. Lett. 46, 467 (1980).

3 S. Weinberg, Phys. Lett. 9, 357 (1964); Phys. Rev. 135, B1049
(1964); D. G. Boulware and S. Deser, Ann. Phys. (N.Y.) 89,
193 (1975).

Such a picture of the external interaction, consisting of a force
arising from (almost) undetectable particles filling space, is
reminiscent of LeSage"s theory of gravity. See S. Aronson, in
The natural Philsopher (Blaisdell, New York, 1964), Vol. 3, p.
51.

4The data for our galaxy have been taken from C. W. Allen, As-
trophysical Quantities (Athlone, London, 1976), pp. 282—284.
See also B.J. Bok, Sci. Am. 244, No. 3, 92 (1981).

3~We note for the record that this calculation preceded (and was
the motivation for) the analysis of Refs. 1—3.

3 S. H. Aronson, G. J. Bock, H. Y. Cheng, E. Fischbach, and J.
Newport (in preparation).
H. Van Dam and M. Veltman, Nucl. Phys. B22, 397 (1970);
Gen. Relativ. Gravit. 3, 215 (1972); D. G. Boulware and S.
Deser, Phys. Rev. D 6, 3368 (1972); V. I. Zakharov, Pis'ma
Zh. Eksp. Teor. Fiz. 12, 447 (1970) [JEPT Lett. 12, 312
(1970)].
R. D. Reasenberg et al. , Astrophys. J. 234, L219 (1979).

9V. W. Hughes, H. G. Robinson, and V. Beltran-Lopez, Phys.
Rev. Lett. 4, 342 (1960); R. W. P. Drever, Philos. Mag. 6,
683 (1961); R. H. Dicke, The Theoretical Significance of Ex
perimental Relativity (Gordon and Breach, New York, 1964),
pp. 14—22.
I. Biafynicki-Birula and J. Mycielski, Bull. Acad. Pol. Sci. 23,
461 {1975);A . Phy . (N.Y.) 100, 62 (1976); Phy . S . 20,
539 (1979). For a related discussion of a possible failure of su-
perposition in the E -E system, see B. Laurent and M. Roos,
Phys. Lett. 13, 269 (1964); Nuovo Cimento 40A, 788 (1965).
C. G. Shull, D. K. Atwood, J. Arthur, and M. A. Horne, Phys.
Rev. Lett. 44, 765 (1980); A. Shimony, Phys. Rev. A 20, 394
(1979); see also W. C. Carithers et al. , Phys. Rev. D 14, 290
{1976).

42D. I. Blokhinstev, Phys. Lett. 12, 272 (1964); L. B. Redei,
Phys. Rev. 145, 999 (1966); 162, 1299 (1967); L-E. Lundberg
and L. B. Redei, ibid. 169, 1012 (1968); P. R. Phillips, Phys.
Rev. 139, B491 (1965); 146, 966 (1966); P. R. Phillips and D.
Woolum, Nuovo Cimento 648, 28 (1969).

43H. B. Nielsen and M. Ninomiya, Nucl. Phys. 8141, 153
(1978); S. Chadha and H. B. Nielsen, ibid. B217, 125 (1983).

~J. Ellis, M. K. Gaillard, D. V. Nanopoulos, and S. Rudaz,
Nucl. Phys. B176, 61 (1980).

45A. Zee, Phys. Rev. D 25, 1864 (1982).
"6H. B. Nielsen and I. Picek, Phys. Lett. !14B, 141 (1982);

Nucl. Phys. B211,269 (1983).
47S. H. Aronson, G. J. Bock, H. Y. Cheng, E. Fischbach, and D.

Weingarten (in preparation).
48In fact, for the experiments of Refs. 4—6, the neutral beam

was oriented 6.25 mrad below the horizontal. Thus at a typi-
cal momentum of 70 GeV/c, the kaons "fell" a distance
M=2. 4 crn in one Eq mean decay length. This induces a
change in the relative EL -E~ phase which is of order
y'g ~/c'=-5X10 ", where g=980 cmsec ' is the local ac-
celeration of gravity. This correction is entirely negligible for
our purposes. See also Ref. 69 below.

4 K. S. Thorne, D. L. Lee, and A. P. Lightman, Phys. Rev. D 7,
3563 (1973).
D. L. Lee and A. P. Lightman, Phys. Rev. D 7, 3578 (1973);
A. P. Lightman and D. L. Lee, ibid. 8, 364 (1973).

~~C. M. Will, in Experimental Gravitation, edited by B. Bertotti
(Academic, New York, 1974), p. 1.

52C. M. Will, Phys. Rev. D 10, 2330 (1974).
53M. P. Haugan and C. M. Will, Phys. Rev. D 15, 2711 (1977).
54C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation

(Freeman, San Francisco, 1973), p. 1050.
55L. I. Schiff, Am. J. Phys. 28, 340 (1960).

W.-T. Ni, Phys. Rev. Lett. 38, 301 (1977); A. Coley, ibid. 49,
853 (1982).

57C. H. Brans and R. H. Dicke, Phys. Rev. 124, 925 (1961); P.
Jordan, Astron. Nachr. 276, 193 (1948).

5 F. J. Belinfante and J. Swihart, Ann. Phys. (N.Y.) 1, 168
(1957); 1, 196 (1957); 2, 81 (1957).



ENERGY DEPENDENCE OF THE FUNDAMENTAI. . . . . II. 523

In this section only, e denotes the function defined in Eq. (B6),
and not the CP-violating parameter defined in Sec. III.
W.-T. Ni. Phys. Rev. D 19, 2260 (1979).

6~For a recent summary of gravity theories with torsion the
reader is referred to the contributions from F. W. Hehl, J.
Nitsch, and H. Rumpf in Gravitation and Cosmology, edited
by P. G. Bergmann and V. de Sabbata {Plenum, New York,
1980), pp. 5, 63, 93, respectively. See also P. B. Yasskin and
%'. R. Stoeger, Phys. Rev. D 21, 2081 {1980).

6 For a recent discussion of supergravity theories, see Supergrav-
ity, edited by P. van Nieuwenhuizen and D. Z. Freedman
(North-Holland, Amsterdam, 1979); P. van Nieuwenhuizen,
Phys. Rep. 68, 189 (1981).
M. P. Haugan and C. M. Will, Phys. Rev. Lett. 37, 1 (1976);J.
P. Hsu, Phys. Rev. D 17, 3164 (1978).

W. Weinberg, Gravitation and Cosmology (Wiley, New York,
1972), p. 125; C. W. Misner, K. S. Thorne, and J. A. Wheeler,
Gravitation, Ref. 54, p. 568; M. G. Bowler, Gravitation and
Relativity (Pergamon, Oxford, 1976), p. 58; A. P. Lightman
and D. L. Lee, Ref. 50.

65E. Fischbach and B. S. Freeman, Phys. Rev. D 22, 2950
(1980).

&~L. D. Landau and E. M. Lifschitz, The Classical Theory of
Fields (Pergamon, Oxford, 1975), p. 250.

s7L. Stodolsky, in neutron Interferometry, edited by U. Bonse
and H. Rauch (Clarendon, Oxford, 1979), p. 313; Gen. Rela-
tiv. Gravit. 11, 391 (1979); J. Anandan, Phys. Rev. D 15,
1448 (1977); Nuovo Cimento 53A, 221 (1979); D. M. Green-
berger and A. W. Overhauser, Rev. Mod. Phys. 51, 43 (1979).

68E. B. Fomalont and R. A. Sramek, Astrophys. J. 199, 749
(1975).

A useful number to bear in mind is the change in gravitational
potential energy hV, at the surface of the Earth, of a neutral
kaon falling a distance A/c 6m=5. 60 cm. This number is
coincidentally given by 6V/c 6,m =0.86&(10 = 4 Re&,
where e is the previously defined CP-violating parameter.
This observation suggests that gravitational effects in the K-
E system may be detectable. For further discussion of this
point see E. Fischbach, in Cosmology and Gravitation, Ref. 61,
p. 359.


