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The 1/N expansion is a useful way of solving the Schrodinger equation to very high orders. We present
a modified, physically motivated approach, called the shifted 1/N expansion, which dramatically improves
the analytic simplicity and convergence of the perturbation series for the energy eigenvalues.

Recently it has been shown that the I/N expansion is a
powerful new way of solving the Schrodinger equation. '

The techniques developed in I/N expansions in nonrela-
tivistic quantum mechanics have potential applications in
quantum field theory where many interesting results have
already been obtained in the large-N limit. A similar
method is also well known in solid-state physics and is
called the I/S expansion, S being the spin. ' In nonrelativis-
tic quantum mechanics, the method has mainly been applied
to spherically symmetric potentials where the expansion
parameter is k = N + 2l, N being the number of spatial
dimensions and I the eigenvalue of the N-dimensional orbi-
tal angular momentum. ' For the case of power-law poten-
tials V(r) =Ar", analytic expressions have been obtained to
many orders in I/k. This is possible due to the advent of
logarithmic perturbation theory, ' which greatly simplifies
calculations. These expressions, however, become progres-
sively much more complicated, although providing good nu-
merical results. ' We present a somewhat modified novel
approach which we shall call the shifted 1/N expansion.
This method is physically motivated by the known exact an-
alytic solutions of the power-law potential with v =2 (har-
monic oscillator) and v= —I (Coulomb potential). These
results suggest that a desirable expansion parameter is
k =k —a, obtained by suitably shifting k. In this paper we
demonstrate that this shift dramatically improves the simpli-
city of the analytic expressions and the convergence of the
perturbation series for the energy eigenvalues. Our simple
analytic forms give excellent agreement with numerical
results. Throughout this article we will develop the shifted
1/N expansion for power-law potentials.

The radial Schrodinger equation in N spatial dimensions
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where k =N+2l. The characteristic length and energy in-
volved in this problem are
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We scale out these characteristic quantities by defining the
dimensionless variables
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We use a more general shifted variable k =k —a as an ex-
pansion parameter. For now a is an additional degree of
freedom. We shall motivate a convenient choice of a later.
The radial Schrodinger equation now reads
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For large k, the effective potential is V,qq= rt" +I/4ri2 which
has a minitnum at go= (1/2v)'~'"+". We now shift to this
minimum by defining the variable x =k'~ (rt/rto —I). Ex-
panding about the point x =0 yields

In order to get a useful I/O expansion it is customary to de-
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The unperturbed problem is the harmonic oscillator with frequency co= Jv+2; we treat all other terms as a perturbation.
For a = 0 it has been shown that'
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where n = 0, 1, 2, . . . is the principal quantum number.
Note that the analytic behavior of the energy in terms of the
coupling constant is completely displayed in the factor
A ~ "+ which has to appear to make the dimensions that of
energy.

For the case v = 2 and A = mo)'/2, the exact analytic solu-
tion is known to be

In this case Eq. (7) is, in fact, an infinite series. Clearly, it
would be desirable to have an expansion that reproduces
known exact analytic results immediately. This can be easily
done by noting that Eqs. (8) and (9) involve a shifted k.
The shift is such as to give an exact result after just one
partial sum in the shifted variable. This motivates the use
of an expansion parameter

"(k+4n) .
2 k = k —a, a = 2 —(2n + I )Jv+ 2 (10)

—2me4

/r (k + 2n —I) (9)

Indeed, only the first two partial sums in Eq. (7) survive in
this case and Eq. (8) is reproduced. For v = —1 and
A = —e', the complete analytic solution is also known and
has the form

~here a has been chosen so that when Eq. (10) is substitut-
ed into Eq. (7), the resulting 1/k expansion will have the
coefficient of k (inside the large square brackets) equal to
zero. The result is
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For v= —1, 2, Eqs. (8) and (9) are reproduced. Note that
our result is much simpler than Eq. (7).

%'hen n =0 it is possible to carry out the calculation to
higher orders. This is most conveniently done with use of
the logarithmic perturbation theory. " This has recently
been done for I/O expansions and yields explicit but very
cumbersome algebraic expressions which are too long to
write here [see Table IV (c) in Ref. 5]. We have solved Eq.

(6) for n =0 which corresponds to

k = k —(2 —Jv+2) (12)
The calculations using logarithmic perturbation theory are
long but straightforward; they involve integrals over the un-
perturbed harmonic-oscillator ground-state wave function
and the perturbing potential. In particular, the method is
simple since one does not need to sum over intermediate
unperturbed eigenstates as in the standard Rayleigh-
Schrodinger approach. Our result is
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This is dramatically simpler than the I/k result, ' Note that
in every partial sum after the first, {v —2) ( v + 1) appears
as a factor. This assures us the exact answer again for
v = —1, 2 after one term. (Note that for v =0, E =3 as it
should be.) Every subsequent term in the series will con-

tain two more powers of v in the numerator and an added
factor of Jv+ 2 in the denominator. Although the first few
partial sums in the eigenvalue expansion are suggestive of
an exact analytic form for the entire series, the 1/k' term
breaks the pattern. Bringing the calculation to even higher
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—0.201 91
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9.352 43
(9.35243)
16.266 79

(16.351 8)
21.917 85

(22.082 24)

V(r) =r4

n =1=0

2.394 73
(2.393 64)

TABLE I. Comparison of the shifted 1/N expansion results
with numerical (N = 3) results (Ref. 9) (in parentheses) for vari-
ous potentials (t = m =1). The n =0 results were computed us-

ing the four partial sums displayed in Eq. (13); the excited states
were computed using the two partial sums in Eq. (11).

orders would be extremely difficult by hand. There do ex-
ist, however, various computer languages which perform
algebraic manipulations that can proceed more efficiently.
We also mention here that our expansion parameter k, Eq.
(10), is larger than the standard parameter k for v ) 2, so
that for these values we expect a more rapidly convergent
series than a I/O expansion. For —2 & v & 2, k is slightly
less than k; however, having complete answers for
v = —1, 0, 2 after one partial sum keeps the I/O series close
to the exact answer in this region also.

Table I compares results from Eq. (11) for general n and
Eq. (13) for n =0 with numerical results for various poten-
tials. The accuracy of our results using k is much better
than the I/O expansion results obtained previously, ' if one
keeps terms to any given order. In a sense, the shifted
parameter k has provided a physically motivated resumma-
tion of the perturbation series which improves its conver-
gence. This is clearly a better approach than using a
mathematical resummation technique such as Pade or a
Shanks approximation. However, if desired, we can now
further improve the convergence of our series in 1/k by per-
forming such a mathematical transformation.

To our knowledge, our main results [Eqs. (11) and (13)]
are the simplest known analytic expressions for the energy
eigenvalues of power-law potentials. It is clear that the I/k
expansion method can be generalized to any spherically
symmetric potential V(r). As discussed before, the choice
of the shift a in k =k —a should be such as to make the
second partial sum in the I/O expansion vanish, thereby im-
proving the rate .of convergence of the energy eigenvalue
perturbation series.
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