PHYSICAL REVIEW D

VOLUME 28, NUMBER 2

15 JULY 1983

Comments

Comments are short papers which comment on papers of other authors previously published in the Physical Review. Each Comment should state
clearly to which paper it refers and must be accompanied by a brief abstract. The same publication schedule as for regular articles is followed, and page

proofs are sent to authors.

Comment on ‘‘On the canonical approach to quantum gravity”’

David G. Boulware
Physics Department, FM-15, University of Washington, Seattle, Washington 98195
(Received 4 March 1983)

In the model discussed by Ashtekar and Horowitz, it is shown that the constraint operator applied to the
state functional allows support outside the classically allowed region only if no Hermiticity requirements are
placed on the fundamental operators. If one requires that the constraint condition be written as the square
of the Hermitian operator pg on the state function, then the classically forbidden region is also forbidden
quantum mechanically, and, furthermore, within the classically allowed region, only a discrete set of points
are allowed quantum mechanically. The latter restriction arises because the original manifold is compact,
thereby forcing a quantization of the conjugate momenta which, in the model under consideration, forces a
quantization of the allowed points. These features are also exhibited in the path-integral quantization of a

similar system quantized on a torus.

In classical general relativity, the Hamiltonian constraint
is
H=-3R + (p*py—p¥2)=0 , 1)
which is quadratic in the conjugate momenta p*. This con-
straint, expressed as a functional differential constraint on

the state functional ¥ (g ), implies that
2

}‘I’(gk/) =0, 2)

which is formally similar to the Schrddinger equation

2
[~—"—2+ V(x)-—E]\If(x)=0 . (3)
dx
It is well known that, in general, the solutions to

Schrodinger’s equation have support in the regions which
are classically disallowed, that is, the wave function oscil-
lates in the classically allowed region and is exponentially
damped but nonzero in the classically forbidden region.
The complexity of the general-relativistic constraint equa-
tion does not allow one to solve explicitly the functional dif-
ferential equation (2) or, to my knowledge, prove that the
support either is or is not restricted to classically allowed
geometries; however, Ashtekar and Horowitz' have pro-
duced a quantum-mechanical model which has a constraint
of the form of Eq. (1). In this model, they reported that
the support of the wave function does indeed extend into
the classically forbidden region, thereby strengthening the
argument that the support of the state functional in quan-
tum gravity should include classically disallowed geometries,
e.g., geometries with negative mass. In this note, it is
shown that the conclusion is critically dependent upon their
exclusion of two points from the manifold. If these two
points are included or, alternatively, if the boundary condi-
tions at the excluded points are chosen so that the operator
pe is self-adjoint on the manifold, then the classically forbid-
den region is also quantum mechanically forbidden. The
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essential difference between the approach used here and
that of Ref. 1 is precisely in the choice of self-adjoint exten-
sion of the constraint operator. There, no particular choice
was made and, as a consequence, the quantum operator p,’
is not positive definite; here, the requirement that py be
self-adjoint is imposed, hence its square is positive definite
and the system is quantum mechanically restricted to the
classically allowed manifold. Furthermore, because the ori-
ginal manifold is compact, the quantum-mechanical con-
straint restricts the allowed manifold to a finite discrete set
of points within the classically allowed region.

The issue of what three-geometries are allowed in quan-
tum gravity is of particular interest when the functional-
integral formulation is used.? There, the matrix element
between states with initial and final three-geometries is
given by the integral

(1) = [ 1dgls(Hexp(iwLg)) @)

where the integral is over all three-geometries gy and conju-
gate momenta p*. There are coordinate conditions and a
Faddeev-Popov determinant which have been suppressed as
well as the Hamiltonian constraint 8 functional which has
been written explicitly. The constraint & functional restricts
the integral and therefore the support of the state functional
to the classically allowed region. Thus, if the arguments of
Ref. 1 were correct, the amplitude could not be written as a
functional integral of the form of Eq. (4). However, for the
model of Ref. 1 slightly modified so that the functional in-
tegrals can be evaluated exactly, it will be shown below that
the functional integral yields exactly the same constraints as
the differential constraints, including the restriction of the
support of the wave function to the same discrete set of
points.

The model discussed in Ref. 1 consists of a single
quantum-mechanical particle moving in three dimensions.
Spherical coordinates are used and the Hamiltonian and the
constraint are independent of both the radial coordinate r
and its conjugate variable p,. Since the dynamics only in-
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volve the two-dimensional motion, the particle may be
viewed as moving on a two-sphere. The coordinates are
then 0 and ¢ with conjugate momenta pe and pg. The con-
straint is

C=pi—R(¢)=0 , &)
and the Hamiltonian is

H=V(¢) , (6)
where

R(»)V(ep)=0 . @)

The operator py which appears in the constraint, Eq. (5),
must be self-adjoint with respect to the measure sinfd8d ¢,
hence

p9=sin'1/20iaiosin”20 , 8)

J

2 21
fo j:'[paf(o,(p)]*\lf(o,¢)sinod0d¢=j; j:'[f(a,¢)]*p,~1f(o,¢)sinod9d¢ ,

where f is an arbitrary periodic C*® function of ¢ and an ar-
bitrary C* function of 6 which satisfies the boundary condi-
tions

sm‘/zof(e)=a—df%sin‘/20f(o) . 6=0+ ,

(12)

sin'20£(6) =67"5sin1/29f(0) 9= —
The fixed constants a« and B define the boundary conditions
at the end points. In order for the operator py to be Hermi-
tian, the wave function ¥ must also satisfy the same boun-
dary conditions with a« =0= 8, whence

(13)

tanwm =0 .
This equation is an eigenvalue for ww with eigenvalues

w=[R(¢)1V?=n (14)

or

R(¢p)=n? . (15)
In order for the equation to have a solution, the azimuthal
angle ¢ must lie in the classically allowed region R (¢) > 0,
and ¢ must take one of the finite number of values such
that R(¢) is the square of an integer [note that if
max(R) < 1, then no allowed points exist]. In Ref. 1, the
requirement that the operator py be Hermitian was not im-
posed; the only requirement was that the resultant wave
function ¥ (6, ¢) be normalizable. Here, we find that the
requirement that the operator be Hermitian entails the re-
striction to the classically allowable region and, in addition,
forces a further restriction, quantizing the allowable points
in that region. Of course, one would not expect such a re-
striction in general, it is a result of the compact range of the
variables plus the somewhat unphysical nature of the con-

(x",y",Tlx'y',0) = fd[x]d[px]d[y]dlpylslc (pe,y)180x — £1Detlp lexp (iW)

and the differential constraint reads
2

—m-aaoﬁsin”29~f\’(¢) v(9,¢)=0 . (C)]

This equation has the general solution
¥ (8, ¢)=(sin"20)[4 (¢)sinw($)0 + B (¢)cosw(¢)8] ,
(10)
where
w(¢)=RV(¢)

is real and positive in the classically allowed region and posi-
tive imaginary in the classically forbidden region. The func-
tions 4 and B must be determined by the boundary condi-
tions at =0, 7.

The requirement that the operator py be self-adjoint on
the open interval (0, 7) is

an

I
straint.

The essential feature in the preceding model is the fact
that the (6, ¢) space is compact and that the constraint
depends only on pg and ¢. The curvature of the space plays
no essential role. A simpler model which exhibits these
features and which can be solved somewhat more easily is
obtained by changing the manifold to a two-torus so that
the locally Euclidean coordinates x and y are defined modu-
lo X and Y, respectively. The constraint and Hermitian then
become

C=p’—R(y) (16)
and
H=V(y) ,
where R (y) and V (y) are periodic with period Y, and
R(YV(y)=0 . an

The constraint equation for the state wave function ¥ (x,y)
is

2
[——a—Z—R(y) Y(xy)=0 . (18)
dx
The solutions to this equation are
V(x,y)=A4 (explixw(y)] +B(expl—ixw(y)]l , (19)

where w(y) =R (»)"2. The solution must be periodic in x
with period X, hence w(y) =2mn, and, just as in the preced-
ing case, y is restricted to the classically allowed region and,
in addition, is restricted to the finite discrete set of points,
{ValR () = Qmn)Y.

The same result may be obtained with the use of
functional-integration techniques; the configuration-space
amplitude is given by

(20)
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where
T
W= J; [pxdx/dt + pydy/dt — V (y (1)) 1dt ,
and the integral is over all paths such that
x(T)=x", y(T)=y", x(0)=x', and y(0)=y’,

while the momenta are unconstrained at the end points.
The & functionals, respectively, enforce the constraint and
the conjugate coordinate condition, x () —&(¢), modX.
Note that, just as in general relativity, the constraint and the
coordinate condition both commute with the Hamiltonian
(when the constraint is satisfied) and do not commute with
each other. The Faddeev-Popov determinant associated
with the constraint and the accompanying coordinate choice
is Det[px]

The only appearance of the momentum p, is as a linear
term in the action, hence that integral may be evaluated ex-
plicitly. Let

YD =Lt +y (T=DVT+ 3y sin(nat/T) |

ne=1 (21)
and

py(D=poT™ 2+ ip,,(2/T)”2cos(nm/T)

n=1

Then, the p, term in W becomes

pydy/dt =po(y" =y )T+ 3 payu(nm/T) ,

ne=1
and the p, and y integrations can be done, yielding
(x". 3", Tlx",y", 0) =8 (3" —y")e TG (x",x",y',T) ,

(22)
where

G = [dlx1dipdslp2~ R (') 150x — ¢1Detlplexp(iW)
(23)
and
T
W= J dipex/d

The p. integration can now be done with use of the con-
straint; the result is

G = [dlxlslx —¢llexp(iW ) +exp(iW_)] ,  (24)
where

T
W= RO [ dx/di= £R()V(x"~x")

COMMENTS 28

The functional integral now depends on x only through the
& functional which sets the gauge (coordinate) condition.
The x integration is over paths whose end points are fixed
at x”’ and x’ (modulo X). This may not be consistent with
the gauge specification x = ¢, because the specification that
x have a definite value at =T and at t =0 is itself a gauge
specification at the initial and final times; the requirement
that the two specifications be consistent yields ¢(7) =x"
and £(0) =x'. Then, the integration may be taken over all
paths with the end points being allowed to vary freely. In
order to impose periodicity in x, the integrals must be taken
over all paths which end at the same point, but x is only de-
fined modulo X, hence the result must be summed over all
paths with end points at x"’+ nX. The resultant n depen-
dence is of the form

oo

S, explinXR ()] =

S SIXR GV =2mm] , (25)

m=—co
hence y has a discrete spectrum and the amplitude becomes
<x”'yn» T|X'.Ym. 0> = a(yn-ym )CXP[ - ’TV(ym)]

xcos[2m (x"—x")/X] , (26)

where
R (ym)=Qmm)? ,

exactly the same condition as was found by imposing the
differential constraint.

In conclusion, on the torus, both the differential con-
straint and the functional-integral formulation yield a
quantum-mechanical restriction to the classically allowed re-
gion. If the range of the quantum variable is finite, then
there may be further, quantum-mechanical, restriction to a
subset of the classically allowed region. If the model is de-
fined on the sphere then the restriction to the classically al-
lowed region follows from the requirement that the con-
straint involve the square of the self-adjoint operator py.
The functional-integral and operator formulations are
equivalent only when the constraint is expressible in terms
of the fundamental operators of the theory; if the constraint
is not defined as above then the amplitude cannot be writ-
ten as the functional integral over the canonical variables.
In the case of general relativity, the range of the metric is
not finite (although the manifold on which it is defined may
be) and there is no reason to expect a quantization of the
allowed values of the metric.
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