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We show that the strong-coupling expansion of lattice gauge theories leads to static multiquark interac-
tions which are in contrast to the additive-potential model and avoid the difficulties of this model.

The nonrelativistic quark model, enriched by ingredients
from quantum chromodynamics, has been remarkably suc-
cessful in explaining many features of hadron spectroscopy.
The application to low-energy hadron-hadron scattering,
however, meets serious difficulties for several reasons.
There are kinematical difficulties due to the composite na-
ture of hadrons, and there is our lack of knowledge about
long-range quark-quark interactions for multiquark states.
Though at present it is certainly unavoidable to try different
Ansatze for this interaction, one should always be a~are
which of these are compatible with or even supported by
more fundamental theoretical concepts. A particular popu-
lar model for multiquark interactions in the investigation of
low-energy hadron-hadron scattering is the confining addi-
tive two-body potential. ' It leads, however, to two serious
difficulties:

(1) It implies strong van der Waals forces" which fall off
only as inverse powers of the distance. They would lead to
large effects at large distances, which are not observed.

(2) The local gauge invariance of QCD makes a strong
long-range potential based on exchange of objects carrying
color for more than three quarks in general ill defined.
In this Brief Report we show that the strong-coupling ex-
pansion of lattice gauge theories' " leads to a supersatura-
tion in multiquark interactions and avoids the difficulties
with van der Waals forces between color singlets.

Since we are interested in large-distance effects, we may
use a rather coarse lattice and hence apply the strong-
coupling expansion. In the strong-coupling limit the Abeli-
an U(1) gauge theory is confining, '0 and for simplicity we
first restrict ourselves to this model.

We consider two quark-antiquark pairs propagating in
parallel rectangular paths from the points A and A' to D and
D', respectively (see Fig. I). The spatial separation between
the two consitiuents of a pair is I =AB = CD =A'B'= C'D'.
They travel over the Euclidean time period t = A C
=A'C'=BD =B'D'. The distance between the two planes
ABCD and A 'B'C'D' is d. We evaluate the statistical

I

V(l, d) = —lim —ln IV(i, d, t)1

f ~ oo

If d & l (not necessarily d » I), one obtains

V= (2I/a2) Ing'(a) +O(1/g2(a))

(2)

i.e. , just the sum of the two linearly rising potentials inside
the two quark-antiquark pairs plus terms of order I/g2(a).
For large spacings a the lattice coupling g2(a) scales like
exp(+Aa'), where A is the slope of the linearly rising po-
tential (string tension). Hence the terms of order I/g'(a)
are suppressed exponentially for large distances and can
only accommodate the exponentially decreasing potentials
from hadron exchange.

Ignoring the difficulties coming from the fact that the lat-
tice is not rotationally invariant, one may infer from the
leading strong-coupling expansion the following model for a
four-body interaction:

weight 8'of these paths in the four-point function of the
two-quark pairs T(AA';DD') with the measure given by the
lattice action of U(1) gauge theory. '0 This weight IV receives
its dominant contribution from two distinct gauge-field con-
figurations. One is obtained by filling the planes in the rec-
tangular loops ABDC and A'B'D'C' with plaquettes, the
other one by filling the walls of the brick-shaped solid, i.e.,
the planes AA'B'B, BB'D'D, CC'D'D, and AA'C'C. Each
plaquette gives a factor I/g', '0 ""where g is the coupling
constant on the lattice. The statistical weight of this path
configuration is hence given by

IV(i, d t) = [I/g'(a)]"'t' [I+O(I/g'(a))]
+ [I/g'(~) ]"""""[I +0(I/g'(~) )1 (1)

where a is the lattice spacing. The equivalent static poten-
tial can be obtained from 8'by comparing it with the corre-
sponding weight in the Feynman path integral'4 of nonrela-
tivistic quantum mechanics. This yields (see, e.g. , Refs. 15
and 16)

V(xf x2 x3 x4) = lng (t)(Ix~ —x4I +Ix2 —x3( —Ix~ —x3( —Ix2 —x4()

[I x] x3(a (x ()a(x))b (x3)b(x3) +1x2 —x4( a'(x2)a(x2)b'(x4)b(x4)]

+8(l xq —x31+ I x2 —x4I —
I x

~

—x41 —
I x2 —x3I)

&& [I x q

—x4(a" (x ~) a(xq) b'(x4) b(x4) I x2 —x3(a (xq) a(x2) b (x3) b(x, ) ] I (3)

where a, a, and b, b are annihilation and creation operators
of quarks and antiquarks, respectively.

For non-Abelian gauge groups the situation for compar-
able distances between all quarks is more complex. In Fig.
2(b), e.g. , a connection scheme for 7r+m. + in color SU(3) is

I

shown, which is not present for the Abelian case. Thus we
will have, in general, more complicated contributions to the
statistical weight, since there are more field configurations
possible; in the static limit, however, only the configuration
with the largest weight will contribute. If two hadrons are
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FIG. 1. Paths for two quark-antiquark pairs propagating from A

and A' to D and O'. Arrows indicate charge flow.

separated so far from each other that the sum of the dis-
tances betweeen the quarks in each hadron is smaller than
the smallest distance between two quarks of different clus-
ters, then up to 1/g2 terms the potential will be just the sum
of the internal potentials of the two clusters. Thus, as in
the Abelian case, there are no power-behaved potentials
between the clusters. It should, however, be noted that the
explicit form of the multibody potential will in general be
much more complicated than for the Abelian case [see, e.g. ,
the 3q potential in color SU(3) of Ref. 15].

Concluding we may remark that the strong-coupling ex-
pansion of lattice gauge theory does not only lead to realistic

FIG. 2. Different possibilities to connect 2 u quarks (u) and 2
anti-d-quarks (d) by plaquettes in color SU(3). The figure gives
the configuration at a fixed time. The solid lines denote edges of
plaquettes. At the lines going through y and y' in the "time" direc-
tion (i.e., perpendicular to the paper plane) the edges of three pla-
quettes are coupled to color singlets.

-confining potentials for quark-antiquark pairs and three-
quark states, but also avoids the difficulties of the additive-
potential model for multiquark states.

Note added. After the submission of this paper we
learned of a paper by M. %. Gross'" which comes to the
same conclusions.
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