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Analytic solution of the relativistic Coulomb problem for a spinless Salpeter equation
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We construct an analytic solution to the spinless S-wave Salpeter equation for two quarks interact-
ing via a Coulomb potential, [2( —V +m )'~ —M —a/r] g(r) =0, by transforming the momentum-

space form of the equation into a mapping or boundary-value problem for analytic functions. The
principal part of the three-dimensional wave function is identical to the solution of a one-
dimensional Salpeter equation found by one of us and discussed here. The remainder of the wave
function can be constructed by the iterative solution of an inhomogeneous singular integral equation.
We show that the exact bound-state eigenvalues for the Coulomb problem are
M„=2m/(1+a /4n )', n =1,2, . . . , and that the wave function for the static interaction
diverges for r~O as C(mr), where v=(a/m)(1+a/m. + . ) is known exactly.

I. INTRODUCTION

In this paper, we present an analytic solution for the S-
state wave functions of the spinless Salpeter-type equation
for a static Coulomb potential,

2( —V +m )'r —M ——1((r)=0 .

This equation appears as a natural approximation to the
relativistic Bethe-Salpeter-Schwinger equation' for two
fermions of mass m and total energy M when the interac-
tion kernel is approximated by the instantaneous Coulomb
interaction, and spin-dependent effects and the coupling of
the "large-large" and "small-small" components of the
wave function are neglected. The solution, and the
method used to construct it, should therefore be of fairly
general interest. We find, for example, that we can deter-
mine the exact bound-state eigenvalues of Eq. (1) without
actually solving the equation. The result

2m
n —1)2). . . ,(I+a /4n )

(2)

can probably be generalized to orbital angular momenta
I & 0, and the corresponding result may also be accessible
in the spin-dependent problem.

We originally encountered Eq. (1) (with a = —,a, ) in our
study of short-range effects in bound quark-antiquark sys-
tems. In that work (and later extensions ), it was impor-
tant to know how f(r) behaves for mr & 1. By matching
this (free) relativistic Coulomb function to the solution of
Eq. (1) with an extra long-range confining interaction and
using the known short-range gluonic radiative corrections
to f(r), we could estimate the radiative corrections to the
leptonic decays of Sl states in quarkonium and deter-
mine an approximate connection between the decay rates
calculated relativistically and nonrelativistically. Our re-
sults here complete our earlier work by providing rigorous

justification for arguments previously made on physical
gl ounds.

The plan of the paper is as follows: In Sec. IIA we
present an exact solution of a one-dimensional analog of
Eq. (1). The one-dimensional wave function appears later
as the main component of the three-dimensional wave
function for mr & 1, and determines the normalization of
that function. We therefore study the one-dimensional
solution in some detail in Secs. IIB and II C, and investi-
gate the connection of the one- and three-dimensional
problems in Sec. II D.

In Sec. III, we apply the methods and results developed
in Sec. II to the solution of the three-dimensional problem
defined by Eq. (1). We first show in Sec. IIIA that the
momentum-space form of Eq. (1) can be written as a
singular integral equation, and that this equation is
equivalent to a mapping or boundary-value problem for
analytic functions. We determine the analytic properties
of the solutions in Sec. IIIB, and use this information in
Sec. IIIC to determine the bound-state eigenvalues given
in Eq. (2). We complete our reduction of the boundary-
value problem in Sec. III D, and show that the
momentum-space wave function can be written as the sum
of the one-dimensional wave function and a second func-
tion which satisfies an inhomogeneous singular integral
equation. We show in Sec. III E that the integral equation
can be solved iteratively, and obtain exact results for the
large-momentum behavior of the solution. We use these
results in Sec. III F to show that g(r) diverges as C(mr)
for r~0 where v=(alar)(1+altr+ . ) is known exact-
ly, and conclude in Sec. III6 with some comments.

II. THE ONE-DIMENSIONAL COULOMB PROBLEM

A. Solution of the one-dimensional problem

Some time ago one of us (BD) found an exact solution
to a one-dimensional relativistic wave equation with a
static Coulomb potential, specifically the Salpeter-type
equation
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d2
2 — +m

8x

1/2
CX—M ——f(x)=0 .
X

(3)
liII "

The solution to this equation appears as an essential part
of our solution to the physically interesting three-
dimensional problem. The method of solution further-
more suggested methods we will use later. We therefore
present the one-dimensional results here.

We observe that Eq. (3} can be reduced to an ordinary
first-order differential equation by performing a Fourier
transform. If we define f(p) by

f(x)= f dp f(p)e'~", (4)
I A I 1(

substitute in Eq. (3), and integrate once by parts, we find
that f(p) satisfies the equation

i [[2(p +m )'/ —M]1((p)] —alai(p)=0.
8p

FIG. 1. The branch points and cuts of the function g(p), Eq.
(11),and the contours used in various integrations.

Alternatively, if we define X(p) as

X(p)=(i/a)[2(p +m )'/ M]it—(p),
we find that

The solution of Eq. (7) is straightforward:

X(p)=A exp[ i f—B(p')dp']

and

(9)

dr
dp

(p)+ iB (p)X(p) =0,

where

B(p}=a/[2(p + m )'/ —M] .

=drP(p) = 1B(p)X(p—)= (p) .
8p

(10)

Explicit evaluation of the integral in Eq. (9) gives the rath-
er complicated expression

X(p) =&
(p +m2)'/ +m

M —2m
M +2m

1/2 —i g 2 2 1/2 i a/2

+ 2 2 1/2
(p +m )'/+m M+2m (p +m )'/+m+p

where g =a/2v and u is the velocity of a free quark with

total energy M/2 and momentum po,
1/2

4mU= 1—
M

Po ——MU /2

(13)

If we replace g by dX/dp as in Eq. (10), a partial integra-

We obtain equivalent results using the customary
momentum-space form of the relativistic wave equation

[2(p +m 2)'/ —M]lit(p) — f dk e(p k)p(k) =—0 .

tion reduces this integral equation to the differential equa-
tion for X given in Eq. (7). This approach will be useful in
the three-dimensional problem.

It is easily shown that the function X(p) has branch
points at p =+po and at +im but no other singularities in
the (finite) p plane. We choose the branch cuts as shown
in Fig. 1. To obtain a space wave function P(x) which
vanishes for x =0, we choose the integration contour in

Eq. (4) as the difference between contours which run from
—Oo to Oo just above and below the real axis, that is, use
the contour C1 in Fig. 1. After a partial integration, we
can collapse the contour and express g(x) as a simple
Fourier transform of X(p),

1/2

(p2+ 2) 1/2+

1/2
P

(p2+m2)1/2+

l'g

(p2+m2}'/2+m +p

i a/2

(14)
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where we have absorbed various constants into the overall
normalization constant A. This expression reduces in the
nonrelativistic limit (m ~ oo, po fixed) to a standard repre-
sentation of the S-state Coulomb wave function,

5(

g(x) =poxA I dt e (1 t) —'"(1+t)'", t =p/po .—1

B. Normaiization and asymptotic form of the wave function

The one-dimensional function f(x ) in Eq. (15) for
x =r )0 gives the main term in our three-dimensional
solution of the relativistic radial wave equation. We wi11

need this function in three dimensions with the standard
plane-wave or unit-amplitude normalization for r~oo.
To determine the appropriate value of the normalization
constant A, we therefore let x~+ ac in Eq. (14) and ex-

tract the leading term in x ' in the asymptotic expansion
of f(x}.

The integrand in Eq. (14) has stationary-phase points at

p =+ pa+, pox ))1
X

FIG. 2. The integration contours used in the evaluation of the
asymptotic form of tNx) for x~ oo.

(these points move to +po for x ~ co) and otherwise osctl-
lates rapidly on the real axis. To take advantage of this
observation, we distort the contour of integration in Eq.
(14) as shown in Fig. 2 so that it runs through the
stationary-phase points in the direction of steepest descent.
The contribution from the upper contour (the negative of
C2 in Fig. 1) decreases as e " for x~+ oo, and can be
neglected. On the right- and left-hand contours, we write
p as +po{1+t) and expand the integrands in powers of t.
The result for po real (M )2m) is

poxe I dt e ' t '"[1+0(t)]+complex conjugate,
R

I VJ
1 2

ia/2
M (M +2m )' —(M —2m)'

u (x) —Ae
m (M+2m) +(M —2m)1/2 1/2

where Cz is the right-hand contour in Fig. 2. The remaining integral is proportional to I (1 it)), an—d we find after some
algebra that

u (x) —2Ae
I
I (1—'g)

I
»n pox+rt In2pox+argI (1 irI)+g]—(nM/2 m)

+ —ln[(M+2m )'~ —(M —2m )'~ ]——ln[(M+2m)'~ +(M —2m )'~ ] .
2 2

X 1+O
POX

~/2

2~ I (1 irl) ~—
and find that the normalized wave function is given for all x by

1/2
x e s~2 &o,&„M—2m

(x)=— dp e'~"
2

~

I (1 ig)
~

——&o M+2m
p

(p '+ m ') '~'+ m

l'fI

,
(p +m )' +m+p

1/2
p

(p'+ m')'~'+ m

po ——( ,'M m)', t) =a/2v —=aM—/4po .

Evaluation of @'(0)

To obtain unit normalization for u (x) for x ~ oo, we therefore take

ia/2

(20)

As we will show in Sec. III, the magnitude of the S-state Coulomb wave function near the origin in three dimensions is
determined by the value of 1( (0},or equivalently, by the limiting value of t((x)/x for x~0. [If we were dealing with an
ordinary nonrelativistic Schrodinger equation, f(x) could be identified with u (r)= rR (r), and f (0)=8 (0)]. The value
of tP (0) is determined by Eq. (20). After dividing by x, we can set x equal to zero on the right-hand side of this equation.
A change of the variable of integration from p to

p
( 2+ 2)1/2+ (21)
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then gives the expression

e 1Plf/2

t/i'(0) =ma f dt

l 1f
1 —at
1+at

i a/2
1+a t

( 1 a2t2}2 (22)

where
1/2

M 2m 2p

M+2m M+2m
(23)

For particles which are not too relativistic, the parameter a is small, a -po/2m -U/2, and we can evaluate the integral
in Eq. (22) approximately by expanding the last two factors in a power series in at

ia/2
1 —at 1+a t 2 2=1—iut+3a t + .1+«(1—a' t' )'

=1——,
' iaa[(1+ t) —(1—t)]+—', a [(1+t) +(1—t} —2]+.. . (24)

The integrals which appear can then be reduced to beta functions

f )"{1—) =2"+~+' "'"+""'y+"
I (x +y+2)

and we find that

@'(0)=poe r
I
I'(1 ig) I—4m [1+Zaria+2a {1—Zg )+ . . ]M+2m

=poe~r
I
1 (1 i') I

—[1+—,
' a + ,' u +0—(a,a U, U )] .

(25)

(26)

The leading factor is just the usual Coulomb factor with g
calculated using the relativistic velocity of the quark

1/2

poe I
f'(1 —in} I

=po/2 2m%

1 —exp( —Zm.g)

q=a/Zv . (27)

2( —V'+ m') '"—M ——1i(r ) =0,
r

or equivalently,

[2(p'+m')'~' —M]1((k)

(30)

D. Comments on the one-dimensional
and three-dimensional problems

The expression in Eq. (20) gives the exact solution to the
one-dimensional equation

1/2
d +m

dx
(28)—M ——g(x) =0

X

We have not found a simple expression for tP'(0) in the

extreme relativistic case.
where

2 fd k =0, (31)
Ztr (p k) 2+e

g( )=,fd' ' '1(( ).
(Zm. )' (32)

For the S-wave problem, we define radial wave functions
by

u(r)=v 4nrg(r), P(p)=v4mpg(p) .

With these conventions
which vanishes at x =0. This solution reduces in the non-
relativistic limit to the I =0 solution of the radial
Schrodinger equation for an attractive Coulomb potential,
g(x)~u(r), r =x &0, E =M —2m,

oo

u (r) = f dp sinprP(p),
2m

1 d2
2

E——u(r)=0 —.
m dr

where p(p) is an odd solution of the integral equation

(29) [2(p +m ) M]p(p}—

(34)

One might therefore expect g(x) to give a solution of the
three-dimensional relativistic Coulomb problem as well.
This is not the case, though the one-dimensional solution
does give the main part of the three-dimensional solution
for mr & 1. To see why the usual expectation fails, we will
consider the connection between the one-dimensional and
three-dimensional problems in detail.

We begin with the three-dimensional Salpeter equation

+ f dk ln[(p —k)2+e~]p(k) =(), (35)

P( —p) = P(p), e~0+ . — (36)

Equation (35) is not equivalent to the one-dimensional
integral equation in Eq. (13), or its position-space form,
Eq. (28). By calculating the one dimensiona-l Fourier in-
version of Eq. {35) we find that it corresponds instead to
the position-space equation
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Ef
2 — +m

dx

1/2

—M — P(x) =0,
X(p)=4+(p+ie) —N (p —ie) . (41)

Use of the Plemelj relations for the principal-value in-
tegral (or direct calculation) then shows that

—oo QX(oo (37)

that is, to an equation of the form of Eq. (28), but with the
potential V(x)= —a/x replaced by V( ~x

~

)= —a/~x ~.
The odd solutions g(x) can be identified with the radial
wave function u (r) for x =r & 0. We thus obtain the usu-
al correspondence between the radial wave functions u (r)
for a potential V(r) and the odd solutions of the one-
dimensional problem with the symmetrical potential
V( fx /).

The Coulomb problem solved above involved the
asymmetrical potential —a/x. In the nonrelativistic case,
the replacement of V(

~

x
~

) by V(x) is irrelevant since the
Schrodinger equation is local (that is, involves only finite-
order derivatives) and can be solved locally, e.g. , for x & 0.
The solution for x ~0 does not depend on the form of V
for x &0 provided we impose the boundary condition
u(0)=f(0)=0. The situation is quite different for the
Salpeter equation which involves derivatives of arbitrary
order and is nonlocal in position space over regions of size
-m '. Because of the different behavior of the one-
dimensional and three-dimensional potentials [Eqs. (28)
and (37)] for r &0, the solutions of the two problems will
differ slightly for r (m ' even though the solutions have
the same nonrelativistic limits and are essentially identical
for r &&m

Here B(p) is the function defined in Eq. (8),

B(p)=a/[2(p +m )'~ —M] . (44)

This function is symmetric in p, B(—p) =B(p), and has
poles at p=+po [Eq. (12)] and branch points at +im We.
will assume initially that M & 2m so that po is real.

The radial wave function u (r) can be expressed in terms
of the Ci's using Eqs. (34), (39), and (41). We first use the
antisymmetry of P(p) =dX/dp and Eq. (41) to rewrite Eq.
(34) [with the factor (2') absorbed in X] as

u(r)= f dpsinpr (p)
00 cEp

QO

,' r f dp(e'«'+—e '«')[4+(p +i e)

—f dk [@+(k+is) @—(k i—e)]
k —p

=i[++(p+ie)+4 (p i—e)], (42)

and we can rewrite Eq. (40) as
P

Cg +iB (p) 4& (p i e) =— iB(p—) 4 (p +ie) .
8p Gp

III. THE THREE-DIMENSIONAL COULOMB PROBLEM
(p ie)] .— (45)

P(p) = (p), X( —p) =X(p),=dr
Gp

(39)

and integrate once by parts. The result is the singular in-
tegral equation

[2(p'+ m ')'r' —M] + P f dk =—0,dX ~ " X(k)

A. The boundary-value form of the problem

The three-dimensional Coulomb problem is defined by
the integral equation given above,

[2(p +m )'~ —M]P(p)

f dk ln[(p —k) +e ]P(k)=0,
(38)

p(p) = —P( —p), e~0+ .

To transform this equation into a more useful form, we
make a redefinition suggested by our results in one dimen-
sion,

We then observe that the integrals which involve e'&'N+

and e '«" 4 vanish for r &0 (the functions are analytic
in the upper and lower half planes, respectively, and the
integration contours can be pushed to +i ao where the in-
tegrands vanish exponentially). Thus

u (r) = ,
' r f dp[e'«"—@ (p} e'«"4&+(p—)], r & 0,

(46)
where the integration contour in the first (second) term
runs just below (above) the real axis. Changing from p to—p as the integration variable in the second term, we find
that

u (r) = ,
' r f dp e'«—"[@ (p) —0&+( —p)], r & (),

where the integration contour now runs just below the real
axis in both terms. Similarly, for r & 0,

OQ

u(r)= —
z r dp e'« ~'

~ [@ (p) —@+(—p)]
= —u(~r ~), r&0, (48)

(40)

where I' designates the principal-value integral.
This integral equation can be transformed into a

boundary-value problem as follows. We represent X(p), p
real, as the difference of the boundary values of two func-
tions ++(p) and @ (p) which are analytic, respectively, in
the upper and lower halves of the complex p plane and
vanish at infinity, ++(p)= —+ ( —p) (49)

and u (r) has the proper symmetry.
The function [@ (p) —&0+( —p)] which appears in Eqs.

(47) and (48) is analytic in the lower half of the complex p
plane. It must be an even function of p for p real if u (r) is
to have a Fourier sine representation as in Eq. (45). These
observations suggest that the N's satisfy the symmetry re-
lation



28 ANALYTIC SOLUTION OF THE RELATIVISTIC COULOMB. . .

for p complex. This symmetry is consistent with the
boundary-value equation, Eq. (43), and will be seen later to
hold for the solutions of Eq. (43) near the poles of B(p),
hence to hold in general. The wave function u (r) is there-
fore expressible in terms of @ (p) alone,

u(r)=r f dpe'~"4 (p), r &0
00 (50)

u(r)= —
~

r
~ f dpe'~''4 (p), r &0.

The problem we now face is that of finding a solution
of Eq. (43) subject to the symmetry requirement in Eq.
(49). Our technique will be to use the analytic properties
of the N's and B(p) to transform the boundary-value
problem into an equivalent problem which we can solve.

B. Analytic properties of @ (p)

The analytic properties of N (p) are easily deduced
from the boundary-value equation. @ (p) is analytic in
the lower half p plane by construction. N+(p) is similarly
analytic in the upper half p plane. The function B(p) in
Eq. (43} has poles at p =+po and branch points at
p =+im. These singularities will be reflected in singulari-
ties of the @'s. We first examine the effect of the poles.

The most singular part of the boundary-value equation
for p~+po is of the form

@ (p)= + — &+(p), (5l)
dp po+p dp po+p

@ (p)=@~(p)+@2(p), (53)

where @~(p) has only the "short" cut on the real axis from
—po to po, and 42(p) has only the "long" cut from im to
i 0o. Since N (p) vanishes at infinity, we can express the
separate functions in terms of their discontinuities across
the cuts using the Cauchy integral formula,

chosen to be equal in magnitude and opposite in sign.
We next consider the continuation of Eq. (43) into the

upper half plane starting on the real axis with p &po, that
is, to the right of the cuts in @+—(p). The two sides of the
equation are independently analytic near the real axis for
p &go, so are equal as analytic functions and may be con-
tinued together. Since N+ is analytic in the upper half
plane by construction, the only singularity of the right-
hand side of Eq. (43) for Imp & 0 is the branch point of
B(p}at p =im T.he left-hand side therefore has only this
singularity, and we conclude that the only singularity of

in the upper half plane is a branch point at p =im.
[4 must have this branch point for a nontrivial solution
to exist since @ (p)&@+(p), see, e.g. , Eq. (52).] We
choose the branch cut in @ to run from im to i Oo as
shown in Fig. 3. The symmetry relation in Eq. (49) then
implies that 4+ has a branch point at p = —im with a cut
which runs from —im to —i op.

It will be convenient at this point to write 4 as a sum
of two functions,

@ (p) ~(po+p)+'",

@+(p)~ (po+p)-+'", p~+po,
(52}

where g=a/2v. The two sides of this equation involve
functions which are analytic in the lower and upper half
planes, respectively, and vanish at infinity. The only non-
trivial solution to this reduced boundary-value problem is
obtained when the two sides of the equation vanish in-
dependently. We therefore conclude that

+'i~s» = 1

27Tl

& ~(p) = 1

2&l

1

27Tl

I

f,lP —5
dp'f, discC&&(p'),

fc —, @2(p')
2 P —P

l oo dp disc&~ p'
im p' —p

(54)

(55)

hence that the functions 4 (4&+) have the same branch
points at +po as the function X(p) encountered in the
one-dimensional problem for an attractive (repulsive)
Coulomb interaction. We will choose the cut in 4 (4+)
to connect the branch points as shown in Fig. 3. We can
then continue @ (N+) around the cut into the upper
(lower) half plane. We remark also that the expressions in
Eq. (52) have the symmetry @+(—p) = —@ (p), Eq. (49),
for complex p if the constants of proportionality are

im '

dhscC'2(p) =C'2(p —e) —4'z(p +e), (56)

m& —ip&oo, @~0+ .
The function disc&~(p) is determined as follows. We

note that the result obtained by continuing Eq. (43) from
the region p &po (where both sides are analytic) to the
upper edge of the short cut must be consistent with the
original equation for —po &p &po. Since N is given on
the upper edge of the cut by

In these expressions the point p lies outside the integration
contours C~ and C2 shown in Fig. 3, and the discontinui-
ties are defined by

disc@)(p }=4,(p+i e) @)(p t e), ——
—po&7 &po ~~O+ ~

(p+i e) =@ (p —ie) +disc@ (p), (57)

FIG. 3. The branch points and cuts of the function 4 (p),
and the contours used in various integrations.

while only 4 (p —ie) appears in the original equation, the
discontinuity function must satisfy the equation

d
dp

+iB(p) disc@ (p)=0, —po&p &po . (58)
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This is precisely the equation satisfied by the one-
dimensional wave function X(p), Eq. (7). The solution is
given by Eq. (11).

The boundary-value problem has been reduced at this
point to one of determining the single function disc&2(p).
We will postpone our discussion of this problem to Sec.
III0, and will first use the present results to determine the
exact bound-state eigenvalues for the relativistic Coulomb
problem.

C. Wave functions and bound-state eigenvalues

u (r) =u ){r)+u2(r),
where

ui(r) =

u2(r)=

r —f dp e'~'&i(p)
CI

Pp
r f— dp e'~"disc@i(p),

Pp

r f —dp e'i"42(p)
l oo

dp e' "disc42{p)

ir f —d Ip I

e la I'disc@2(i Ip I
) .

(60)

(61)

(62)

The radial wave function u (r) can be expressed in terms
of 4 through the Fourier transform [Eq. (50)]

u(r)=r f dpe'i"&0 (p), r ~0, (59)

where the contour C is shown in Fig. 3. By writing 4
in terms of 4& and +2, deforming C into the sum of two
contours —C&, —C2 surrounding the cuts in N& and 42,
and using the definition of the discontinuity functions in
Eq. (56), we find that

disc@i(p) = —X(p), (63)

where X(p) is given by Eqs. (11) and (19). In this case,
u ~(r) is just the one-dimensional wave function studied in
Sec. II,

While disc+2 has yet to be determined, we observe that
uz(r) is always an exponentially decreasing function for r
large, u2(r)-O(e™).As a result, if we normalize u (r)
to unit amplitude for r~ m, po real, we must take

M —2m

M+2m
1/2

M —2m

M+2m

m'g/2 Pp
u, (r) =— f dp e'~'

2
I

1(1—ii))
I

—&0

' 1/2

p
(p'+ m ')' "+m

p
(p'+m')'"~m

I

ig

(p'+ m')'"+ m+p

i a/2

We can also determine the exact l =0 bound-state ener-
gies for the Coulomb problem without determining
disc+2. For M ~ 2m, po is imaginary,

po i
I po ——

I
=i(m 4M )'— (65)

M„=2m
t 1/2

a
4 2

and the contour Ci in Eq. (61) surrounds the segment
( —&

I po I,i I po I
) of the imaginary axis. The upper part

of the contour gives an exponentiaHy decreasing contribu-
tion to ui(r); the lower part of the contour gives an ex-
ponentially increasing contribution. To obtain an accept-
able (normalizable) bound-state wave function, we must be
able to eliminate the lower part of the contour. This re-
quires that there be no branch point or pole at
p = i

I po I, he—nce from Eq. (64), that i g be a positive in-
teger, ii) =1,2, . . . (the wave function vanishes for i ii =0).
Using the relation i g =aM/4

I po I, we find that the exact
bound-state energies for l =0 (S states) are

D. Integral equation for disc+2

We showed in Secs. III A and IIIB that the solution of
the three-dimensional relativistic Coulomb problem can be
expressed in terms of a function 4 (p)=@i(p)+42(p)
which is analytic in the entire complex p plane except for
cuts from —po to +po (@,) and from im toi ao (@2). We
found, furthermore, that disc%i (the discontinuity of 4
or N& across the "short" cut) satisfied the same differen-
tial equation as was encountered in the one-dimensiona1
problem, and was given explicitly by disc@i(p)= —X(p)
where X(p) is defined in Eqs. (11) and (19). In this section,
we will derive an integral equation for disc@2(p). This
equation relates disc+2 to the known function disc+~, and
can be solved by iteration. The solution will be discussed
in the following sections.

We begin by deriving an equation for 0& (p) which
displays the analytic structure of that function. To do
this, we note that the condition on disc@i in Eq. (58) al-
lows us to write the boundary-value equation, Eq. (43), as
an analytic expression in the cut p plane,

=2m — + + . , n =1,2, . . . .
a'm 3 a4m

4n' 64 n4

(66)

d +iB(p) @ (p) =
dp

—iB(p) @+(p) .

The a term agrees with the correction to the Schrodinger
energy E„=M„—2m obtained by expanding the square
root in Eq. (30) to order V /m, and treating that term as
a perturbation.

We multiply this equation by the Cauchy denominator
and integrate on the contour C2 shown in Fig. 1 to obtain
a identity valid for general complex p,
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where

I
1 dp

27Tl 2 p —p dp

discB (p }=8(p —e }—8(p ~e),

@~0+, m& Ip I &ao,

(68)

The integral of the right-hand side is simple to evaluate:
N+ is analytic in the upper half plane, while B(p) has a
cut from im to i Oo . Thus

I
1 dp d

27Tl C2 p —p dp

N+ p' discB p'2' P8 p —p
(69)

( fp I' —m')'=ia
Is I

'+po' (70)

To evaluate the integral on the left-hand side of Eq.
(68), we deform the contour of integration downward, pick
up the residue of the pole at p'=p, and contributions from
the contours —C&, —C3 in Fig. 1. The contribution from
—Ci vanishes by Eq. (58). The contribution from —C3
can be expressed in terms of discB [4 is analytic in the
lower half p plane, and 8( —p) =B(p)], and we obtain

1 dp' d d &
—l ~ dp'

. fz, , +iB(p') 4 (p'}=— +iB(p) 4 (p)+ f, 4 (p)discB(p) .
27Tl 2 p —p dp dp 277 —1m p —p

(71)

Combining Eqs. (70) and (71) and using the symmetry relation 4 (p)= —4 ( —p), we find that 4 satisfies the equa-
tion

d . 1 ~, 1 1+iB(p) 4 (p) — f dp', +, . 4 ( —ip')discB(ip') =0 .
Gfp m P —lP P + lP

(72)

It is easily checked that this expression has no cuts in the lower half plane despite the appearance of 8 (p)
To obtain an equation for the function disc4q, we now write @ =4i+4z in Eq. (72) and evaluate the discontinuity of

the equation across the upper cut. Both 42(p) and 8 (p) have nonvanishing discontinuities. Using the definitions in Eqs.
(56) and (70) and noting in particular that

disc[8(p )@ (p)]=4 (p)discB (p)+8 (p)disc@ (p) —discB(p)disc@ (p),
where all functions are evaluated on the left-hand edge of the cut, we find that

(73)

+iB(p)—idiscB (p) disc@&(p) + idiscB(p) [C&q(p}—42( —p)]+ idiscB (p)[4,(p) —4, ( —p) ]=0,
dp

p=ifp
I

—e, m& fp f
&ao.

Finally, using Eq. (55), the identity (Plemelj )

i~ dp'
@2(p)= . f, disc@2(p')

27Tl Im p —p
P ioo= —,disc@2(p)+ . , disc@~(p'),

277l lm p' p
p=ilp

I

—e, m& lp I
&~, e 0+

and the explicit expressions for 8 (p) and discB (p), Eqs. (8) and (70), we find that

(74)

4 Ip I'+po' ~ ls I'+po'
I

p'I' —Ip I'

( fp f~ —m )'~
[+i« lp I

}—@i(—i is I)], m& fp I
&~ (76)

ls I'+po'

This is an inhomogeneous singular integral equation for
disc+2 with a "driving term" which involves the known
function N&. In the next section we will study the iterative
solution of this equation.

E. Iterative solution for disc+2

It will be convenient to make the change of variables

I p I
=mx, 1 &x & ce, in Eq. (76), and to write disc4q as
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discC)2(i
~ p ~

) =e&( )%(x),

a 1 xo
g(x)= tan, x() ——p()/m .

2U x

(77)

(78)

This substitution eliminates the second term in Eq. (76),
and leaves us with the equation

2 — m Id P
( )

a x x 1 g( )p dx g( ')@( )
dx & X2+x 2 x' —x

=ia e ~" [4((imx) —@(( im—x)] . (79)
&x2—1 („)
X +XO

troduced by the factors e+—& and by %1. The second
relevant parameter in Eq. (79) is xo2/x . This is of order
v for nonrelativistic quarks.

The function [C)((imx) —N(( i—mx)] is given from Eq.
(54) by

x o dx
C)((imx) C—)(( —imx) =—

2 2
disc@((mx') .—xO X' +X2

(84)

We will be primarily interested in the behavior of %(x) for
x~ 00. In this limit,

This equation can be solved by iteration. We let

de")
dx

xo
C)((imx ) —4(( im—x ) ~ f dx'disc@((mx'),

x»1 Kx o

(85)

=ia e '~" [4((imx) —N(( imx—)], (80)—i (x)

X +XO

and define functions %2"' recursively by

dX
2 QQa x x —1 g( )p dx ep(x ))ll(Il i)(x )

X +Xo x' —x

(81)

where the corrections are of relative order xo jx . The in-
tegral in Eq. (85) can be identified through Eqs. (61) and
(64) with —u i (0)/m = —i/4irg((0)/m, where

rP(r)=[u((r)+u2(r)]/v 4mr . (86)

4i(imx) —N(( —imx) ~ —C/ mirx,
x »1 (87)

The same integral was encountered in Sec. IIIC in the
evaluation of (((/(0), the derivative of the one-dimensional
Coulomb wave function at the origin. To avoid confusion,
we define C=v 4n.g((0). Then

(„) d%'"f , dx'.

Then

e(x)= g q(")(x) .
n=0

(82)
where

C=—f dp disc@((p) = f dp X(p)

=p()e "~2
~

1 (1 i ri)
~ f 1—+ ~ a + 4 U + ' ' ' ] ~

We note that each successive term in Eq. (83) invo»es
an extra overall factor of a!n. However, E.q. (83) is not a
simple po~er series in a because of the a dependence in-

I

The first approximation for qI(x) for xo /x «1 and
a &&1 is given by

d%( ' iaC +x —1
1

aM
O 2 21 — +0 a,xo /x

dX arm x 3 2mx
(89)

(0) EaC x —1

27rm

aM +x —1 1

6m x x(x+ Qx —1)
+ 0 ~ ~

a iC 1 aM
1 — + ~ + 0 4 ~

x»1 K mX 3X Smx

&x'—1 + tan
X x —1

lnx + ln2 ——+O(x lnx )
4

Iterating once, we find that d%""/dx is given to order a by
r

d%"" a ic &x2—1 dx'
P

dx 77 2m x x' —x
2 r

a iC 1

x »1 7T m
(91)

hence that

lnx+ 1+ln2 ——+O(x lnx ) (92)
x»1 m m X 4

It is relatively straightforward to show by further iteration that the leading term in 0'"' in powers of lnx behaves as
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[(a/ir)lnx]"/n! These terms sum in Eq. (83) to the simple power x' ~ ' ', a result which suggests that 4 varies asymp-
totically as x" ' with V=Q/m,

C1—Ax"-' 1+
x »1 x

(93)

To show that this is the case and determine v and A, we take x » 1 in Eq. (79) and write the resulting equation as

d% Q dx' », c
dx ~ 1 2 2

OO x Ie&'" '[%(x')—Ax'" ' . . ]+[e&'" ' —1]Ax'" ' .+ .
mx2 m

(94)

Q Kv v—2 Q 1
A v —1+—cot x" —A

2 2 GATV

QiC 1 Q A+0
7T m 7T

(95)

The coefficients of x and x in Eq. (95) must van-
ish independently. We therefore conclude that v is deter-
mined exactly by the equation

If ~p has the asymptotic expansion in Eq. (93) with v& 1,
the integral on the right-hand side of Eq. (94) converges
without the factor (x' —x2} ' in the integrand, and the
result is proportional in leading order in x to x . The
principal-value integral on the left-hand side can be
evaluated exactly. Keeping only the leading powers in x
and replacing d+/dx by its asymptotic expansion, we ob-
tain the equation

A =— 1+—1+ln2 ——+O(a', v'} . (101)
7T m 4

We conclude that the behavior of %(x) for x~ oo is
given by the asymptotic expansion in Eq. (93) with v, ci,
and A given by Eqs. (97), (99), and (101). The behavior of
%(x) for x —1 is given by the iterative series in Eq. (83).
For a, v «1, the first two terms in the series, Eqs. (90)
and (91), should give a satisfactory approximation to the
exact result. The function disc@2 is given by Eq. (77).

ui(r)/r =C(1—, amr+—.), (102)

F. Behavior of @{r) for r +0, ao—
We consider finally the behavior of the space wave

function lt (r) = [u i(r)+ u2(r)]/~4mr for r~ O. ,The
behavior of u, (r)/r is easily determined from Eq. (64),

Q mvv= v-'+ —v cot
2 2

Expanding the cotangent for mv/2 small, we find that

a g a harv a 1Tv
V + + ~ ~ ~

12 n. 720

Q Q P Q Q4=—+, + 2 — 3+0 47T' 7r'

We find similarly that

A =— [1+0(a)],Q iC
m m

(96)

(97)

(98}

where C is given in Eq. (88), and we have omitted correc-
tions of orders Q, u in the second term.

To determine the behavior of u2(r)/r for r~ 0, we use
Eq. (62) and the results just obtained for disc@2 for

ui(r)/r= —i J d [p [
e !~ ~ "dis C'2c(i [p [ )

im —dx e e &'"'4'(x)
1

Q—C dx e x" '+O(a C)
mr «1 ~

and in a separate calculation in which we retain higher-
order terms in x, that the coefficient c i in Eq. (93) is

CI (v)(m—r) "— C+O(amr, a )C

ci ——— [1+O(a)] .
QM
8m

(99) =C[(mr} "—1]+O(a,mr, a/n)C . (103)

These results agree to the relevant order with the iterative
results given in Eqs. (90) and (91),

Q iC Q Qql(x ) —— 1+—1+In2 ——+—Inx
x»1 IT mX 4 m

In the last step, we have used the relation v=Q/~. Corn-
bining Eqs. (102) and (103), we find that

We see, in fact, that

QM
8mx

(100)

f(r) — C{mr) "+O(mr, a/n)C . .
mr «1

A more complete calculation using the leading approxi-
mation to ~P given in Eq. (90) gives
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a CXu(r)lr =C 1 ——lnmr —y+ ——ln2
4

f(r) ~ C (mr) " —y+ ——ln2
1

r~O 4~ 4 m

+ O(a', amr ) (105)

where y=O. S772. . . is Euler's constant. The logarithm in
Eq. (10S) can be identified with the O(a) term in the ex-
pansion of (mr) ", and we conclude that

+ O(a', amr)

We have checked this result by showing that it satisfies a
position-space version of the Salpeter equation which we
will discuss elsewhere.

We note for completeness that g(r) has the standard
plane-wave normalization for r —+ ~,

1
P(r) — -sin por+gln2por+argI (1 ig—)

4m.r

+ gin(M/2m)+ —In[™+2m ~M 2m—]— In[—™+2m+V'M 2m ]—.
2 2

sin[per+ gln2pcr+argI (1—ig)+O(aU )] .
1 2

&4mr
(107)

G. Comments

The mild divergence of g(r) for r~ 0 is a consequence
of the static Coulomb singularity in the Salpeter equation.
The divergence is not present in the complete Bethe-
Salpeter-Schwinger wave function because of radiative and
retardation effects which modify the Coulomb singularity
and the wave function at distances r &m '. While it
would be useful to calculate the radiative corrections be-
ginning with the reduction of the Bethe-Salpeter-
Schwinger equation to Eq. (1), we have not done so. We
can nevertheless use the static solution for mr ) 1 where
the radiative corrections and the divergent function
f~(r)=u2(r)lV4mr are small. For example, if we take
a=0.25, a value appropriate for charmonium, the loga-
rithmic term in Eq. (105) is less than 20% of the leading
term for mr & 0.08. The entire contribution from the "ex-
tra" function $2(r) is less than 2% of g&(r) for mr = 1,
and decreases exponentially for mr large. The complete
wave function is therefore well approximated for mr & 1

by ft(r), and this function is known exactly. (In fact, for
a and v not too large, it is essentially the standard 5-state
Coulomb wave function evaluated for the relativistic
velocity of the quarks. )

The present results are also of interest for quarkonium
systems in which the Coulomb potential in Eq. (1) is sup-

I

plemented by a confining interaction between the quarks.
This is usually taken as nonsingular at r=0, and has a
characteristic scale of variation which is large compared
to m '. For r smaller than this scale but larger than
m, the behavior of the wave function is determined pri-
marily by the static Coulomb interaction, and g(r) is of
the form determined above, but with the overall normali-
zation changed by a factor which can be related to the in-
verse density of states. ' The normalization of the radia-
tively corrected wave function for r & m ' will be
changed by the same factor. We have used this observa-
tion and known perturbative results for the gluonic radia-
tive corrections in the process e+e ~qq to estimate the
radiative corrections to the leptonic widths of the S&
states in charmonium and b-quarkonium.
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