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Multimonopoles in arbitrary gauge groups and the complete SU(2) two-monopole system
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We show how to extract exact expressions for the multimonopole gauge fields and Higgs field
from their integral representation in the Atiyah-Drinfeld-Hitchin-Manin-Nahm (ADHMN) con-
struction, for arbitrary gauge groups. In particular, this allows us to construct the complete two-
monopole solution for the SU(2) gauge group.

I. INTRODUCTION

Recently, a new method was formulated for obtaining
multimonopole solutions for arbitrary gauge groups in the
Prasad-Sommerfield limit. This method, originally in-
vented by Atiyah, Drinfeld, Hitchin, and Manin for in-
stanton solutions was adopted by Nahm to the monopole
case.

Even though the relation between this method and a
previous one by Atiyah and Ward ' was elucidated at an
abstract level, the Atiyah-Drinfeld-Hitchin-Manin-Nahm
(ADHMN) construction seems to present several practical
advantages, namely, (a) the regularity of solutions is au-
tomatic, (b) it generalizes easily to gauge groups beyond
SU(2), and (c) the construction of Green's functions for
propagation in the monopole background is immediate.

In this paper, we start by working out in detail the pro-
cedure leading to the gauge fields and Higgs field at all
points in space of the system of two separated SU(2)
monopoles. Our results generalize earlier work on this
subject, where the Higgs field was found on the axis con-
necting the two monopoles. This is also the most general
configuration for the two-monopole SU(2) case, i.e., the
(4k —1)-dimensional parameter space is exhausted (where,
for k=2, the distance between the monopoles is the only
nontrivial parameter).

At the final stage in this procedure, we work in com-
plete generality: We show that the integrals over the auxi-
liary variable z of the ADHMN construction, required for
extracting the gauge and Higgs fields, can all be evaluated
exactly for any gauge group and any number of mono-
poles, and we give compact expressions for them. These
expressions, together with known exact solutions to the
differential equations arising in the ADHMN framework,
in principle generate exact solutions to systems with more
separated monopoles.

The results of this paper are relevant to examination of
monopole dynamics and of the motion of particles in a
background of monopoles (thanks to the simple expression
for Green's functions in terms of objects defined in the
ADHMN construction).

II. MAGNETIC MGNGPOLES AND THE ADHMN
CONSTRUCTION

Consider a Yang-Mills-Higgs Lagrangian in Minkowski
space of the form

(the Bogomol'ny equation), together with boundary condi-
tions for the eigenvalues of P(00) [given here for SU(2),
but easily generalized to other groups']

( P(r)
~

—c — +O(r '),
r ~ 2k

r=(xi +xi +x3 )'r (3)

where c ~ 0 is some constant and k is a positive integer
called the topological charge. These solutions correspond
to configurations of monopoles with total magnetic charge
equal to k in appropriate units.

In the ADHMN approach, the construction of mono-
pole solutions to the Bogomol'ny equation with topologi-
cal charge k is translated to the following problem [shown
here for SU(n), similar for Sp(n), 0(n)] (Ref. 8).

Consider the following matrix differential operator:

A =i 8,S )(2k+x;e;Ie lk+ie; T (z), (4)

where z is an auxiliary real variable (not related to the
coordinates), e s are quaternions (e; = i o; ), and t—he
T, (z}'s are k Xk matrices. Requiring that b, 6 commute
with quaternions forces T~(z) to be anti-Hermitian and to
obey the nonlinear equations

T;(z}=ejkTI(z)Tk(z), i =1,2, 3 .
dz

Particular cases of these equations have been studied ex-
tensively in mathematical literature as Toda lattice equa-
tions or Lax pairs. Given such a set of T s, we are look-
ing for solutions to 6 U=O, normalizable in the sense that

+ U~U dz ~ oo,' here the end points of the z integration
are adjusted (for a more detailed exposition, see Ref. 1), so

i p a
~aviv+

i D yaD pea

where, as usual

Fu ——BuA' —B+u+gf '
AuA'„

and P' is a scalar field in the adjoint representation of the
gauge group. We are interested in static configurations
with Ao ——0 which give finite values (local extremes) for
the energy of the system. These solutions will satisfy

(2)
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that we obtain n orthonormal solutions v:
U ~U pdz =6~p.

+

From the set of v 's, the gauge potentials are now readi-
ly constructed:

+ f 8 . +
[A.] ~= f U Updz, p @=i ZU&Updz

l

III. EXPLICIT SOLUTION
OF TWO SEPARATED MONOPOLES IN SU(2)

A. Preliminaries

In this case, the T s are 2&2 matrices and the solution
to Eq. (5), up to an overall orientation-fixing rotation, is

T,(z) = if;—(z)o;(z) /2,

Notice that performing an x-dependent change of basis for
the U 's, U ~U' =U ~ U (U = U ') simply induces a
gauge transformation on the potentials:

where the functions f~(z), i=1,2,3 satisfy

d f, (z}=f2(z)f,(z) (cyc) .
dz

(9)

A~A = U 'AU+ U 'BU, P~P'= U (7)
Note that Eq. (9) implies f; fz c—;~ =c——onst.

The equation 6~v=0 takes the form

+M+M v=O,
dz 0

0

0

0

X I
—lX2

X( +lX2 —X3 0

X3 X )
—lX2

X) +lX2 —X3

0 0

f3 fi+—f2
fi+f2 f3—

0 0

(10)

Of the four independent column vectors v; solving this
equation, we require that only two be normalizable and
that the resulting [via Eq. (6)] Higgs field be traceless;
these requirements force the limits of z integration to be
symmetric about zero, —z, &z&+z„and the functions
f;(z) to have poles at +z, .

Up to a scale transformation, the f~(z)'s with appropri-
ate poles are given in terms of elliptic functions by

1 dn(z/k', k)

sil(z/k', k) [k, k2 i/1]
cn(z/k', k)

and 0(k (1 is the only nontrivial parameter [it, or rath-
er, 5=k/(I —k )'~, is a measure of the distance between
the two monopoles; k=0 reproduces the axisymmetric
case]. ~e note that f„f2, f3 diverge at

m/2z=+k'K K= f0

as required.

dp

(1—k sin y)'

Q. Solving 5 v=0

Once the operator 5 is known, the next task is to solve
hfv=O. Since W,W are Hermitian, one can equally well

solve b U =0 [(d /dz —W —W)U =0]: If w is a 4 && 4 matrix
of linearly independent solutions to (d/dz —W —M)w=O,
then (wt) ' satisfies (d/dz+ W+ W) (wt) '=0.

To solve AU=0, we use the ansatz

U=(1+ie u )u . (12)

Here u is a z-independent unit vector, to be determined
later, and v is a two-element column. Note that this 4X2
ansatz, for any given um, represents one rather than two
candidate solutions, since the two columns are linearly
dependent. Thus, for the ansatz to give all four solutions,
we expect to find four different unit vectors u.

The equation AU=0 now takes the form

i +ie ST +e x I [(1+ie u )Su]=0,. d
dz

(13)

i +ie T (z)+e x SI—e u +T u —e,jke;Tjuk ix u +ie—,jke xjuk

l +T um —lXmum U =0,. d
m. m m m

(14a)

diT (z) —e JkTJ(z)uk —u +x +ie Jkx/uk U=O.
(14b)

Defining vectors g,g', so that (u,g,g') constitutes a right-handed orthonormal set, we can replace Eq. (14b) by its projec-
tions on u, g', and g'. This reproduces Eq. (14a) and an additional algebraic equation
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[g+ (T —ix )()]v=0, g+ =g +if' (14c)

The remarkable fact which makes this ansatz work is that the equation det[g+ (T —ix X)]=0 is actually z indepen-
dent:

—1 —k'
det[g~ (T i—x )()]=—(g+ x) + —,',

—1+2k'
+4+1

2 —k
+4+2 =0. (15)

Using a null-vector parametrization of g+,

1+/ 1 —g/~=a, , ig
2 2l

Eq. (15) becomes

X+2 2 2

+ +g (ix+x3)+g —,x+x —x3—2+5
8

+g(ix x3)+
x

4 16
=0,

X+ =X ) +lX2

The same equation occurs also in the Atiyah-Ward construction' (notice, however, that differences of convention lead to
a scale factor of —, there, plus x1~~2). This equation gives in general four different values of g, each of which corre-
sponds to a unique vector u:

(i(g —g'), —(g+g*), I g ~

'—1) .Ill'+1
Thus, for each such u, we have an ansatz

1+u, i/2g+lf, + —,
'
g+2f2

Q)+LQ2 . l

2
—if+ x ——g+2f3

which solves b, l~ =0, provided p„satisfies the first-order equation

(17)

11t1„

dz

This yields

1 d i f»1 lf2u2-
x u —— ln /+if, + 2$+2f—2 —(g+ x)2dz 2 1 +1—l 2 +2

(19)

tl

2 0+1f1+ 2 4+2f2 e'"'"'exp —(g+ x) f dz' C(x,g+) .
1 +I —l 2 +2

(20)

Here, C(x,g+) is a normalization constant to be fixed by requiring
z

f ' O'Udz=l.
S

The integral in Eq. (20) can be evaluated in terms of standard B functions H~„and Jacobi s Z function (their implied
dependence on the parameter k is suppressed):

f z f 1 u 1
—if2u2 k'u1+iu2 lk- ik'dna H(z/2k' —a)H1(z/2k' —a) 2zZ+ ln + —,Z(a)

fig'+1 if2$+2 k'g—+1+i('+2 k'(k'/+1+if+2)snacna H(z/2k'+a)H1(z/2k'+a) k'

(21)

(22)

i (k /+ 2+k'g+ 2)
sn a=-

k(k'/~1+i )+2)
is a convenient parametrization.

We have thus found a 4&4 matrix m of linearly in-
dependent solutions to AU=0. We note in passing that
these are non-normalizable solutions, as expected by con-
struction in the ADHMN approach, in which

+(T; ixl) (T; ix;)——
z'

is a positive-definite operator. The object of interest, how-
ever, is (w ) ', which indeed has two normalizable solu-
tions as expected. To extract these columns, one must
find the residues of all poles of (wt) ' at z=+z„and
form linear combinations which make the residues vanish,
a straightforward but not illuminating task.

Already at this level, the results have been checked
against previous calculations, done for the special case of
the axis on which the monopoles lie, x& ——x3 ——0, and
indeed the results agree.



28 MULTIMONOPOLES IN ARBITRARY GAUGE GROUPS AND THE. . . 383

IV. EXPRESSIONS FOR THE FIELDS

The final stage, once the solution to 6 v=O has been
obtained, is to find A'p and Patt via Eq. (6). We would
like to extract analytic expressions for the potentials in our
nonaxisymmetric case, by exactly performing the required
integrations over the auxiliary variable.

In fact, we obtain compact results examining the most
general case in the ADHMN construction; thus, these re-
sults hold for general gauge groups and arbitrary mono-
pole numbers.

In particular, we are interested in evaluating the indefi-
nite integrals

u'tAv = (u' Bu)d
dz
tf ,y dB

dz
=u' ( W— M—}Bv+v' u+ u' B(—W —M)v

=u' —(W+W)B B—(W+W) u .dB
dz

(25)

We thus look for matrix operators B satisfying

&(B)= (W—+W)B B(W—+W) =A (26)
dB
dz

for A being I, z I, l.B;. To find these, we first note the
following fact [using Eq. (2)]:

= (e;e } T; TJ ———12 T; Tt+ etjk et, 8 T; TJ

f u'udz, f u'uzdz, f u' udz.
axl

(23)
= —I213T T;—

dz
and, therefore

(27a)

Here v and u' are solutions to flu=0, with 5 any operator
satisfying Eqs. (4) and (5). Again, we abbreviate

W= x.o.(3}I, M—= —e;(3T;(z) .

~2 dW ~ 0
dz

(27b)

Generalizing from the expressions for f u'tu dz in ear-
lier examples, one finds in the general case

' —1

For any of these inte rands, generically represented as
v' Au, we expect that v' Au dz has the form u'~Bu, where

B is some matrix operator. We must then have

f v'~v dz =u'f
2

Indeed,

u=v'tg-'u . (28)

~(Q ')=Q d 1

, ~~ ~—~ —(~+~) 1

dz r 2
1
, W~ W —m (W+m) g-'

1
g [~M W —WWWM —~~~~+~ r ]g t —Q tg2Q (29)

u uzdz=v Q z+2W
d(r )

(30a)

u vdz
8

~X)

z=v' Q
~

+~,&+~, t'(xXV'); v .a r

where we have made use of Eq. (27b) and of
(1Ir ) W =I.

Working similarly for the remaining two integrals, we
obtain (using also [(1Ir )Wu W —u, W]+ ——0)

I

answers have been checked against earlier evaluations of P
on the axis, and against recent results in the Atiyah-Ward
framework, "with agreement in both cases.

Concluding, we have seen that, given solutions to the
differential equations in the ADHMN construction, one
can always extract the fields exactly. In particular, the
SU(2) two-monopole system has been exhausted. For sys-
tems of more monopoles and higher groups, the solutions
to Eqs. (5) and (10) need to be studied further for the full
parameter space. Also, exact expressions for the Green's
functions must be worked out.
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