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Phase structure, magnetic monopoles, and vortices in the lattice Abelian Higgs model
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We present Monte Carlo calculations of lattice Abelian Higgs models in four dimensions

and with charges of the Higgs particles equal to q =1, 2, and 6. The phase transitions are

studied in the plane of the two coupling constants considering separately average plaquette

and average link expectation values. The density of topological excitations is studied. In

the confinement phase we find finite densities of magnetic-monopole currents, electric

currents, and vortex currents. The magnetic-monopole currents vanish exponentially in the

Coulomb phase. The density of electric currents and vortex currents is finite in the

Coulomb phase and vanishes exponentially in the Higgs phase.

I. INTRODUCTION

Following the work of Wilson' and Creutz, the
Monte Carlo calculation of lattice gauge theories has
emerged as a valuable tool to study the phase struc-
ture of Abelian and non-Abelian gauge theories in
the region of strong and intermediate couplings.

The analogy of electric confinement of charges in
the strong-coupling region of Abelian and non-
Abelian gauge theories with the Meissner effect in
superconductors has been discussed repeatedly dur-
ing the last few years. Monte Carlo calculations of
Abelian and non-Abelian lattice gauge theories
have indeed demonstrated that the strong confine-
ment phase of lattice gauge theories is characterized
by a large density of magnetic monopoles or mono-
pole currents, if not a condensate of magnetic mono-
poles and antimonopoles. Also, the phase transition
to the Coulomb phase in the Abelian model and the
transition region to the weak-coupling region in pure
SU(2) lattice theory is accompanied by a rapid de-
crease of the density of monopoles or monopole
currents.

In this paper, we want to study the connection of
topological excitations, mainly magnetic-monopole
currents and vortex currents, with the different
phases in the Abelian Higgs model. We use the du-
ality transformation to obtain a suitable definition
of these topological excitations and the Monte Carlo
calculation to study the phase structure of the model
and the properties of the three phases.

The pure Abelian U(1) lattice gauge theory is well
known from Monte Carlo calculations of Lautrup
and Nauenberg, DeGrand and Toussaint, and
Bhanot. The first Monte Carlo results for Abelian
Higgs models were reported by Creutz for Z (2)
and Z(6) Higgs models, by Bhanot and Freedman

for the three-dimensional U(1) Higgs model, and by
Bowler et al. ,

' and Callaway and Carson, " who
studied the phase structure of the four-dimensional
models with Higgs charge q = 1 and 2 using as ex-
pectation value the average action.

Topological excitations in pure Abelian gauge
models were studied using the duality transforma-
tion by Banks, Myerson, and Kogut, ' Ukawa, Win-

dey, and Guth, ' Stone and Thomas, ' and Ba-
trouni. ' Similar studies for the Abelian Higgs
model were reported by Einhorn and Savit, ' Pes-
kin, ' and Banks and Rabinovici. '

In Sec. II, we define the model and review its con-
jectured phase structure' as it emerges from study-
ing the limiting models and the results of the first
Monte Carlo calculations. ' "

In Sec. III, we write the model in terms of its to-
pological excitations. The monopole loops and vor-
tex sheets are found to be related to the integer parts
of plaquette and link variables. We extend this
analysis, which was first given for q =1 by Einhorn
and Savit' to the model with Higgs charge q ) 1.

In Sec. IV, we present our Monte Carlo calcula-
tion. We study first the phase structure using aver-
age plaquette and average link expectation values for
the models with q = 1, 2, and 6. Using the results of
Sec. III, we give prescriptions to calculate the expec-
tation values for monopole current densities, vortex
densities, and electric current densities on the lattice.
The Monte Carlo results for these quantities are
given in the form of contours of equal density.

In Sec. V, we summarize the results. We find that
the three phases of the model can well be character-
ized by the density of the topological excitations. In
an appendix the phase structure of the Abelian
Higgs model in four dimensions is given as it
emerges from a mean-field calculation.
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S(j) eix(j ) (2.1)

II. THE LATTICE ABELIAN HIGGS MODEL

We define the model in a four-dimensional hyper-
cubical lattice. The scalar Higgs field is represented
by site variables

The gauge field is represented by link variables

U&(j) =e (2.2)

Both the site and link variables are elements of the
U(1) group. The local gauge-invariant lattice La-
grangian is

~=&+I I Re—[S(j )U, ~(j )S (j +p)] I+pg I1 —Re[U„(j)U„(j+p)U„(j+v) U„(j)] I . (2.3)

The first sum is over all links and the second sum is over all plaquettes of the lattice.
The partition function becomes, in the Wilson form of the model,

Z= f D8 (j)D&(j )cxP —her[1 —cos[(SsX(j)—88a(j)][ cxP —pg() —cos8s)
e

(2.4)

with

&„X(j) =X(j ) X(j +p—) (2.5)

the Higgs field ( B~) =0. The coupling constants
of the lattice model correspond then to

R'=( '),

e,=~„e„(J)a.e„(J). — (2.6)
1

13

(2.12)

The charge q of the Higgs scalars is an integer mul-
tiple of the elementary charge.

The naive continuum limit of the model is ob-
tained by the replacements

and the gauge potentials are related,

1Ap~ —Ap .

The phase structure of the lattice Abelian Higgs
model in the plane of the two coupling constants P
and h can be conjectured considering some limiting
models. '9

(i) For h =0 the model becomes the pure U(1) lat-
tice gauge theory, which is known in four dimen-
sions to possess a second-order phase transition near
P= 1 separating a confinement phase at large coup-
ling (small P) with area behavior of the Wilson loop
and the Coulomb phase at small coupling.

(ii) For ft=0 the model becomes trivial without
phase transitions. In the unitary gauge, with all
X(j)=0, all link variables decouple and we obtain

X(j) X(x), 8„(j) aA„(x),
a(s„, g a 'fd'x (2.7)

and by the expansions of the cosines up to second
order,

This lattice model corresponds to the conventional
continuum model

W, „,=f d x 8 (()sX —83s ) + Fa„—
4 pv

, (D„P)'D"P+—V(P'P)+ ,F„„'. —

Replacing here

V(x)= —(x —R ),
4t

e jx

(2.9

(2.10)

Z= f D8„(j)

X exp —h Q I 1 —cos[q8„(j)]I . (2.13)

This theory is exactly soluble and we get for q = 1

for the average link,

we obtain

W= —,p (a„X—qeA„) + —,(a~)
+ V(p')+ —,F„' (2. 1 1)

As we see, the limit model (2.8) corresponds to this
model with frozen-in radial degrees of freedom of

1 Ii(h)
(L. ) =

Bh N I (h)
(2.14)

where Ii and Io are modified Bessel functions and N
is the number of links, Similarly, for the average
plaquette
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(2.15)

(iii) For P~ oc, all plaquette elements become the
identity. The gauge fields are gauge equivalent to
total ordering and the model reduces to the XY-spin
model with one phase transition at h =0.453.

(iv) For h —+OD, the link elements become unity.
In the unitary gauge this is equivalent to

g ( )
27Tm

pj = m =0, 1,. . .,q . (2.16)

For q =1, the gauge fields are completely ordered
and both (L ) and (P) vanish. For q~ 1, the 8&(j)
become Z~ variables and the model becomes the Z~
lattice gauge theory. These models exhibit for
q (4 a single first-order phase transition. For q ) 5,
two transitions of higher order are found. With in-
creasing q one of these transitions moves to @~co

and the second survives in the q~co limit as the
U(1) transition. For q =2 the critical point is at
P=0.440 7, for q =6 the two transitions occur
around P=1 and P=1.6. These four limits define
the boundaries of the p-h phase plane. As conjec-
tured before, ' these phase transitions for q =1 and

q =2 were found by Monte Carlo calculations' " to
connect smoothly into the interior of the plane. The
following picture emerges. We consider first the
model for q &2.

For small P exists a confinement phase which is
connected to the corresponding phase in the limiting
U(1) and Z~ models at h =0 and h~oo. In this
phase the Wilson loop shows area behavior. For
small h and larger P we find the Coulomb phase,
connected to the Coulomb phase of the U(1) model
at h =0. For q) 5 this phase is also connected to
the Coulomb phase of the limiting Z~ model be-
tween the two transitions of this model. This phase
is characterized by massless gauge fields and perim-
eter behavior of the Wilson loop.

For both P and h large we find finally the Higgs
phase characterized by massive gauge fields, and
perimeter behavior of the Wilson loop. In the model

I

with q =1, the confinement and Higgs phase are
analytically connected. In this phase external
charges are screened by the Higgs fields with q = 1.
The Wilson loop shows perimeter behavior in this
Higgs confinement or total screening phase.

III. MONOPOLES AND VORTICES IN ABELIAN
LATTICE GAUGE THEORIES

Z= D
& jexp —

& j +P„j
JPv

can be expressed in terms of plaquette variables

p„„(j)=U„(j)U(j+p)U„(j+v)U„(j),

(3.1)

(3.2)

instead of the link variables U&(j). With this re-
placement (3.1) becomes'

2m Jv

Pg. „cos9„tj)X~ (3.3)

The 5 functions express the lattice Bianchi identities

ih, 8 „(j)
~pvV) =

2 ~pvpopnV)' (3.4)

which constrain the products of plaquettes over each
possible cube of the lattice. Fourier expanding the
periodic 5 functions,

Monopoles in Abelian theories are not of topolog-
ical origin as in certain non-Abelian theories. '

They arise due to the nonlinearities of the lattice
models in the so-called electrodynamical representa-
tion of these theories. ' ' Let us first discuss how
these objects arise in the pure U(1) lattice gauge
theory in four dimensions. ' ' In this model mono-
poles are easily found to be independent of the lat-
tice action used.

The partition function of the U(1) lattice theory

m (p)= —ao

and using the Poisson sum formula

r

Dxexp i x„p && J+2~~ (3.5)

f(x)= g f dx f(x)ee"' ", (3.6)

we obtain from (3.3)

Z=
m (p)=—

j ~ ~ j 2~m (3.7)
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The lattice Bianchi identity shows the existence of the conserved monopole current m„(p),

b„8„„(j) =2nm„(p), 5~„(p)=0 .

363

(3.8)

m„(p) is the current on a link dual to the cube formed by exp[id&8&„(j)]. Replacing the Wilson action by the
Villain action

ep
L3et'"'e~e~ g exp ——(8+2m.l)

I = —oo
2

and integrating over the plaquette variables, we find the electromagnetic representation
(

r

QO

J 5(b,„m„(p))exp —4 gm„(p)G(p—p')m„(p')
m„(p)= —oo . p

with

(3.9)

(3.10)

b„b „G(p p') = —5',—b, j'(v) =f(v) f(v lj) .— — (3.11)

Next we isolate monopoles and vortices in the Abelian Higgs model, ' ' starting from the partition function
of the four-dimensional Villain model

a,b~ ———oo

pexP —
p

—9 p 7Mp ex ~pgpv p v ~ p2 p 2 (3.12)

The phase structure of this model is expected to be identical to the one of the model (2.4) with the Wilson ac-
tion, only the phase transitions occur at different values of the coupling parameters P and h. Therefore we
might study the monopoles and vortices in the Villain version and use the Wilson action in the numerical
Monte Carlo work. Fourier transforriiing (3.12), using

exp ——(8-t2xm) = f dp exp
2 v'2~p 2 P +i/(8+2am). (3.13)

we obtain

Z= g fDteDxx fD2 Dg„exp
2

tp

2h
+itq(AX q8„+2ma„—)

SAp
Xexp g — +isgp(egp„„b,„8„+2nb~p) (3.14)

»tegrating over X and 8„gives the constraints

J 5(bqt„)5(qt„+@~„~hps~).
J

The first constraint can be solved by setting

t„=e„„gpss„Ag
and the second one by

1

qA~ —s~ ———, (b,gs Apse) . —

»serting into (3.14) we obtain

(3.15)

(3.16)

(3.17)

Z= g fDAx DSrexp
a,b+

1 2

2 (e„„gpss,Q „p) exp g( — [ —,(b.~S&—b,Pq) —qA~]
1 2

T

X exp +2@i[apep„~b+~ +b ~ (qA ~ Q~g )]— (3.18)
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exp 2m i+(Jg~A g~+ QpSp ) (3.19)

with

J„=eh,p+e,p„„n„a„ (3.20)

By partial summation the last exponential can be
transformed into

and

Qp =~~b~, Q, =—~) J~p .
1

(3.21)
q

How do we interpret these topological excitations on
the dual lattice'? The objects J~ are associated with
the plaquette I,, p of the dual lattice, which is dual
to one plaquette of the original lattice and the Q

(a)

(c) 2- (d)

1 P

FIG. 1. Abelian Higgs model with Higgs charge q =1. Results of the Monte Carlo calculation on a 4 lattice. Given in
the plane of the two coupling constants P and h are phase transition lines (thick solid lines), contours of equal values of
gauge-invariant expectation values (thin solid curves), and regions of hysteresis in the expectation value considered (pointed
lines). (a) Average plaquette (P), (b) average link (I. ), (c) average monopole current density (M), (d) average vortex
current density ( V), and (e) average electric current density (E ). The contour lines plotted result from our Monte Carlo
calculations and are therefore subject to statistical and systematic errors. The size of these errors can be estimated most
easily from the original results of the sweeps through the lattice (see Fig. 4). For most of the contour plots we estimate the
errors for the contours to be around +0.03.
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E 1

Q = —,e~phpJ p. (3.22)

IV. PROPERTIES OF THE LATTICE
ABELIAN HIGGS MODEL AS DETERMINED

BY MONTE CARLO CALCULATIONS

A. The Monte Carlo calculation

In our Monte Carlo calculation we use the Wilson
action (2.4) in the unitary gauge with all X(j)=0.
Furthermore, we replace the U(1) variables by Z„
variables, with n & 50,

(4.1)

live on links p of the dual lattice; these links are dual
to one cube of the original lattice. The vortex
current Jqp is connected to the integer part of the
plaquette angle b~p and the curl of the integer parts
of the link angles b.&X—qO&. The monopole current

Qp is associated with the integer parts of the six pla-
quettes forming the cube dual to p on the original
lattice. This interpretation of Q becomes obvious if
we compare with Eq. (3.8) or the pure gauge
theory. These monopole currents exist on closed
loops of the dual lattice. Qn the XF model the vor-
tex current Jqp is conserved b,gp~

——0 and exists
therefore only on closed surfaces of the dual lattice.
In the Abelian Higgs model considered here there
exist also open vortex sheets bounded by the mono-
pole loops.

If we consider one dimension as time, the topolog-
ical excitations represent the following events: The
creation of a monopole-antimonopole pair connected
by a vortex string and their subsequent annihilation
sweeps out one of the open surfaces. The vortex
strings have also dynamical degrees of freedom.
Therefore we have other events, where closed loops
of strings are created and subsequently annihilated.
Such events sweep out closed surfaces.

In our Monte Carlo calculation to be described in
the next section we use the definitions (3.20) and
(3.21) as prescriptions of how to extract the vortex
sheet densities and monopole loop densities from the
integer parts of plaquette variables b~& and link vari-
ables ap. Instead of describing the topological exci-
tations of the model entirely in magnetic terms
(open and closed vortex sheets) it is sometimes more
convenient to use more symmetric variables, i.e.,
magnetic and electric current loops. Knowing how
to express the magnetic (monopole) loops in terms of
the topological current density J& [compare Eq.
(3.21)], one easily finds the corresponding expression
for the electric loops simply by replacing J& by its
dual form

B. The phase diagrams

The two most elementary gauge-invariant order
parameters which can be calculated for the model
(2.4) are the average plaquette (P) and the average
link (I.),

(P(13,h) ) =— lnZ(/3, h )
Np

r

lnZ(p, h )

(4.2)

(4.3)

when Np and NI are the total number of plaquettes
and links of the lattice. We calculate these order
parameters for the models with q =1, 2, and 6. The
phase diagram for the models with q =1,2 is already
known from Refs. 10 and 11, where however only
the average action (S ) is measured; therefore we re-
strict our study to a minimum of sweeps through
the lattice necessary to measure the characteristic
differences between the phases. No model with
q &5 was studied by Monte Carlo calculations be-
fore; therefore we study the model with q =6 in
more detail in order to obtain the phase diagram.

In Figs. 1—3, we give our results for the phase di-
agrams of the three models with q = 1, 2, and 6 to-
gether with contours of equal (P) and (I.). For
q =1 and 2 our results are consistent with Refs. 10
and 11. In Fig. 4 the results for one sweep through
the model with q =6 is given for constant h =3 and
P between 0.1 and 2.6. The phase transitions are
clearly visible for the hysteresis loops obtained from
sweeps with increasing and decreasing P. The aver-
age link (1.) and average plaquette (P) in the
model with q =1 behave at P~O as expected from
the limiting model [see Eqs. (2.14) and (2.15)].

In the Appendix, we study the phase diagram of

Z„lattice gauge theories with n &5 are known to
have three phases; the confinement phase and the
Coulomb phase at small and intermediate values of
the coupling P are equivalent to these phases of the
U(1) model. The Z„models behave differently only
beyond the high P critical point around P, =n,
which is well beyond the region studied here. We
generate Monte Carlo configurations of the lattice
using a modified Metropolis method. Depending
on the computer, we use also the method of
multispin-coding in order to speed up the calcula-
tion and to save memory space. For most of our
studies we use a 4 hypercubical lattice with skew
periodic boundary conditions. Successive configu-
rations of the lattice are highly correlated. In order
to minimize these correlations, we measure expecta-
tion values usually only after five sweeps through
the entire lattice.
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FIG. 4. Examples for the results of one single scan through the lattice as a function of the coupling constant along a
line of constant coupling h. Plotted for increasing and decreasing P values are the following gauge-invariant expectation
values: average plaquette (P), average link (I. ), average monopole current density (M ), average vortex current density

( V), and average electric current density (E). (a) Abelian Higgs model with Higgs charge q =1, (b) Abelian Higgs model
with Higgs charge q =2, (c) Abelian Higgs model with Higgs charge q =6.

Higgs model follow from (3.8) and (3.21). DeGrand
and Toussaint were the first to study U(1) mono-
poles on the lattice.

We first decompose the U(1) plaquette angles @p~=&p~+2rrbp~ . (4.4)

Note, that p and A, denote directions of the dual lat-

into two pieces, the fluctuating part 5&~ in the range
—~ (@zan (m and the integer part 2m.b~q,
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FIG. 4. (Continued ).
tice. The integer part represents one vortex or Dirac
string carrying one unit 2m of flux. We can measure
the number of monopoles inside a three-dimensional
box by counting the number of strings terminating
inside the box,

2 Q, = g 5,„=2gab„,.
surfaces cubes

(4.5)

OL ———q8„. (4.6)

The link variables take values 0(8„(2m,therefore
OL varies in the range —2' &OL &0. We decom-
pose 0~ into a fluctuating piece OL in the range
—m. & OL, (n and the integer part a„

In four dimensions we get the density of monopole
loops (M ) = ( Q& ) by considering the monopoles in
each elementary three-dimensional cube of the lat-
tice.

We see from (3.21), that the definition of the
monopole loop density in the Abelian Higgs model
is completely analogous to the pure U(1) model. To
define the monopoles, we need only the integer parts
b„„ofthe plaquette variables. In the Abelian Higgs
model there are, according to (3.20), two pieces con-
tributing to the vortices, or Dirac strings, through
one elementary plaquette. The first part is q times
the integer part of the plaquette angle, the second
part is the curl of the integer parts of the link angles
a„.In unitary gauge the link angle in our Wilson
action is

(4.7)

These are the integers a& which we use in the defini-
tion of the vortex sheets (3.20).

The definition of the integer parts a& and b&& of
the link and plaquette variables in the Wilson theory
in Eqs. (4.7) and (4.4) is by no means unique. For
link variables in the range —~(9„(~and for
q =1, the integer part a„ofthe link variables ac-
cording to (4.7} would even disappear. For any def-
inition of these integer parts, however, the expecta-
tion values (M ), ( V), and (E) which we study in
Figs. 1 to 3 will exhibit a characteristic transition
across the phase transition lines. Our choice (4.7)
and (4.4) leads to a vanishing vortex density ( V) in
the Higgs phase for any value of q. Other defini-
tions would lead to identical expectation values only
in the limit q~oo.

Besides the average monopole loop density
(M ) = ( Q& ) and average vortex sheet density

( V) = (J~z ), we study also the electric current den-

sity

(4.8}

and calculate the average electric current density
(E ) = ( Q ) . Q is defined on the six plaquettes (in
four dimensions) which form the coboundary of the
link cr. Therefore (E) is also a measure for the
density of small closed vortex sheets, while (M ) in-
dicates the presence of open vortex sheets bounded
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In Figs. 1 to 3 we present the monopole current

densities (M), vortex current densities ( V), and
electric current densities (E) as determined in the
Monte Carlo calculation for the models with q =1,
2, and 6. We find the following.

(i) In the confinement phases of the models with

q =2 and q =6, there is a large monopole current
density (M). The confinement transition is charac-
terized by a rapidly dropping monopole current den-
sity. Beyond the phase transition in the Coulomb or
Higgs phase, (M) is exponentially decreasing. The
vortex density ( V) and electric current density (E )
are both large in the confinement phase. In the
model with q =1, (M ) is big only near the confine-
ment phase of the limiting U(1) model at h =0 and
decreases rapidly with decreasing h in the
confinement-Higgs phase. The ( V) and (E) ex-
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FIG. 5. Phase diagrams for the Abelian Higgs model
with Higgs charges q = 1, q =2, and q =6 computed with
the mean-field method.
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pectation values behave quite similarly.
(ii) Entering the Coulomb phase from the confine-

ment phase, (M ) vanishes rapidly. The vortex
current density ( V) drops also rapidly across the
confinement transition but remains finite every-
where in the Coulomb phase. The electric current
density (E ) does not change significantly across the
confinement transition and stays finite in the
Coulomb phase.

(iii) The vortex current density ( V) and electric
current density (E) drop rapidly across the Higgs
transition and vanish exponentially in the Higgs
phase.

(iv) The vortex current density ( V) gets contribu-
tions from open vortex sheets bounded by monopole
loops and from closed vortex sheets. We find,
indeed, that ( V) behaves roughly like (M ) + (E ).

V. SUMMARY

In Table I we summarize the properties of the
phases and phase transitions of the Abelian Higgs
model as found in our calculations. The phase
structure found is consistent with expectations from
limiting models' and for q =1 and 2 consistent
with previous Monte Carlo studies. ' '" The three
phases of the model can be characterized by densi-
ties of topological excitations. In particular, the
confinement phase is characterized by a large densi-
ty of monopole currents and the Higgs phase by a
vanishing density of monopole, vortex, and electric
current densities. In the Coulomb phase only the
vortex and electric current density remain finite.
These properties become especially transparent in
the model with q =6, where the confinement transi-
tion and the Higgs transition are well separated.
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APPENDIX: MEAN-FIELD APPROXIMATION
TO THE ABELIAN HIGGS MODEL

Mean-field techniques are very useful in es-
timating the phase diagram of various lattice
models. Surprisingly accurate results have been ob-
tained for the gauge groups Z(2), U(1), SO(3), and
SU(N), as well as for SU(2) —SU(3) mixed models.
Here we study the Abelian Higgs model in mean-
field approximations.

In this approach one studies a single link or site
variable assuming that fields on neighboring links
and sites take average values to be determined self-
consistently. We denote the average gauge field by

and the average Higgs field by

(Al)

(A2)

From the full action (2.3) we thus find the effective
single-link action

S,fr(U)=2(d —1) (U+U )

+—M'[ U~+( Ut)~]
2

and similarly for the Higgs field

S,rr(S) =—2dMmq(S+St) .

(A3)

(A4)

with

d z Z) COSe+Z2COS(ge)

z, (A6)

zi=2(d —1)Pm, z2=hM '

z3 =2dhMm i .
(Aj)

M and m appear as order parameters. The various
phases are characterized in the following way:

Confinement phase:
Coulomb phase:
Higgs phase:

M=m =0,
M =0, m&0,
M&0, m &0.

The transition between the Coulomb and Higgs
phases is most easily analyzed. Approaching the
transition from the Higgs phase, M goes to zero in a
square-root-type fashion. As a function of p one
finds a critical coupling h,

„„

(A8)

with m being the solution of

I, (zi )

Ip(zi)

For large P h,„,approaches
1

hen~ ~ —,
P~ 00

(A9)

(A10)

d is the number of space-time dimensions. There
are 2(d —1) neighboring plaquettes and 2d neigh-
boring links, respectively. We are now looking for
self-consistent solutions, i.e., nontrivial solutions of
the coupled equations

d Ii(z3)M= )n J dXexp(z3coeX)=, (AS)
p Ip(z3 )
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independent of the Higgs charge q. This is to be
compared with the critical coupling h","„,=0.453 of
the XI' model.

In order to find the complete phase diagram, a
modest amount of numerical analysis is required.
Results are shown in Fig. 5. For q =1, a phase line
separating the would-be confinement and Higgs
phase extends down to the /3=0 axis. It is of course
well known that for q = 1 these two regions are actu-
ally analytically connected. More refined mean-field

techniques should remedy this problem. For
larger q values the mean-field approach still yields a
triple point in the interior of the phase plane. This
is in disagreement with Monte Carlo results showing
two disconnected phase lines. This problem already
arises for Z& theories where the second phase transi-
tion (moving with q) is not found by mean-field
methods. It is not quite clear how to resolve this
problem.
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