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one-loop integrals in axial-type gauges
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A general formula for momentum-space integrals containing one noncovariant denominator is de-
rived. These denominators arise in ghost-free gauges such as the axial gauge. The method works in
dimensionally regularized Minkowski space and employs Feynman parameters as well as the Wick
rotation. The pole in the noncovariant denominator is circumvented by a general ie prescription.
With the final formula the principal value can also be evaluated. Several explicit examples are con-
sidered.

I. INTRODUCTION

Much interest has been devoted in the past years to the
quantization of Yang-Mills theories in ghost-free gauges.
One introduces a gauge-breaking term containing the ex-
pression nI'A&, wherein the gauge field Az is contracted
with a noncovariant "vector" n&. As a consequence, addi-
tional factors k n appear in the momentum-space propa-
gator of the gauge field, and loop integrals become more
cumbersome than in covariant gauges, if one applies the
usual techniques. Among others, continuation of the en-
tire integrand to Euclidean space and exponentiation of
denominators has been advocated recently as a reliable
method for computing such integrals. As an alternative it
should also be legitimate to start in Minkowski space,
combine denominators with Feynman parameters, and
subsequently perform the Wick rotation. In this manner
one expects to have a certain handle on the validity of the
above continuation process. Recall that for covariant in-
tegrands the Wick rotation can be carried out below
threshold, in particular in the spacelike region of the
external momenta.

A notorious question is the treatment of the singularity
due to the vanishing of denominators k n. Since these
singularities are artifacts of the gauge choice and observ-
ables do not depend on n„one might intuitively think that
one prescription is as good as any other. However, in
practical life the principal-value (PV) prescription has
emerged as a suitable (but by no means unique} way to im-
plement power counting and unitarity. It amounts to
setting

1 . 1 1= lim- +
(k n)~ e o 2 (k n +is)~ ( —k n +is)~

1 1 1

k n(k+p) n p n k.n

1

(k+p) n
(1.2)

To get the PV one has to repeat the calculation with —n„
substituted for n&. An alternative method (e.g., Ref. 2)
immediately interprets (k n) ' via (1.1) as
lim, o(k n)/[(k n)~+@ ] prior to momentum-space in-
tegration. If it turns out that the PV has to be abandoned
our results might still be useful because any prescription
presumably will be formulated in terms of k n +i e.

Special cases of the general formulas derived in Sec. II
have appeared before in the literature. Several examples
are worked out in detail in Sec. III in order to compare
with existing calculations. The peculiarities of the present
method are summarized in Sec. IV.

Note that for even P this is not the Cauchy prescription
which exempts a symmetrical interval around the singu-
larity from integration. Although the bulk of the explicit
calculations has been done using (1.1) the PV has come
under scrutiny time and again.

In this work integrals containing one denominator
(k n +ie}~ are evaluated in Minkowski space with Feyn-
man parameters and dimensional regularization. More
complicated expressions can be simplified by repeated use
of the identity

II. GENERAL INTEGRALS AND THE PRINCIPAL VALUE

We start with (tnetric + ———,space-time dimension 2co)

I(a,P)= fd "k(k +2p k L+ie) (k n+i—e') ~, a&1, P&1 . (2.1)

The e' associated with k.n need not be the same as in the covariant factor. The latter can be the result of combining
several ordinary propagators with Feynman parameters. Introducing one more parameter we get

I(a,P)= f d "kf dxx '(1 x)~ '[(k +2p k —I.)x+k n(1 x)+—iex+ie—'(1 —x)] ~. (22)r (tt)1 (P) o

For x&0 the k integral can be written as
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Jd k k+p+n
2 2

1 —x—L —p+n +ig
2X

(2.3)

involving the positive-definite quantity g=e+e (1 —x)/x. The outcome of the integration (2.3) will be taken to be valid
also for x =0. This is allowed in a convergent x integral (convergence is achieved by a suitable dimension 2') without
altering its value.

In (2.3) the Wick rotation can be performed provided

M(x)=4(L+p )x +4p nx(l —x)+n (1—x)2 (2.4)

is positive for x H [0,1]. The terms in (2.4) do not have uniform dimension (n& is usually taken dimensionless) because
we combined denominators of differing dimension. One may remedy this by temporarily multiplying ri& with a positive
scale factor of dimension [mass]. The conditions for positivity of M(x)

n2&0, L +p~ &0, p n& .—[(L +p )n ]'

are independent of such an arbitrary scale factor.
Standard dimensional integration yields

1

I(a P)=( —I) + im 4 + ' dxx + ' "(1—x) '[M(x)]"r( )r(p)

(2.5)

(2.6)

The (positive) x integral in (2.6) exists for 2' —2a —P &0, which is just the condition for ultraviolet (UV) convergence
from power counting in (2.1}. It follows that co —a & P/2 & P. Writing

M(x}=n 1—
X) X2

(2.7)

the x integration gives (see Ref. 8 which will be referred to as GR)

I(a,P)= ( —1) + im B(2a+P 2',P)—
n I a)l

1 1
XF~ 2a+ p 2',a+p —co,a+p co—,2a+2p —2co;—

X) X2

involving the generalized hypergeometric function F, . Equation (2.8) is simplified with (GR 9.182.1)

1 1
F~ 2a+p —2',a+p —co,a+p cg, 2a+2p 2—cg;—

X) X2

(2.8)

and (GR 9.134.1)

F(a,P;2P;z) = 1 ——
2

1 1/x i —1/x2F 2a+p —2', a+p —co;2a+2p —2';
X2 1 —1/x2

—a
a a+1

p
1 z

2' 2 ' 2'(2 —z)~

(2.9)

(2.10)

Putting the pieces together we end up with

I(a,P)=( —1) +~2im +' r(2a) L +(n ) "(2p.n) 'F a,b;c;1—r(a)r(c) ' ' '
p '

where a =a+p/2 —co, b =a+(p+1)/2 —~, c =a+p+ —,
'

(p n)'
PL

Pl

(2.11)

It is easily checked using F(a,b;b;z) =(1—z) that in the limit p~0 the familiar formula from dimensional regulari-
zation is recovered.

The hypergeometric function in (2.11) is taken below its cut, but for noninteger 2' there is an apparent cut for p n & 0
due to (p n) . In order to obtain a formula which is useful around p n =0 one continues the hypergeometric function
in (2.11) with the help of GR 9.132.1:
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( 2)cx —N

I(a,P)=( —1) +Pier +'
I (a)

r(a+-,' )
1 jL2P—'n [«+P')n'] ' ' 'F +-r(p/2) 2 2 2 L, + 2 (2.12)

+P +1/2 2 P/2 — 2 ~ & P/—2 —(a+PI(a,p;P n =0)=(—1) iver (n ) (L+p ) r(a}r((p+1}/2
The case L +p =0 is conveniently treated with (2.11). One uses

r(c)I"(c —a b)—"""=r(c —a)r(c —I )
'

which is valid for c —a —b =co—a ~ 0, to get

2

I( p L 2 0) ( 1) +p. n
( )2„p 2 r(co —a)I (2a+p —2')

r(a)r(p)
For the integral

I&(a,p)= Jd "k k&(k +2p k L+ie) —(k n +is')

we go through the same steps as before (2.11) leading to

p) ( 1)a+P~12.~+1/2 ( }
( 2)a —co(2 . }

—2a

r(a)r(c)
r

ppF Q, 6;c ~
1— +p2

pL,

p'n L+p

The counterparts of (2.12) and (2.13) are straightforward. The analog of (2.14) becomes

( ) +p, .~ I (co —a)1 (2a+P —2')
~ CX, , +P r(a)r(p)

2
CX —A7

X (p n) P p„+2n„"2a+ —1 —2co n'

We note [compare Ref. 10, (A. 10)]

Equation (2.12) displays the cut in p n as expected from condition (2.S). At p n.=0, (2.12) yields immediately

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

I„(a,1;L +p =0)= n„—p„ I(a, 1;L +p =0)
Pl

consistent with dimensional regularization since

n"I&(a, l;L+p =0)=fd~k[(k+p) ] = Jd k'(k' ) =0 .

The case p =0 is very simple because I&(a,p) is proportional to n&

Ip(a, P;p=o)= P2I(a,P l,p =0) . -

(2.18)

(2.19)

In order to implement the prescription (1.1) we have to do the above calculation for n& and n&. The simultaneous p—osi-
tivity of M(x) imposes the condition (p n) & (L+p )n [see Eq. (2.5}]. In this region (2.12) is to be applied yielding the
principal value (denoted by an overbar)

I(a,P) =(—1) +Pier"+ '
—,[1+(—1)P]( n 2 )Ix—co r(a) [(L+p )n ] 'F a, —;—;p 1 PL.

r(a} ' r((p+1)/2) 2 2 L +p2

r(a+-,' }
[1 ( 1)P]p.n [(L + 2)n2] —a —1/2F a+ P+

r(p/2) 2' 2 '2'L+p'
(2.20)
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Ifp n =0, I(a, l3) vanishes for P odd consistent with symmetric integration.

For L+p =0, positivity of M(x) for n„and —n„requires p.n &0, and we have to define the PV by analytic con-

tinuation in p.n to a common domain. "Thus I(a,P;L +p =0) is obtained if (p n) 2' is (2.14) is substituted by

,'[—(pn) "+(—1)~(—p.n) "]=(p n) "—,'[1+(—1)'"] . (2.21)

For general co

1 )2' e 2ruie(1+21) (2.22)

where the integer l indicates the choice of continuation path of the function z to negative z in the cut plane (for l =0
and —1 one stays in the first Riemann sheet). In physical quantities, co=2 and all values of l are equivalent. However, a
problem arises in the context of dimensional renormalization because expanding (2.22) around co=2 one encounters an
l-dependent imaginary part in (ultraviolet) divergent integrals [which contain I (2—co)]. One has to drop this contribu-
tion in order to obtain agreement with other methods of calculation (see the example in Sec. III}. Finally we note that for
2' odd the zero in (2.21) can be compensated by a pole in I (2a+P —2').

III. SOME EXAMPLES

For 18= 1, L +p2=m, and using GR 9.132.2 one can cast (2.20) into the form

I(a, 1 ) = —( —1) p.nl (a)
I ( —, +a)I ( —,

' —a)V n
(

2 )co—cx
1 )

—a —I /2

I (1—a) PJ

+(m2)" I (a —aI)F 1, —,'; —, —a; 2
PL

(3.1)

I ( —,
'

+ a)I ( —,
' —a )v n.

I (1—a)

With this relation Eq. (3.1) coincides with a formula derived by Kazama and Yao. '

Let us now compute the integral

( —1) ' ' '=l (a+ —)&(a —' —a) —[1+(—1)'" ' ]

The multivalued functions occurring in this formula may be taken at any side of their cut such that the entire quantity in
square brackets in (3.1) does not contain an itnaginary part, as dictated by the underlying Eq. (2.20) (remember pL & m ).
Choosing for instance —I =e' we get

2'
I(1,1)=PV f

(q k)kn—
Equations (2.14), (2.21), and (2.22) yield

1 —07

nI(1,1)=in I (3—2')I (aI —1) ( —q n)" —,[1+(—1) "]

(3.2)

in I'(2 co—)&(co 1 ——')(n')' —"(— n) '( —1)"
cosh)&

(3.3a)

The method of Ref. 2 gives (in Euclidean space)

I(l, l)=n 1(2—co)B(aI—1, , )(n )' (q—n)"

Near co=2, putting ( —1} =1 either expression leads to [compare Ref. 13, (A5), n &0 there]

(3.3b)

I(1,1)=(i)n I (2 —co) —ln +2+0(co—2)
pg

2 n
(3.4)

Notice that n &0 both in (3.3a) and (3.3b). The intrinsic factor i in (3.4) is of course only there in Minkowski space.
As a second example we consider

d kI(1,2;p =0)=PVJ (k —L)(k n)

One may either reduce (3.5) to an integral without' k n,

(3.5)
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2'2' —2 f d k

or evaluate it directly with (2.13). In both ways one obtains

I(1,2;p =0)= i—m L" I'(2 —co) . (3.6)

Finally we want to calculate the more complicated integral

I(P)=
k (q —k) (k n+ie')~ (3.7)

Equation (2.11) gives

I(P) ( 1)P2i~+1/2(n2)2 —m P
f'( ,' +P —~)

&( f dx( 2q.nx—) ~ F 2+ ——co, —co; —,+p —co,'I+ 2 (3.8)

The condition L+@ &0 requires q &0 (remember n &0). The UV divergence of I(p) as determined from power
counting is contained in I (4+p —2'). Naive "infrared (IR)" power counting (behavior of the integrand for small k with

q arbitrary) reveals another divergence for c0 & 1+p/2. In fact, using GR 9.132.2 to investigate the vicinity of x =0 it is
seen that the x integral (3.8) only exists for co & 1+P/2 (a similar analysis with GR 9.131.2 shows convergence at x = 1

for co & 1). Performing a Laurent expansion of the integrand around x =0 the IR pole can be isolated. In this manner
one derives for p=2 the IR pole: [i m /(2 co)]2/q —n This is .also the IR pole if the PV is taken in (3.7).

For co=2 only I(1) is both UV and IR convergent. If we set co=2 in (3.8), the PVI(l ) according to (1.1) is also given
by (3.8). Defining y =(q n) /q n &0, Eq. (3.8) may be transformed into

2l77 I
2 —i 1 —Q 00

2 —1I(1)= y f du(1 —y+yu ) ln — —2 du(1 —y —yu ) arctanu
q n Q 0

(3.9)

In terms of the "Spence function"'

Sp(x) = —f dt, (3.10)

it is straightforward to evaluate the first integral of (3.9):

f du(u —g) 'ln = ln " In
1 —u 1 1 —8 1 —8
1+u 2g g2 1+/

g —1 /+1
0+1

—2Sp +2Sp+1 —1
(3.1 1)

where g =
~

(1—y)/y
~

& 1. Partial integration converts the second term of (3.9) into

~ arctanu m 1 ~ arctanu /g
2

CL=
2

dQ~'+0' 4f 0 ' 1+~'
After differentiation with respect to g the u integration is performed with GR 3.264.2; the subsequent g integration leads
again to Spence functions:

f du = in/in + [Sp(g) —Sp( —g)] .
cc 2+$2 2 1+ 2

Combining the Spence functions'~ in (3.11) and (3.12) we find

2 —1
2

I(1)= —,ln +2Sp
q ng

' /+1 /+1 3

This agrees with Ref. 10, (A9).

(3.12)

(3.13)



28 ONE-LOOP INTEGRALS IN AXIAL-TYPE GAUGES 359

IV. SUMMARY

We have calculated general momentum-space integrals
occurring in axial-type gauges with an arbitrary power of
one noncovariant factor k.n.. The calculation proceeds in
dimensionally regularized Minkowski space by combining
denominators with Feynman parameters and subsequently
performing the Wick rotation. The is needed for circum-
vention of the "gauge pole" k.n =0 is kept distinct from
the one used with the ordinary propagators. A closed ex-
pression in terms of hypergeometric functions emerges,
which (depending on the number of covariant denomina-
tors) still have to be integrated over Feynman parameters.
The principal-value prescription for the k.n =0 singulari-
ty is implemented by adding two integrals, with n& and

—n&, respectively, after the k integration has been carried
out. We have considered several explicit examples and
found agreement with published literature. In a special
case, evaluation of the principal value entails a sign factor
( —1)~ (2co=dimension), which is peculiar to the present
method. It does not appear if the two denominators corre-
sponding to the principal value are combined before
momentum-space integration.

ACKNOWLEDGMENTS

I am much indebted to G. Wirthumer for his incisive
criticism and aid in calculations. I also thank P. Schaller
for assistance.

R. Delbourgo, A. Salam, and J. Strathdee, Nuovo Cimento
23A, 237 (1974); W. Kummer, Acta Phys. Austriaca 41, 315
(1975); W. Konetschny and W. Kummer, Nucl. Phys. B100,
106 (1975); J. Frenkel, Phys. Rev. D 13, 2325 (1976); W.
Konetschny, Phys. Lett. 90B, 263 (1980); Yu. L. Dokshitser,
D. I. D'yakonov, and S. I. Troyan, Phys. Rep. 58, 269 {1980).

D. M. Capper and G. Leibbrandt, Phys. Rev. D 25, 1009
(1982).

3W. Kummer, Ref. 1.
4W. Konetschny and W. Kummer, Nucl. Phys. B108, 397

(1976).
5I. M. Gel'fand and G. E. Shilov, Generalized Functions

(Academic, New York, 1964), Vol. I.
Y. Frishman, C. T. Sachrajda, H. Abarbanel, and R. Blanken-

becler, Phys. Rev. D 15, 2275 (1977); T. T. Wu, Phys. Lett.
71B, 142 (1977); V. F. Muller and W. Ruhl, Ann. Phys. (N.Y.)
133, 240 (1981); S. Caracciolo, G. Curci, and P. Menotti,
Phys. Lett. 113B, 311 (1982); H. D. Dahmen, B. Scholz, and
F. Steiner, ibid. 117B,339 (1982).

7G. 't Hooft and M. Veltman, Nucl. Phys. B44, 189 (1972).
sI. S. Cxradshteyn and I. M. Ryzhik, Table of Integrals, Series

and Products (Academic, New York, 1965).
This case was handled by a different method in W. Konetsch-

ny, Nucl. Phys. B152, 153 (1979), Appendix.
~ W. L. van Neerven, Z. Phys. C 14, 241 (1982).
~~For a similar idea in a different context see P. Cvitanovic,

Nucl. Phys. B130, 114 (1977);W. Konetschny, Nuovo Cimen-
to 47A, , 546 (1978).
Y. Kazama and Y. P. Yao, Phys. Rev. D 19, 3121 (1979).
B. Humpert and W. L van Neerven, Phys. Rev. D 24, 2245
(1981).
W. Kainz, W. Kurnmer, and M. Schweda, Nucl. Phys. B79,
484 (1974).

'5K. Mitchell, Philos. Mag. 40, 351 (1949); R. Barbieri, J. Mig-
naco, and E. Remiddi, Nuovo Cimento 11A, 824 {1972);W.
Grobner and N. Hofreiter, Integraltafeln (Springer, Wien,
1949).


