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We discuss the renormalization prescription for fermions at finite temperature and describe the

procedure for calculating radiative corrections. Novel features arise, such as a lack of explicit
Lorentz invariance, 1/k singularities, and the absorption of soft photons from the background heat
bath. The methods are illustrated by explicit calculation of the electron renormalization and the ra-

diative corrections to H~e+e (with H being spin zero) in finite-temperature QED.

I. INTRODUCTION

In studying the applications of particle physics to the
early universe, one needs to use field theory at nonzero
temperature. The general formulation of finite-tem-
perature field theory was developed by Weinberg, ' Dolan
and Jackiw, and by Duncan who obtained the tree-level
propagators and Feynman rules, and calculated the effec-
tive potential in gauge theories. More recent applications
concern how the temperature affects scattering processes
and decay rates. ' In these cases, the temperature enters
through radiative corrections. However, the conventional
procedures for renormalization and calculation of radia-
tive corrections are not applicable. There are two main
reasons for this. First, the processes do not take place in
the usual vacuum but occur in the background of particles
present at finite T, i.e., a heat bath. Additionally, finite
temperature theories are not explicitly I.orentz invariant;
the heat bath defines a preferred frame of reference.
Standard renormalization prescriptions use Lorentz invari-
ance heavily. It is the purpose of this paper to describe a
renormalization procedure appropriate for finite tempera-
ture.

The outline of our paper is as follows. In Sec. II we
brieAy describe the real-time formulation of finite-
temperature field theory. Then in Sec. III we discuss mass
and wave-function renormalization for fermions by con-
sidering the fermion propagator. Weldon has studied the
photon self-energy so we need not repeat his work. We
describe the procedure for calculating radiative corrections
of decays or scatterings in Sec. IV. Here we present an ex-
plicit calculation of the decay of a neutral scalar boson
(such as a Higgs particle) in order to demonstrate the can-
cellation of infrared divergences. We summarize the pro-
cedure and results in Sec. V. Finally in the appendices we
give a particularly simple and transparent derivation of
the finite-T propagator and the calculational details.

II. FINITE- TEMPERATURE FORMULATION

At nonzero temperature the presence of particles in the
background heat bath modifies the propagators even at the
tree level. For a rigorous derivation we refer the reader to
the early literature. However, in Appendix A, we present
a simple derivation which demonstrates just how the
modifications of the propagator come about.

In the "imaginary-time" formulation, the energy vari-
able is treated as a discrete quantity and calculations in-
volve integrals over momentum and sums over energy.

We prefer to use the "real-time" formulation wherein en-

ergy is a continuous variable as in conventional field
theory. The real-time formulation has the additional ad-
vantage of explicitly separating out the zero-temperature
result from the finite-temperature corrections.

The tree-level fermion propagator in momentum space
is

l
Stt(p) = —2n 5(p —m z )(p+ m )nF (E ),

p —m+ie p

where P is the inverse temperature

(2)

Dtt't"(q) =—g"" +2~5(q )ns(Eq)
+lE

where

nit(Eq ) = 1

is the Bose-Einstein distribution function. Feynman dia-
grams are calculated in the usual fashion, except for the
substitution of the above propagators in place of the usual
ones.

The usual infinite ultraviolet renormalization of the
masses and coupling constants are due to the zero-
temperature portion of the propagators. The finite-T
correction involves an exponential ultraviolet cutoff in the
distribution functions. However, new infrared problems
can (and do) arise because of the 1/E~ singularity in
ntt(Es) as E&~0 These requir. e special treatment, as we
shall demonstrate.

III. RENORMALIZING THE FERMION PROPAGATOR

At the one-loop level the fermion self-energy is given by
the diagram in Fig. 1. Explicit calculation of this diagram
yields

1
nF(Ep) =

e ~+1
is the Fermi-Dirac distribution function. Note that we use
units of temperature where Boltzmann's constant is set
equal to unity. The tree-level photon propagator in the
Landau gauge (which we adopt throughout this paper) is
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2 nF(Ep «)5((p —k) —rn )
&yp)=&, ,(p)+, f d'k(2m p+—lg')

4m k +i@

nii(k)5(k )

(p —k) —m +i@
(6)

=+T—o(p) + [(iy —m )Ig +I + (2m —p}J„+ps],
4n

where

I"=Srr I n&(k), I&=2 I n2i(k)
dk „dk (kp, k)
k

p 0

d'l
E n~E(

I EpEg+m 2 —p
2EpEI —m +p ].

d 1 (Ep+Ei, p+ 1 ) (Ep Ei, p+—1 )
np(Ei ).

I p. 1 E E m2+

At T=O, Lorentz invariance allows us to write the self-
energy near the mass shell as

XT 0(p)= —(Z2 ' —l)(p —m)+5m .

l

In order to find the physical mass of the particle we seek
the pole in the propagator. This may be done fairly sim-
ply:

&(p) —=& (p)Eyo &(p—)p y C(p—), (10)

The standard procedure identifies 5m as the mass shift
(m P""'=m +5m) and Z2 as the wave-function renormali-
zation constant. The lack of explicit Lorentz invariance
obscures this identification when T&0. %'e must then
turn to the basic definitions of these renozmalizations in
order to define them unambiguously.

First we introduce some notation. We write the fermion
self-energy as

i (P'+rn)

p —rR + I E p —rR +!6
The pole occurs when

p —m =0
ol

(1—2A)E —(1—28)p —mo +2rnC =0,
E —p =m0 —2m0C +2AE —28 p

(13)

(14)

where

JO
IA+ —I —J +

a=ma + (2I p+2Jrr. p+2m J„)4

2 2
=mpiy, (p ) .

r 1-B= I + - I p —J~+ J~'p
4m p p

C = m(I" —2J"),
4m.

and the coefficients may depend on E and p in a Lorentz-
noninvariant fashion. The inverse propagator is then

On the right-hand side of this equation it is appropriate to
this order in a to use E =ED ——(p +ma )' . The physi-
cal mass thus found can be a function of the three-
momentum p.

For the one-loop calculation we find (see Appendix B)

pmy' hmo + TalrT + mo Jg(p)2 2 & 2 a 2

2
S '(p) =(1 A)Eyo (1—8)—p.y —(m——C)

—:P'—m,
4a I" 1 dl (E)

EI
(16)

where

p„—=((1—&)E,(1—&)p),
m=m —C .

FIG. 1. The diagram for the fermion self-energy.

(12)

At low temperatures (T «mo) the last two terms, due to
fermions in the heat bath, are exponentially small and the
physical mass is independent of momentum. However, at
high temperatures it does depend on p through Jz(p). As
Weldon has pointed out, the finite-T mass is nonzero even
if the T=O mass, m0, vanishes.

The particles which propagate freely in the finite-T heat,
bath satisfy

(P'—m )u p(p}=0 .

If X were I.orentz invariant (A =B) this would reduce to
the Dirac equation with the mass m being the physical
mass. However, in genera1, the finite-T spinors are
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up(p)=
E+m

2E

' 1/2 1/2
E(1—A)+m —C

2Z(1 —A) o"p(1 B)

E(1—A)+m —C
x

(18)

with a corresponding expression for the case of antiparticles. The renormalized fermion field operator can be expanded
in terms of these solutions:

d3
1(«(x)=f,g [up, (P)b, (P)e '« "+'vp, (P)d, (P)e+'« "] .'

S

With the normalizations given, these fields satisfy the usual anticommutation rules

[1(~(x),Pp(x')], =53(x —x')yo p,

{b,(p),b, (p')] =5'(p —p')5„,
[d, (p),d, (p')) =5'(p —p')5 ~ .

It is these commutation rules which define the renormalized propagator. ~e write

~p(x —y)=p(0
~
'r(P(x)f "(y)) ~0)p

(20)

If we use

3
= f g [e(x&&—yc)u p(p)up(p)e '«'" «'+e(yo xo)—up(p)up(p)e'&'" «'] .

(2m. )
(21)

g up. ,(p)up, ,(p)=, g Up, ,(p)up, ,(p) =-P'+ m P'+ m

s 2E s 2E

this can be converted into a four-dimensional integral

d p,«.i„«i( }
(jF+m) . f d p 'p ( «) (1—A)

(2n) p~ —m'+ie (2m) P—m+le

(22}

(23)

The factor of (1—A) is required to produce a correctly
normalized propagator. Comparing this with the unrenor-
malized form permits us to identify the wave-function re-
normalization constant

Zg ' ——(1—A) .

When the self-energy is Lorentz invariant this rule is iden-
tical to the conventional definition of wave-function re-
normalization

than the usual T=O spinors.
(b) In addition to the inclusion of soft-photon emission,

one must allow for processes involving the absorption of
soft photons or fermions from the heat bath.

(c) Finite-T renormalization constants are used and the
phase space is determined using the finite-T mass, mphy, .

(d) The density-of-final-states factor is modified by par-
ticles in the heat bath to

&&(p)

ap
2 7

but the prescription is not the same in general. The expli-
cit form of Z2 is

1 —nF E
(2n )

for fermions, and

1+ E
(2')

(27a)

Z '=Z '(T =0)— f np(k)
k

amT 1
1

1+v
&

1 Jo
6E2

with J~ and Js given in Eq. (8).

IV. RADIATIVE CORRECTIONS

(26}

for bosons The existence of some of these features have
been noted in previous studies.

In addition there are two new types of divergences to
deal with. The first of these comes because the usual 1/k
bremsstrahlung singularities become intensified by the
presence of bosons in the heat bath. We will see that the
singularity is now of the form

There are several novel aspects to the calculation of ra-
diative corrections at finite temperature. We will discuss
these in more detail below but here we list some of these
features.

(a) One should use the finite-T spinors, Eq. (18), rather

1 1

k epk —1 k 0pk~

It will turn out that these leading singularities will cancel
between the vertex renormalization, soft emission, and soft
absorption. Another potential divergence comes from
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mass singularities. At T=0, the Kinoshita-Lee-
Nauenberg theorem assures that any singularities as
m~0 can be absorbed into renormalization constants,
leaving physical processes finite in this limit. However, at
finite T, new mass singularities can in principle appear. A
finite-T version of the KLN theorem has not yet been
proven, although we feel that it must be a physical re-
quirement that processes finite at T=O should remain fin-
ite when T&0. We have not completely answered this
question, but the mass singularities in our explicit calcula-
tion do indeed disappear when all diagrams are included.

=p(i7 —m~h„, +5m)g (28)

with 5m =mphys mo. One then employs spinors involv-
ing mphy and uses 5m as a perturbative counterterm. At
finite T this can be generalized (in momentum space) to

The need to utilize finite-T spinors is related to the
method of mass counterterms at T=O. We recall that,
since one wants to use the physical mass, the original La-
grangian is rewritten as

= =g(i7 m—)P

"~"-p—~o = [p m—o —X(p)] I p= +X(p) I p= =p m +~(p (29)

In this case we employ then the spinors associated with
the "Lagrangian" P' rn, and—use the self-energy as a
"mass counterterm. " We will illustrate this in our explicit
calculation.

The need to modify the density-of-states factor and to
include absorption of particles from the heat bath has been
previously noted by Cambier et al. and Dicus et al.
That one must include the absorption diagrams in the to-
tal decay rate is clear. However, it is less obvious that this
inclusion plays a crucial role in the calculation of radiative
corrections. In our example below, however, the absorp-
tion of soft photons diverges like (ilk)n~(k) and is re
quired in order to cancel similar divergences due to vertex
and wave-function renormalization. The modification of
the density-of-final-states factor is due to the stimulated
emission caused by the particles in the heat bath. For bo-
sons it adds to the total rate as in Eq. (27b). However, for
fermions, the sign is changed and the "stimulated emis-
sion" term lowers the decay rate (due to the Pauli princi-
ple).

As an explicit example of the method of calculating ra-
diative corrections at finite temperature we will consider
the decay 0~e+e, where I is a scalar particle (such as,
for example, a Higgs boson). For simplicity, we will as-
sume the H to be at rest with respect to the heat bath, and
calculate at T «m, . This latter condition means that we
can neglect finite-temperature modifications to the tree-
level fermion propagators; thus temperature effects enter
only through the photons. The T=O radiative corrections
to this process have been discussed in detail by Braaten,
and we will only deal with the T&0 corrections. The
relevant diagrams to one-loop order are shown in Fig. 2,
and we will discuss each in turn.

(i) The bare vertex is

Mo ———igu (p ')u (p) (30)

(32)

This term illustrates the two new possible divergences dis-
cussed earlier. As k~O the integrand behaves as dk/k
instead of the usual dk/k infrared behavior. In addition
M is singular when m~0, v~1. This divergence cannot

(a)

(c)

which leads to the lowest-order decay rate

PPVH
I 0 g v

8m

where

(31)

(e)

4 2 1/2
PPl 01—

610

(ii) The vertex correction, Fig. 2(b), has a temperature-
dependent part (see Appendix B)

FIG. 2. Diagrams for H~e+e to order a. Diagram (a)
gives the bare coupling, (b) is the vertex correction, (c) and (d)
are the self-energy and mass-counterterm contributions, respec-
tively, while (e) and (f) correspond to real emission and absorp-
tion.
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be absorbed into coupling-constant renormalization be-
cause the coupling constants can be renormalized at T=O.
However, we will see that both of these singularities will
disappear by the time we arrive at the final result.

(iii) In discussing the self-energy corrections let us recall
the calculation of the previous section. At low T
(T«m, ) the finite-T portion of the self-energy can be
written as

(iv) In order to describe the mass counterterms, Fig.
2(d), we recall that we must employ the finite-T spinors in
calculating the decay rate. This amounts to rewriting the
momentum space "Lagrangian"

"W"=p —mo

as

X"(p)= [(p—m)Ig +I(p)]
4

where (cf. Appendix 8)

Ig ——Sm I ns(k),dk
k

(33)
"W"=p —m +I(p)

4m

The mass counterterm for Fig. 2(d) is then

"&~"= +/(p)
4n

(37)

(3g)

2m T 1 1+v
3E& v 1 —v

2m T 1
1

1+v
v

—2v p.

The corresponding mass shift and renormalization con-
stant are then

a7TT5m=
3m

T

a 0 a
Z2 — 1+I' 4~ E 4~'

(35)

The self-energy contributions to the matrix element, Fig.
2(c},are then

which leads to

5m 5m g(p) a
Mcr ———igu(p') — —, +

p —m p'+ m 2m 4~2

I(p') a
( )

4~2
(39)

M = igu p(p—') 1 —— ln
a 1+v 1+v dk

ns(k)
v 1 —v k

(v} We multiply the matrix element by a factor of
Zq ' for each external fermion line.

Collecting all contributions to the two-body vertex
(i)~(v) we have thus

a 5m 5m
MsE = —igu (p') 2I„+

p —m p'+m
Io a
E 4m 4m.

+I v( ). (40)

E(P) a X(P ) a
( ) (36}

2m 4Q 2m 4ir2 (vi) The matrix element for real emission is

pP p'P
MRE —— iegu(p—') —,

k
+y"k

2 k
+ 2, kp-k p' k

v (p )e&(k) . (41)

When squared and summed over spins this leads to

~M~ =4eg (pp' —m )
2p 'p

p kp'k
p.k p'. k 1 1+ 2p p' —m, —m +

(p k)2 (p'k)~ p'k p k p k p'k

p.k p'. k
(42)

[We caution the reader that it is incorrect to set m =0 in
the above result even if one is not interested in small terms
such as m /mH . This is because some of the denomina-
tors have 1/m singularities which renders the result of
O(1). These would be missed by setting m =0 too early
in the calculation. ' ]

(vii) The matrix element for absorption of a photon is

obtained from Eq. (42) by k&~ —k&.
We now evaluate all the corrections to the decay rate.

The simplest correction is that due to the modification
which takes place in "phase space" due to the
temperature-dependent change in the mass of the electron.
This yields (cf. Appendix 8)
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&&=—&p +O(5m )
12m 5m 2

rn v

2 2+0(T ) . (43)

The correction to the two-body decay rate is found by
squaring Eq. (40) and summing over final states, giving
(cf. Appendix B}

f dk
(k)

a 1+v
1

1+v 2a
k m v 1 —v

a I(p} p
4' p2

(44)

The three-body rates (stimulated emission plus absorp-
tion) are more complicated because one must integrate
over the whole of the Dalitz plot, weighted by the distri-
bution function ns(k). The matrix element is a complicat-
ed function of k and the integrals of this with ns(k) can-
not be evaluated analytically. What we do is to expand
dl /dk in powers of k [times ns(k)] and then integrate
term by term, converting this integral into a power series
in T

dl" 1=ns(k) R —
i +Ro+ kR i +0 (k )k

+I o+I" + (45)

In doing the calculation one must expand not only the ma-
trix element but also the size and shape of the Dalitz plot,
which makes the calculation quite tedious. For the lead-
ing (most divergent) term we find [adding emission and
absorption, which contribute equally (cf. Appendix B)]

2aI p
ln

v 1 —v
I ( —i)=

8a I o 1+v
ln +v ns(k)k . (47)

Adding together the two-body and three-body rate correc-
tions and integrating we find

4 aT
m v

(48}

Note that at this stage all the mass singularities have also
disappeared, as we speculated must occur on physical
grounds. '

The total correction, Eq. (43) plus Eq. (48), vanishes to
the order in T /MH which we are working:

(46)

As expected, this precisely cancels the leading soft-photon
singularities in the two-body decay rate. The next term,
R[o~, would also lead to an infrared divergence because
ns(k)-1/Pk as k~0. There is nothing in the two-body
rate, Eq. (44), with which to ameliorate this singularity,
and so R~o~ must vanish. Indeed it does, due to a cancella-
tion of the effect of emission and spontaneous absorption.
Finally for the finite contribution of I [i] we find

~~TOT ~1 +~f, =0+0(+ ) ~ (49)

This vanishing appears to be accidental, but we have also
calculated the radiative corrections for the decay of a
pseudoscalar H (instead of scalar) and found that to be
zero also. The calculation, however, does serve to illus-
trate the finite-temperature renormalization techniques.

There exist calculations in the literature ' evaluating
radiative corrections at finite temperature, which have in-
troduced some of the features described above. However,
the appropriate procedure for wave-function renormaliza-
tion appears to have been overlooked. For example, the
authors of Ref. 5 miss the finite terms Ip/E in the wave-
function renormalization because of their use of the con-
ventional Eq. (25) instead of Eq. (24). The term Io/E is
significant because it is singular as m ~0, and perhaps
could remove the mass singularities found in Ref. 5.

V. SUMMARY

d3
[1+ns (Ep ) J(2n. )

for bosons, and

d3
[1 np. (E~)]—(2~)' 2&p

for fermions.
(e) Care must be taken to correctly identify the "mass"

counterterms as the Lorentz noninvariance of the calcula-
tion renders invalid the usual identification.

These points were illustrated by a sample calculation,
H~e+e

We have discussed mass and wave-function renormali-
zation for a fermion at finite temperature. There exists a
temperature-dependent and (generally) three-momentum-
dependent mass shift which would be found by locating
the pole in the propagator. The wave equation for a fer-
mion in a heat bath is modified from the Dirac equation
by one-loop corrections and we defined finite-T spinors
[Eq. (18)] which solve the wave equation. By requiring
that the canonical commutation rules remain satisfied we
identify the renormalized propagator and thereby the
wave-function renormalization constant Z2. This identifi-
cation is not the usual one, but does reduce to it if the
self-energy is Lorentz invariant. The mass and wave-
function renormalization for an electron were calculated
in finite-temperature @ED. We agree with previous re-
sults on the mass shift, "but feel that other workers have
incorrectly calculated the wave-function renormalization
Z2.

Radiative corrections are calculated in the same way as
at T=O, except for the additional features.

(a) Finite-T spinors should be used.
(b) Phase space has a temperature-dependent and (gen-

erally) momentum-dependent modification due to the
mass shift.

(c) One must include diagrams involving the absorption
of particles from the heat bath.

(d) One must include stimulated emission. This effec-
tively modifies the density-of-final-states factor to
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In this normalization, we have

[a(k),a (k)]=5 (k —k')

:H:= f d k(uka t(k)a (k)

(A2)

(A3)

APPENDIX A: FINITE- TEMPERATURE
PROPAGATORS

In this appendix we present an elemeritary derivation of
the tree-level propagator at finite T. For simplicity we
treat a scalar field. The field operator is expanded in
terms of creation and annihilation operators via

d kf [ —ik.x (k}+ +ik x t(k)]
(227) y +2(Ok

(A1)
f

p(0~a (k)a(k) ~0)p=ni)(oak)=
1

~a (A4)

The finite-temperature propagator can now be calculated,

with H being normal ordered with respect to the T=O
vacuum. With this choice of normalization, we can read
off the matrix element of the number operator at finite T

Dp(x —y}:—p(0 I T[4(x)4(y}]
I »p

»2 p(0
f
8(X0—y0)[e '"'"e+'" 'ya(k)a (k')+e+' '"e ' 'ya (k)a(k')]+x~y

f 0)p
(227) (2(Ok 2COk )

d k 1
[g(x y )e

—ik (x —y) +g(y x }e+lk-(x —y) ](227)' 2~k

+ ne(cok)(e'k'(" "'+ed k 1

(277) 2('Ok
(A5)

The aa~ terms generate the usual Feynman propagator while the a~a terms count the particles in the heat bath. The
propagator can be easily rewritten using contour-integral techniques

~4k
D ( )

~ f d —ik (x —y)

(2~)4 k —m +i@
2vri 5(k —m)n p(02k —) (A6)

which is the desired result. Similar derivations produce the spin- —, and spin-1 finite-temperature propagators. We ob-
serve then that the finite-T modification of the propagator is due to the existence of real particles in the heat bath.

APPENDIX B: CALCULATIONAL DETAILS

We calculate

d k 1 kI'

e —1E&k —p k

First note that

d k 1 ~ kdk 8m ~ xdx 4m
p IP —2

k pko
1

0 epk 1 p2 0 ex 1 3p2
= 8m.

I can be calculated directly

(B2)

Ip 2

Ep

1 1
h p 477

1
1+u f x dx

eP"—1 1 -„.k E uEP 1 —u 0 e"—1

2m. 1 1+v
ln

3P2 uE& 1 —u
(B3)

Then

7

p 4m. xdx 11 1+0
2 p 2~' 1l 1+U

+2 p2 0 ex 1 u 1 u p2 3p

For the vertex renormalization diagram [Fig. 2(b)] we find
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d4k
5M=goe f 4 21r5(k )ns(k o) Tl(pl)/la y"v(p2)

(2m ) pl — —m p2 — —m

= —Mo f d k 5(k }ns(ko}
2772 pi kp2. k

= —Mo, (1+v )f, na(ko)
a 2 d k 1

2%.2 k0 1 —vk

= —Mo —(1+v )—ln f ns(k) .a 2 1 1+v ~dk
U 1 —U o k

(B4)

We obtain the so-called "phase-space" correction by evaluating the effect of the change m0~mphy on the zeroth-order
decay rate. We find

5I 3 d 5
dm Um

(B5)

as glvell 111 Eq. (43).
In calculating the so-called two-body decay rate, we start with Eq. (40), square, and take traces using finite-temperature

spinors. This yields

p( two-body )
0

2E u

1 —2— ln
-

(k) —2 — +2I„
2 I

V 1 —v k E 4~ 4~

I. —
tby

1 2a 1+v
In

1+u f dk (k)+ 4a f dk
(k) —2

a p
E2 2 ~ U 1 U k ~ k 4~

(B6)

However, the factor (E —m~by )/(E —mo ) is already included in what we have called the phase-space correction.
Thus we have

gl two-body 21
a f dk

(k) 1+v
1

1+u 1 p I(p)
o~ k U 1 —U 4~ p2

as glvell ill Eq. (44).
In order to calculate the rate for emission of real photons the matrix-element factor [Eq. (42)] must be multiplied by

the phase-space factor

1 oo maxf 3 & 3 [I+ns(k )](2m) 5 (k —pt —pl —k)= — f dk f dEt[1+ns(ko)]
(21r) 2k (2') 2El (2w) 2E2 4 (2tr) o max

(BS)

and integrated over E&,k. Here

4m
Emax, mIn =

2 ma k +—k 1
mH(mH —2k)

1/2

(B9)

represents the range in lepton energy allowed by kinematics. For the temperature-dependent piece we need only keep the
terms in ns(ko) Since by .dimensional arguments

dk k "ns(k) —T"+' (B10)

as long as we are willing to work at low temperatures (T« mH ) it makes sense to expand the final integrand over dk as a
power series in k/mH. We find then for the rate of real-photon emission
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2

I,= f dk ns(kp) '8k In
2mB 8~2

4m1+ 1 ——
mH(mH —2k)

4m

mH(mH —2k)

1/2 2

?

1 — +— —3 +4
mH" m2 m2

4

+ 4
m~ k

—8(mH —2k) 1—
1/2

4m 1 mH m—2
mH (mH —2k) 2 k kmH

4gp f dk ns(kp)
8

ma '

2 v 1+u 1 3 2 1+v k2

(I+u ) In ——u + —uln +
k 4 1 —v 2 1 —u mH

u +1n 1+v
1 —v

Th«a««r absorptio»s obtained from Eq. (811) by changing k —k. Thus the combined absorption and etnissjon
rate is given by

I,+I,=gp dk ns(kp) (1+u ) ln ——u +2a H 2 u I+u I 2 k
p k 4 1 —v 2 m~

1+uu+1n
1 —u

Sa=ro
7r

1+v 1+v
1n

4u 1 —u

1 dkf ns(k)+ 3
ln + f dk ns(k)1 1+v 1 ~ k

0 k u 1 —u v 0 m~
(B12)

Note here that the most singular term, f (dklk)ns(k), exactly cancels against the corresponding two-body
infrared singularity. The term in f dk ns(k), which is also singular, cancels between the emission and absorption dia-

grams. Finally, the remaining term, dk kns(k), is nonsingular and is the three-body contribution to the radiative
0

correction given in Eq. (47).
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